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Abstract: Machine learning (ML) and deep learning (DL) have become very popular in the research
community for addressing complex issues in intelligent transportation. This has resulted in many
scientific papers being published across various transportation topics over the past decade. This paper
conducts a systematic review of the intelligent transportation literature using a scientometric analysis,
aiming to summarize what is already known, identify current research trends, evaluate academic
impacts, and suggest future research directions. The study provides a detailed review by analyzing
113 journal articles from the Web of Science (WoS) database. It examines the growth of publications
over time, explores the collaboration patterns of key contributors, such as researchers, countries, and
organizations, and employs techniques such as co-authorship analysis and keyword co-occurrence
analysis to delve into the publication clusters and identify emerging research topics. Nine emerging
sub-topics are identified and qualitatively discussed. The outcomes include recognizing pioneering
researchers in intelligent transportation for potential collaboration opportunities, identifying reliable
sources of information for publishing new work, and aiding researchers in selecting the best solutions
for specific problems. These findings help researchers better understand the application of ML and
DL in the intelligent transportation literature and guide research policymakers and editorial boards
in selecting promising research topics for further research and development.

Keywords: machine learning; deep learning; intelligent transportation; scientometric analysis;
qualitative review

1. Introduction

By 2050, the global urban population is projected to reach around 66% to 70% [1,2].
This rapid urbanization is likely to profoundly impact environmental sustainability, city
management, and urban safety. To address the challenges this poses, several countries have
introduced the concept of “smart cities” as a strategy to manage resources and optimize
energy usage effectively. Central to the smart-city framework are such sectors as intelligent
transportation, cybersecurity, and smart grids, which are significantly influenced by the
integration of machine learning (ML) and deep learning (DL). These technologies enhance
efficiency and scalability in smart city initiatives.

Machine learning and deep learning are two core subfields within the field of artificial
intelligence that, although they share similar goals and theoretical foundations, differ sig-
nificantly in terms of technical implementation, data dependency, hardware requirements,
feature engineering, execution time, and interpretability. Machine learning involves a
series of algorithms that perform specific tasks by learning patterns from data, while deep
learning focuses on using neural network models, especially deep networks with multiple
hidden layers, to learn complex representations of data. Deep-learning models require
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large amounts of data and high-performance hardware, typically take longer to execute,
and are less interpretable [3].

Intelligent transportation systems (ITS) represent a synergy of smart devices, control
systems, and information technology. These generate a substantial volume of data, playing a
pivotal role in the success of smart cities [4]. Intelligent transportation solutions can enhance
traffic-flow management by monitoring traffic patterns and optimizing traffic-signal timing.
The overarching goal is to promote sustainable transportation modes, using ITS to provide
real-time information and traffic management systems (TMS) to manage congestion. These
systems aim to enhance safety and encourage environmental sustainability by minimizing
the consumption of fuels and reducing energy use [5].

Despite considerable research into various applications of ML and DL in intelligent
transportation, the studies vary widely, with research areas including traffic-flow predic-
tion [6], authors conduct a brief survey to explore the various fundamental and important
aspects of smart cities. Some of the important challenges discussed were designing a
data-based solution to manage the transportation organization of a smart city through the
use of machine-learning algorithms. ITS [7], congestion management [8], smart parking
solutions [9], and enhancements to public transportation [10]. This may challenge some
researchers and policymakers to understand the field comprehensively.

Moreover, while these studies contribute valuable insights, they have prominent
limitations [10]. Primarily, many rely on traditional qualitative literature reviews that the
cognitive biases and interpretative limits of the researchers may influence. Furthermore,
while the use of ML and DL in intelligent transportation has attracted significant interest,
a holistic review of their applications remains absent [5]. In addition, there is a lack
of quantitative analysis and generalization across studies, which would benefit from
aggregating the findings from a substantial corpus of the literature over an extended period.
This gap emphasizes the need for more systematic and comprehensive research approaches.

To address the identified research gaps, this study uses a scientometric analysis com-
plemented by visualization techniques to quantitatively assess the maturity and utilization
of ML and DL across various research domains within intelligent transportation, drawing
on a robust dataset of the long-term literature [11]. A scientometric analysis is a quanti-
tative research method using mathematical and statistical methods to study the output,
distribution, citations, author cooperation patterns, and other characteristics of scientific
literature. It can help researchers understand research trends and trends in specific fields
and evaluate the influence of research results [12]. The contributions are twofold. First, a
foundation is provided for future studies to use optimal solutions for specific challenges
based on established studies, facilitating further exploration within their respective fields.
Second, the study details the specific content and growing trends in applying scientometric
methods to this research area, offering a systematic review and summarizing the current
state of knowledge.

The structure of this paper is as follows. Section 2 outlines the research methodol-
ogy, including bibliometric methods and the software tools used. Section 3 presents the
analysis and findings. Section 4 discusses these findings in a qualitative context. Finally,
Section 5 concludes by discussing conclusive remarks, theoretical contributions, practical
implications, and research limitations.

2. Research Methods

Scientometric analysis helps researchers find findings relevant to the literature that
would not be possible with other methods. Bibliometrics or scientometrics are usually
used in scientific mapping research [13]. While the focus of bibliometrics is on the litera-
ture itself, scientometrics provides a broader approach that includes bibliometrics tools,
methods, and data to analyze the literature and its outputs to identify underlying insight
patterns and trends in the field [14]. A scientometric analysis is carried out using the widely
recognized three-step approach [15–18] illustrated in Figure 1. The initial data-collection
stage involves acquiring bibliographic data from the Web of Science (WoS) Core Collection
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database. The second stage focuses on selecting the appropriate analysis methods and
software tools. Microsoft Excel is a widely used spreadsheet software that provides pow-
erful data processing and analysis capabilities. In scientometrics analysis, it is necessary
to organize, clean, and analyze the data first, and the table function of Excel can facilitate
these operations. VOSviewer (1.6.20) is a tool specifically designed to create and visualize
bibliometric networks. It can help researchers analyze and display the citations, co-citations,
and cooperative relationships in the literature [15,17,18]. The final stage, data analysis and
discovery, is divided into three sub-stages: (1) analyzing publication outputs to understand
trends over time; (2) performing scientific mapping through keyword analysis and evalu-
ating the impact of significant publications; and (3) quantitatively assessing the maturity
and application of ML and data analytics across various research fields. This structured
approach facilitates a comprehensive examination of intelligent transportation research’s
evolution and current state.
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2.1. Data Collection

The data source was restricted to the Web of Science (WoS) database. The decision
to use a single data source, WoS, was driven by its assurance of bibliographic data com-
pleteness and uniformity, including detailed information on authors, affiliations, countries,
and cited references, as well as by the prevention of duplication risks that could arise from
using multiple databases [19–21].

The initial screening involved a comprehensive search of papers published up to
February 2024 using the following Boolean search strategy: (“data analysis” OR “data
science” OR “machine learning” OR “deep learning”) AND (“smart city” OR “smart urban”
OR “transportation” OR “traffic”). This search yielded an initial set of 829 documents from
the WoS database. When developing a Boolean search strategy, choose keywords carefully
to ensure that they are highly relevant to the search target and avoid being too broad.
Choosing these keywords would confine the retrieved articles to the scope of applying
machine-learning or deep-learning techniques to transportation-related research topics.



Sustainability 2024, 16, 5879 4 of 34

To ensure the consistency and quality of the dataset, the manual screening and filtering
phase restricted the document type to peer-reviewed journal articles. This decision stems
from the recognition that journal articles typically represent the most prestigious and
impactful forms of scholarly communication. Including other document types, such as
“Proceedings Paper”, “Review”, “Editorial Material”, “Book Chapter”, and “Retracted
Publication”, could compromise the consistency of the dataset and skew the analysis. After
excluding non-relevant document types, 431 articles remained.

In addition, this review does not include other modes of transportation, such as rail,
air, and water. While the concepts of ITS, information technology, and digital technology
can be applied to various transportation modes, our focus is on road/land transportation.
Limiting the scope of ITS to road/land transportation rather than including other modes
such as rail, air, and water has several significant advantages. Focusing on a single mode of
transportation allows for a greater concentration of resources, technology, and research,
leading to a significant increase in specialization and operational efficiency in this sector.
Concentrating solely on road/land transportation simplifies transportation management
and operations, effectively reducing the complexity of cross-sector coordination. Due to its
narrower scope, the implementation and updating process of ITS will be faster and more
adaptable to new technological changes.

Further scrutiny of titles and abstracts led to the exclusion of an additional 318 articles,
primarily because their transportation modes were out of the scope of this review or they
did not apply ML or DL techniques for intelligent transportation purposes. Ultimately,
113 articles that closely met the research criteria were selected. Comprehensive biblio-
graphic data, including full records and cited references, were then retrieved for these
selected articles.

2.2. Tools and Methods

This review uses scientometric econometric analysis and visualization techniques.
The scientometric analysis presents research findings through visualization technology,
making the data more intuitive and comprehensible. This approach aids researchers in
identifying up-and-coming research topics and trends within the field. It also assists
scientific institutions and governmental decision-makers in evaluating the effectiveness of
research policies and allocating scientific resources.

Microsoft Excel and VOSviewer (1.6.20) [22,23] were used for tool selection. Microsoft
Excel was used to map and visualize the thematic trends of the documents over time,
providing insights into the literature’s developmental trajectory. VOSviewer was used to
conduct scientometric analysis, focusing on the co-authorship analysis of researchers, coun-
tries, and organizations, and keyword co-occurrence analysis. The relationships among
researchers, countries, and organizations, and the connections between keywords, are
elucidated by visualizing the co-authorship and keyword-occurrence networks. This visu-
alization facilitates a clearer understanding of the research field’s collaborative dynamics
and thematic focus areas.

2.3. Findings

The findings from the scientometric analysis and visualization are qualitatively dis-
cussed, focusing on the development trends of the literature and co-authorship and key-
word co-occurrence within the field. This approach systematically reviews and summarizes
the evolution of the current knowledge base. A detailed examination is made of the
application of ML and DL across various domains of intelligent transportation, offering
insights from multiple perspectives. By analyzing these elements, the paper identifies
and elaborates on the key trends and collaborations that characterize the current research
landscape, providing a comprehensive overview of how these technologies are integrated
into intelligent transportation systems.
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3. Analysis and Findings

This section presents the analyses and findings of the literature regarding publication
outputs, co-authorship, research cooperation, countries, organizations, and keyword co-
occurrence.

3.1. Publication Outputs

The annual number of publications is a critical indicator of knowledge accumulation
and the maturity of a specific research field [24,25]. As depicted in Figure 2, of the 113 pub-
lications reviewed, the number from 2015 to 2017 was relatively low, with only two articles
comprising approximately 1.8% of the total publications in this field. From 2018 to 2021,
the research activity in this domain intensified, and the number of published articles rose
significantly to 34, representing 30.1% of the total. From January 2022 to February 2024, the
volume of publications increased markedly, totaling 77, which accounts for 68.1% of the
overall corpus.
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Overall, the trend analysis indicates that the number of publications has either in-
creased or remained stable annually up to the search date of February 2024. The cumulative
publishing trend line in Figure 2 illustrates a year-on-year increase in publications within
this field. This trend suggests that the volume of publications will likely continue its
upward trajectory in 2024 and beyond. The rapid expansion of publications highlights the
growing breadth and interdisciplinarity of the intelligent transportation field, highlighting
its potential as a fertile area for further development and exploration.

3.2. Co-Authorship

Tracing scientific collaboration patterns within a specific research field can facilitate
access to expertise and enhance the breadth of knowledge. According to previous stud-
ies [4,24], these patterns can be effectively identified by analyzing co-authorship networks.
Accordingly, the subsequent sub-sections detail the co-authorship networks among re-
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searchers, countries, and organizations, providing insights into the collaborative dynamics
within the field.

3.2.1. Researcher Cooperation

Researchers are the architects of knowledge creation. Therefore, analyzing the complex
cooperation among researchers can illuminate the characteristics of experts and pioneers
in the field. An in-depth examination of their research and their social communication
modes can elucidate the application areas of ML and DL within intelligent transportation.
Utilizing 113 publications and the software tool VOSviewer, a visual representation of the
collaboration network among researchers was constructed. For this analysis, the threshold
is set to at least one document per author and at least 20 citations per author. Out of the
466 co-authors identified, 141 were selected for detailed analysis. In Figure 3, each node
represents a different author, with links indicating collaborative relationships. The thickness
of these links denotes the strength of collaboration, as measured by shared publications,
while node size corresponds to each author’s publication volume. The color gradient of the
nodes reflects the average publication year of the authors’ works.
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Figure 3. Co-authorship network for researchers.

Notably, leading researchers often form tightly knit research teams, resulting in several
distinct cooperative networks. In terms of academic productivity and influence, Muham-
mad Adnan Khan emerges as the most cited author, with four academic works and 81
citations. Regarding active participation, researchers such as Nitin Goyal, Ning Zhang, and
Wanjun Cheng stand out as dynamic contributors to recent publications in this domain.

3.2.2. Countries

Exploring international scientific cooperation is important for understanding the
spatial distribution of publications and identifying key contributions in the field of ML
and DL applications in intelligent transportation. VOSviewer generated a network of
collaborative relationships between countries, as depicted in Figure 4. For this analysis, the
threshold is set to at least one document per country and at least 20 citations per author.
Consequently, out of 40 countries, only 22 met these criteria and were included in the
analysis. In Figure 4, each country is represented by a node, with links between nodes
indicating collaborative interactions. The thickness of these links denotes the strength of
collaboration based on shared documents. Node size and color variations in Figure 4 follow
the same scheme as Figure 3.
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As illustrated in Figure 4, unlike the more fragmented researchers’ network in Figure 3,
the country networks are fully interconnected and have greater homogeneity. In terms
of academic productivity and influence, China (48 publications, 521 citations), the United
States (9 publications, 312 citations), and India (19 publications, 237 citations) stand out as
the most prolific contributors, emphasizing their pivotal roles in advancing global research
on ML and DL in intelligent transportation. Notably, India and South Korea are the most
active contributors, with an average publication year of 2022 reflecting their dynamic
engagement in this research area.

3.2.3. Organizations

Exploring scientific collaborations among organizations is important for sustaining fu-
ture academic exchanges, optimizing funding allocation, and supporting research decision-
making processes [24]. Utilizing VOSviewer, a network of collaborative relationships be-
tween organizations was constructed, as depicted in Figure 5. The network configuration—
selection threshold, node size, and color changes—mirrors that of the national network
analysis. For this analysis, the threshold is set to a minimum of one document per country
and at least 20 citations per author. Out of 287 organizations, 94 met the criteria and were
included in the analysis. Figure 5 highlights such significant contributors as the University
of Macau (five publications, 117 citations), Dalian Polytechnic University (four publica-
tions, 70 citations), and the University of Florence (four publications, 78 citations) for their
significant academic productivity.
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In terms of research activity, Jiaquan University, Xi’an Jiaotong Liverpool University,
and Zhongnan University of Economics and Law are identified as particularly active
entities in this field, each with an average publication year of 2022. This indicates their
dynamic involvement in the ongoing development of research in intelligent transportation.

3.3. Keyword Co-Occurrence

Keywords are concise phrases that encapsulate the core content or central concepts of
publications. Analyzing keywords can reveal the primary interests and emerging topics
within a specific research field [6]. The VOSviewer software generated a keyword co-
occurrence network with a threshold of at least five occurrences per keyword. This process
identified 110 keywords included in the analysis, as depicted in Figure 6. In this figure, each
node represents a specific keyword, the links between nodes indicate the co-occurrence
relationships of keywords, and the thicknesses of these links signify the strength of co-
occurrence in mutual documents. The size and color variations of the nodes correspond to
the frequency of the keywords and their respective clusters.
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Figure 6 illustrates several high-frequency keywords such as “deep learning”, “smart
city”, and “intelligent transportation”. This is partly due to the Boolean operators applied
during the literature search. Given that DL is a subset of ML and intelligent transportation
falls under the broader category of smart cities, the recurrent appearance of these terms is
expected. The keyword co-occurrence network highlights several topics that have attracted
extensive attention, including “intelligent transportation system”, “big data analysis”,
“traffic flow prediction”, “security”, and “anomaly detection”. These topics form the
theoretical foundation for analyzing the nine key up-and-coming research topics presented
in Section 4.
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The keyword clusters identified through the co-occurrence network analysis highlight
distinct themes and technologies within the field of intelligent transportation.

Cluster #1 (red) is the largest cluster, encompassing 29 keywords. It focuses on the
application of DL in traffic-flow prediction, utilizing various predictive tools and techniques,
such as neural networks (NN), convolutional neural networks (CNN), and long short-term
memory networks (LSTM).

Cluster #2 (green), comprising 23 keywords, addresses the integration of the Internet of
Things (IoT), ML, and intelligent transportation systems. Security, privacy, service quality,
routing, and monitoring are key aspects. The predominant tools and techniques involve
IoT and NN.

Cluster #3 (blue) contains 22 keywords and emphasizes the role of data analysis and
algorithms in intelligent transportation. This includes traffic-accident analysis, prediction,
network security, and connectivity enhancements.

Cluster #4 (yellow), with 12 keywords, primarily focuses on the interplay between
artificial intelligence, big data, cloud computing, and intrusion detection systems.

Cluster #5 (light purple), with 11 keywords, is centered on using big-data analysis
and data visualization in intelligent transportation systems, covering such applications as
object detection, road traffic monitoring, security, and real-time systems.

Cluster #6 (light blue) and Cluster #7 (orange) are smaller clusters containing seven
and six keywords, respectively, and they explore advanced technologies, including arti-
ficial intelligence, big-data analysis, edge computing, and fog computing. These clusters
highlight the evolving technological landscape and its implications for intelligent trans-
portation systems.

While the seven clusters identified in the keyword co-occurrence analysis are distinctly
defined, they are not isolated entities. Instead, these clusters are intricately intertwined,
with significant overlapping. This complex interconnection highlights the close relation-
ships of the clusters and reveals the complexity of their inherent linkages and interactions.
The presence of overlapping areas not only challenges researchers to reconsider the distinc-
tiveness of each cluster but also offers a valuable opportunity for a deeper examination of
the mutual influences and interactions between these clusters. This integrated approach
highlights the interdisciplinary nature of the field and the multifaceted applications of
ML and DL in intelligent transportation. To achieve clearer distinctions, nine specific
application areas were identified as more representative during a thorough review of the
article’s content and, therefore, needed to be separated.

4. Qualitative Discussion

This section outlines key insights regarding the application of ML and DL in intelligent
transportation. The analysis of publication outputs reveals an upward trend in the number
of annual documents, highlighting the growing interest in this domain as a promising area
of research. This trend highlights the potential for ML and DL to address specific challenges
within intelligent transportation.

To facilitate future research, this study uses rigorous scientific methods to system-
atically organize and summarize the development of the current knowledge base. This
enables researchers and academics to further build upon prior work and explore their
respective areas. Additionally, Table 1 presents a detailed examination of various types of
ML and DL applications in intelligent transportation, providing a comprehensive overview
that aids in selecting optimal solutions for specific problems within this field.
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Table 1. List of emerging ML and DL topics.

Up-and-Coming Research Topics Number of Publications

Traffic-Flow Prediction (TFP) 31
Public Transportation 19

Intelligent Traffic Data Transmission and Sharing 16
Intelligent Transportation System (ITS) 13

Smart Parking 12
Traffic Congestion 7

Vehicle Detection and Tracking 6
Vehicle Identification and License Plate Number Recognition 5

Traffic-Light and Streetlight System 4

4.1. Traffic-Flow Prediction

In intelligent transportation systems, traffic-flow prediction plays an important role.
Accurate predictions enable traffic-management authorities to effectively plan and adjust
resources, such as signal control and traffic guidance strategies. Such forecasting is im-
portant to the functionality of smart-city systems and public safety. However, traffic-flow
prediction remains a challenging task [26]. This section provides an overview of recent
advancements in traffic-flow prediction.

Table 2 details the methods, innovations, data preprocessing techniques, empirical
conclusions, limitations, and future research directions from various studies in traffic-
flow prediction. Analysis of this table reveals the use of diverse methods, including
SVM, BiGRU, LSTM, GCN, RNN, and GAN, to address traffic-flow prediction challenges.
Innovations include noise data, integration of trust authority principles, and dynamic
correlation enhancements. Various data preprocessing methods are used to improve model
performance and accuracy, such as min–max normalization, data interpolation, and data
cleaning and conversion. Most of these studies demonstrate that the proposed models or
methods surpass existing technologies or baseline models in terms of empirical results.

Table 2. Summary of the literature related to traffic-flow prediction.

Articles Approach Research
Innovation

Data
Preprocessing

Empirical
Conclusion Limitations Proposed Future

[27] SMO,
BiGRU

SMO algorithm for
hyperparameter

adjustment

Min–max
normalization

approach

SMOBGRU-TP
model outperforms

the existing
technology

-

(1) Combine mixed
DL models

(2) Improve the
efficiency of

SMOBGRU-TP
method

[28] LSTM,
RNN

Noise pollution
and time-series
data for better

prediction

Data
Interpolation

Adding noise data
improves the
performance

by 13.48%

-

Reduce
specialization

of sensing
infrastructure using
feature profiles and

AI technology

[29] FL,
GCNN

Trusted authority
principle integrated

into federated
learning for model

data protection

-
FDL-TF

outperforms
baseline solution

- -

[30] GCN

Study of
superparameter
optimization of

T-GCN

Min–max
normalization

approach

The superparameter
optimizer selects
T-GCN’s optimal
hyperparameters

-
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Table 2. Cont.

Articles Approach Research
Innovation

Data
Preprocessing

Empirical
Conclusion Limitations Proposed Future

[31] EC,
DCRFNN

Short-term
traffic-flow

prediction model
for 5g Internet of
vehicles based on

EC and DL

-

Ensure good
unloading

performance and
high prediction

performance

No suitable
task-scheduling

algorithm is
proposed

Traffic-accident risk
prediction

[32] RNN,
GCNN

Spatiotemporal
correlation

obtained from
traffic network

-
Better than the
most advanced
baseline model

-

Consider external
factors that

determine traffic
forecasts

[33] FedSTN

Privacy issues
addressed in

distributed traffic
data

- FedSTN has a higher
prediction accuracy -

Real-time path
planning through

traffic-flow
prediction

[34] CONV-BI-
LSTM

Traffic forecasting
using Industry 4.0

and big-data
analysis

-

CONV-BI-LSTM is
the top choice for

short-term
prediction

- -

[35]
PVHH,

IDT, Ford-
Fulkerson

Node intelligent
prediction is

performed on
specific nodes

- Good prediction
effect

Problems in
prediction
accuracy
and time

Study of time lag
and unpredictable

factors

[36]
EdRVFL,
RF, GCN,

BOA

Accurate counting
of moving targets

under different
weather conditions

-

This method excels
when connections
are unavailable or

too complex

- -

[37] LSTM

Utilization of
large-scale taxi GPS

trajectories and
environmental

information

-

Detection and
tracking accuracy
increase by 10%,
cutting errors by

approximately 50%

Weather
conditions are

described using
only qualitative
variables, such
as sunny and
rainy weather

Considering
quantitative and
human factors

[38] RBM,
SVM

Application of
recurrent mixed

density networks
for short-term

traffic-flow
prediction

Map matching
algorithm

O-Sense can
effectively improve

the accuracy of
travel cost
estimation

- -

[39] LSTM,
MDN

Big-data
architecture and

real-time prediction
model proposed

-

This method
demonstrates

significant
superiority

- -

[40] LSTM,
GRU

Traffic-flow
prediction using

technologies such
as bagging and air

pollution

When assessing
January 2020 data,

its predictions were
highly accurate

COVID-19
impacts

prediction
accuracy after
January 2020

Extend the initiative
to the entirety
of California
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Table 2. Cont.

Articles Approach Research
Innovation

Data
Preprocessing

Empirical
Conclusion Limitations Proposed Future

[41] KNN

Dynamic
correlation of
transportation

nodes integrated
with spatiotempo-

ral DL models

Mean/median
method,
Z-score,

Min–max
normalization

Reduce the error
rate of

traffic-congestion
prediction by more

than 30%

-

(1) Study of the
impact of different

seasons on
traffic flow

(2) Combine satellite
traffic

measurements with
ground-sensor

values

[42]

GCN, Spa-
tiotempo-

ral DL
model

Adaptation to high
mobility and

frequent changes in
the network

Z-score
normalization

Outperforms
state-of-the-art
GNN baselines

-

(1) Integrate
different

GCN-based DL
models

(2) Integrate the
captured features

into traffic
prediction

[43] LSTM
Parameters and
operation time

reduced

Handling
abnormal data

High accuracy is
achieved in

industrial 4.0
applications

- -

[44] CNN,
GNN

High-precision
traffic forecasting

achieved

Linear
interpolation

method

Improved results in
short- and long-term

forecasting

Not considering
all kinds of
accidents

Consider more
factors to improve

the model

[45]

CNN,
LSTM,
AM,

XGBoost

Traffic-flow
estimation

considering
external factors

Min–max
normalization

approach

The model has low
prediction error and

performs well

Lack of
fine-grained
stop point

identification
for signaling

users

-

[46] DBN,
POA

Initial step towards
sensor

practicability in
urban management

Min–max
normalization

approach

AST2FP-OHDBN
outperforms
the current

state-of-the-art
DL model

-

Design hybrid
metaheuristics to

enhance prediction
results

[47] GNN,
LSTM

Migration learning
is used to address

data scarcity

The MSE value of
the model is 6.309,

MAE value is 2.256,
RMSE value is 2.511

Other weather
factors

and track
characteristics

are not
considered

during training

(1) Explore the
optimal value of
input parameters
(2) Consider other

factors affecting
traffic flow

[48] CNN,
LSTM

Method proposed
for analyzing

cellular
communication

data

Min–max
normalization

approach

It is the best way to
predict traffic flow

through traffic
counters on the road

SARIMA can
only predict for

one hour

Plan to test a new
anomaly detection

algorithm

[49] LSTM

Hierarchical
information

considering spatial
interaction

Min–max
normalization

approach

Mgat model is
superior to the most
advanced method

- -
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Table 2. Cont.

Articles Approach Research
Innovation

Data
Preprocessing

Empirical
Conclusion Limitations Proposed Future

[50] GCN,
KNN

Complex dynamics
and spatial

relationship of
mobile traffic

demand captured

-

Enhance cellular
network traffic

prediction accuracy
significantly

Expand the scope of
data collection

[51] GCN,
GRU

Model learning
mechanisms

guided by prior
domain knowledge

-

Model increased
RMSE and MAPE by

approximately
8.4–29.5% and

7.5–30.6%

Study of the
impact of

different spatial
embedded
networks

-

[52] RNN,
LSTM

End-to-end
solution for
capturing

cross-domain
knowledge

automatically

Min–max
normalization

approach

GASTN can
outperform the

current state
baseline with a

faster running time

-

Explore a GCN
method for mobile
traffic prediction
based on a spatial
relationship graph

[53] GAN

Parallel
spatiotemporal DL

network for
learning features

from time and
space dimensions

Min–max
normalization

approach

This method has the
highest accuracy,
reaching 98.21%

-

Create a model that
works effectively in

both typical and
unusual situations

[54] DAN,
LSTM

Complex patterns
and dynamics of

urban
transportation

systems captured

-

The model has
excellent

performance in
spatiotemporal data
migration learning

-

(1) Further apply
ST-DAAN to
traffic-flow
prediction

(2) POI
recommendation

tasks

[55] CNN,
LSTM

Trusted authority
principle integrated

into federated
learning for model

data protection

-

Parallel
spatiotemporal DL

network
outperforms
competitors

-

Advanced DL
architecture for

large-scale
traffic-flow
prediction

[56] RBF

Study on
superparameter
optimization of

T-GCN

Eliminate noise,
outliers, and

missing values

The method based
on depth RBF is
superior to the

traditional traffic
analysis method

The effective-
ness of the
model in
various

situations needs
to be strictly

tested

Study of the
applicability of deep

RBF networks in
other fields

Research into traffic-flow prediction systems continues to face several persistent con-
straints (e.g., data privacy regulations), risks (e.g., technology integration challenges), and
issues (e.g., inconsistent interoperability). These include concerns over data quality and
dataset limitations, models’ complexity and interpretability, models’ generalization and sta-
bility, hyperparameter tuning and automation, real-time and dynamic adaptability, and the
need for cross-city and cross-domain prediction capabilities. Addressing these constraints,
risks, and issues necessitates a concerted effort to enhance model interpretability and
stability, improve data preprocessing techniques, develop more efficient hyperparameter
optimization methods, and devise real-time and dynamic traffic-flow prediction strategies.
Collaborative interdisciplinary research that integrates expertise from traffic engineering,
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computer science, and data science is needed to advance the field of traffic-flow prediction
systems and promote their practical implementation.

4.2. Public Transportation

Public transportation, a critical component of smart cities, plays a vital role in urban
mobility and is pivotal for transportation planning, resource allocation, and demand man-
agement. Innovative approaches, such as carpooling and crowdsourcing, have emerged to
address these needs. Additionally, urban ride hailing, buses, and bicycle sharing represent
the majority of research in this area.

Table 3 comprehensively summarizes the research methods, innovations, data prepro-
cessing techniques, empirical findings, limitations, and future research directions across
various studies. The subsequent analysis provides a detailed examination of these as-
pects. Numerous studies have leveraged advanced DL models, such as GCN, CNN, LSTM,
RESNET, DNN, and Bi LSTM, to model complex spatiotemporal relationships. These
models, augmented by effective feature engineering and nonlinear capabilities, predict
passenger flows and single-vehicle demand. Some researchers have introduced innovative
methods and models, including TBI, RF, and MVST-NET, to enhance traffic prediction and
exploit the potential of shared travel, achieving significant predictive performance.

Table 3. Summary of the literature related to public transportation.

Articles Approach Research
Innovation

Data
Preprocessing

Empirical
Conclusion Limitations Proposed Future

[57]

GCN,
CNN,
LSTM,

Res Net

Modeling complex
nonlinear

spatiotemporal
relationships

It shows different
prediction accuracy
in different regions

There are still
deficiencies

in the
interpretation
of the model

Consider improving
LSTM and exploring

layered attention

[58] TBI
Passenger-flow
forecast using

vehicle GPS records

Data cleaning,
matching, and
organization

The method
outperforms

time-series-based
predictions for

long-term taxi flow.

-
Real-time prediction
architecture based

on TBI2Flow

[59] DNN

Integration of
feature engineering

technology with
deep neural
network for

effective
forecasting

-

The performance
gain of the model is

25-37%, which is
higher than the most
advanced model on

the standard
benchmark index

-

Expect to perform
well in weather

forecasting,
traffic-speed

forecasting, and
many other fields

[60] RF

Quantitative
analysis method for

regional shared
travel potential

mining

-

If carpooling is
adopted, the

emission-reduction
effect can be well

reflected

Did not take a
personal
attitude
towards

carpooling into
consideration

Further investigate
the attitude towards

carpooling

[61] XGBoost,
CSTN

Extraction of micro
and macro spatial

characteristics from
urban taxi service

demand data

Min–max
normalization

approach

Multisensory
stimulation

attention and
multi-periodic

feature learning are
shown to be

effective.

-

(1) Expand MSSA by
learning more

cyclical patterns
(2) Merge more

context information
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Table 3. Cont.

Articles Approach Research
Innovation

Data
Preprocessing

Empirical
Conclusion Limitations Proposed Future

[62] IDT

Taxi cruise
recommendation
strategy based on

real-time and
historical trajectory

data

TR-RHT can
accurately

recommend the
cruising route for

cruising time
reduction

- -

[63]
DT, SVC,
NB, LR,

RF

Transit congestion
detection method

based on
opportunity
perception

-

Over 80%
congestion can be

detected when used
by 8–12% of
commuters

- -

[64] BuStop

Dwell position
extraction from

multimodal
sensing using
commuter’s
smartphones

-

The framework can
accurately detect

various dwell
positions

- -

[65] FDA,
BSVR

Quantification of
uncertainty for

robust performance
improvement

-

FDA’s predictions
are highly accurate

and effective at
forecasting travel
time distribution

uncertainty

- -

[66] CheetahVIS

Dynamic bus
routes provided to
help users identify

traffic flow

Proved the
effectiveness of

CheetahVIS
- -

[67] PubtraVis

New visualization
tool developed

for public
transportation

system operation

Data cleaning,
reorganization,

extraction,
and filtering

PubtraVis is a highly
beneficial and

user-friendly tool

“Ease of use”
needs

improvement

(1) Use GTFS
static data

(2) Real-time data to
develop additional

visual analysis
module

[68]

SVR, RF,
Adaboost,

GBRT,
XGBoost,

MLP

Improved accuracy
in estimating

car-hailing trip
mobility

-

This model
outperforms other

benchmarks in
estimating

car-hailing trip
mobility

Use diverse
geographic

context features
to measure the

replaceability of
location

Consider individual
travel behavior in
mobility modeling

[69] MVST-
NET

Urban big data is
used to predict
shared bicycle
travel behavior

Min–max
normalization

approach

The model has good
performance in
various tested

models

-

Performance
improvement of

analytical methods
to make them more

interpretable

[70] Bi-LSTM

Forecasting
available bicycles
and free slots at
shared bicycle

stations

-

It provides a
powerful method

for reliable and fast
prediction of

available bicycles

- -
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Table 3. Cont.

Articles Approach Research
Innovation

Data
Preprocessing

Empirical
Conclusion Limitations Proposed Future

[71] BSS

Bicycle rebalancing
solution in bike
sharing system

(BSS)

The proposed
method outperforms

the relocation
manager in terms of
bicycle shortage and

task difficulty

- -

[72] STOP

Framework
proposed for

predicting shared
station occupancy

using Bayesian and
association
classifiers

-

Shows the
usefulness of

maintenance actions
based on short-term

forecasts and
readable models

- Enrich station
occupancy data

[73]
IRM,
GNN,
RNN

DL-based
bicycle-demand

forecasting model
introduced

The model has
higher R2, lower
RMSE, and MAE
and has a better
prediction effect

This study is
limited to
possible

influencing
factors

Explore the impact
of social population,

traffic flow, and
weather

[74]

Attention-
Based
Model,
CNN

Advance prediction
of potential

destinations for
rescheduling

artificial bicycles

The proposed
framework excels in
precision, recall, and

F1 compared to
top-tier methods

-

Simulate other
relevant factors to

provide better
prediction of shared
bicycle destinations

Data preprocessing is a critical step in all research, involving data cleaning, matching,
organization, and normalization to ensure the accuracy and effectiveness of model training
and prediction. The empirical findings from these studies cover various applications, such
as passenger-flow forecasting, shared travel potential exploration, and shared bicycle-
demand prediction. Most studies report that the proposed methods outperform traditional
approaches, demonstrating higher prediction accuracy and improved performance in
practical applications.

4.3. Intelligent Traffic Data Transmission and Sharing

Traffic prediction is a critical application within smart cities, with accurate traffic
information needed for effective traffic management. Various methodologies have been
proposed to predict traffic flows using time-series data from traffic sensors.

Table 4 provides a detailed summary of the methods, innovations, data preprocessing
techniques, empirical findings, limitations, and directions for future research across a series
of studies. An analysis of this table reveals that various ML and DL models, such as logistic
regression, ANN, DT, KNN, RF, RNN, GAN, SVM, and CNN, are used to address traffic-
related issues. Some studies introduce novel models or methods, such as the ‘vehiclectron’
model for precise vehicle-count estimation on roads and a driver yawning detection method
based on facial action recognition. The significance of data cleaning and transformation for
enhancing model accuracy and stability is emphasized across many papers. Specific data
standardization and normalization techniques, such as min–max normalization, are widely
used. Many studies report on model accuracy and performance, with some decision-tree
models achieving up to 71.44% accuracy, while other models have reached classification
accuracies of 85%. Comparative analyses within these papers highlight that certain models
excel in specific tasks.
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Table 4. Summary of the literature related to intelligent traffic data transmission and sharing.

Articles Approach Research
Innovation

Data
Preprocessing

Empirical
Conclusion Limitations Proposed Future

[75]

Logistic
Regression,
ANN, DT,
KNN, RF

Predict accident
severity using

various
classification

models

-

The average
accuracy of the

decision tree (DT)
model is the highest,

which is 71.44%

- -

[76]
RNN, GAN,
SVM, CNN,

MMN

Solve
traffic-accident

detection
issues with

semi-supervised
DL and different

data patterns

-

GAN outperforms
other models’
accuracy and

classification F1,
with or without
multimodal data

Focus only on
traffic-sensor

data and
text data

Handle more
types of data for
other smart-city

applications

[77] DT, RF, MLR,
NB

Discuss a paper on
data models for

road traffic
accidents and

propose prediction
models

The results are
relatively good (the
accuracy is 60–80%)

-

Reduce the
imbalance ratio of

labels before
inputting data sets

into the model
for training

[78] BLM, SVM,
XGBoost, XAI

Gather high-quality
data to infer

different factors in
urban road traffic

accidents

-

SVM shows the
highest performance

in accuracy and
F1 score

- -

[79]

XGBoost,
CatBoost,

LightGBM, DT,
RF, Stacked

DCL-X

Classify the injuries
caused by

vehicle–pedestrian
and vehicle–

obstacle collisions

The overlapping
DCL-X model has
better stability, less
super parameters,

and higher accuracy
under different

training data

- -

[80] Faster R-CNN

Introduce Faster
R-CNN to extract

IoT electronic
data features

-

The faster R-CNN
algorithm has

stronger robustness
and reliability in its

data collection
and analysis

Electronic
traffic data are

not clearly
classified, and

influence
factors are not

considered

(1) Accurately
identify its

projects
(2) Optimize the

designed model to
obtain traffic

information better

[81] GAS, BSP

Address and
overcome research
challenges in IVN
data processing

-

GPU-based graphics
processing

technology can
achieve excellent
performance on

IVN data

-
Focus on other
aspects of IVN
data processing

[82] Vehiclectron

Propose a new
model to accurately

estimate road
vehicle cuboids

using single-view
sensors and road

geometry
information

-

Feasibility and
applicability are
confirmed via

CCTV-captured
real-road images

3D box
estimation

depends on the
target-detection

model

Provide accurate
information in the
field of intelligent
traffic recognition

and control
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Table 4. Cont.

Articles Approach Research
Innovation

Data
Preprocessing

Empirical
Conclusion Limitations Proposed Future

[83] KDE

Build a traffic
visualization
management

system based on
improved ML

algorithms

-

The method in this
paper is critical for
smart-city traffic

management

- -

[84] BD

Discuss the
application of BDA

in constructing
large-scale sensor

data and modeling
autonomous

vehicles

The feasibility and
effectiveness of the
model are verified

-

Content-based
sensor data

management
and process

[85] ARI, KNN

Develop a method
to predict the psy-
chophysiological

load affecting
driving safety
using vehicle

manipulation data

Min–max nor-
malization
approach

Compared with
previous models,

the performance of
this model is
relatively low

-

(1) Collect data
from different

road
environments

(2) Evaluate the
transferability of

the proposed
model

[86]
Bagging,
Boosting,

ANN

Develop a method
to predict high-risk

bus drivers as a
benchmark for
effective bus

safety policies

-
The classification
accuracy of the

model reaches 85%

Focus only on
the relationship

between
dangerous

driving
behavior and

collision

The proposed
neural network
model can be

further improved

[87] 3D- LTS

Propose a driver
yawning detection
method based on

subtle facial motion
recognition

-

It can detect
yawning robustness
in various external

environments

Low image
resolution and
large camera

vibration
reduce the

effectiveness of
the method

Use better image
preprocessing

methods

[88] CNN, SVM

Propose an ML
algorithm based on
smart devices and

IoT network
firewalls to protect

data traffic

-

The hybrid DL
model has

effectiveness and
high accuracy

- -

[89] EEMR, BUC,
TAdam

Design efficient
multi-hop routing

for intelligent
traffic wireless

sensor networks

-

It provides a new
reference for

improving the
transmission and

sharing efficiency of
intelligent

transportation data

-

Use edge
computing,
principal

component
analysis, and other

methods to
achieve data

dimensionality
reduction and

rapid processing
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Table 4. Cont.

Articles Approach Research
Innovation

Data
Preprocessing

Empirical
Conclusion Limitations Proposed Future

[7] CNN

Develop a new
framework based

on artificial
intelligence (AI) to

predict traffic
conditions on

densely deployed
IoT networks

-

Compared with the
existing traditional

CNN model,
LTP-CNN has

higher prediction
efficiency

- -

Research in intelligent transportation systems faces several risks, issues, and con-
straints. First, the inconsistency in model selection and comparison across studies com-
plicates the identification of the most effective models for specific tasks. Second, a lack of
detailed discussion on data preprocessing and feature engineering can adversely affect the
models’ accuracy and stability. The balance between model interpretability and accuracy,
particularly with complex DL models, is also a critical consideration. Moreover, the valida-
tion and practical implementation of these methods in real-world smart-city environments
are crucial for further research and development. Data privacy and security issues, particu-
larly when handling large datasets, also need more rigorous research. Collaborative efforts
across disciplines, focusing on sustainability and minimizing environmental impacts, are
important for advancing research in intelligent transportation systems. Addressing these
challenges will enrich the scope and depth of future studies in this field.

4.4. Intelligent Transportation System

The intelligent transportation system (ITS) forms the backbone of smart-city infrastruc-
ture, leveraging spatiotemporal traffic data to derive insights that are critical for intelligent
transport dispatching and urban planning [9].

Table 5 provides a comprehensive summary of methods, research innovations, empiri-
cal findings, limitations, and future research directions across various studies in this field.
An analysis of the table reveals extensive use of ML technologies, including LSTM, DT, RF,
XGBoost, and CNN, often combined with DL to enhance ITS capabilities. The research
innovations span several aspects of ITS, such as data analysis, traffic mode detection, path
planning, traffic-flow estimation, and malicious traffic detection. These innovations offer
fresh perspectives and approaches for ITS development. Many studies report high accuracy
and low computational costs, demonstrating the methods’ effectiveness and efficiency in
ITS applications. Some studies also highlight the beneficial impacts of ITS implementations
on traffic efficiency and air quality.

Table 5. Summary of the literature related to the intelligent transportation system.

Articles Approach Research Innovation Empirical Conclusion Limitations Proposed Future

[90] LTSM
Establish ML framework
for smart traffic, achieve

optimal accuracy

Implementing intelligent
transportation systems

improves transportation
and air quality

-

Explore the impact
of intelligent

transportation on the
environment and

supply chain

[91]
LSTM,

Bayesian
optimization

Apply DL for traffic
pattern detection using

smartphone data

Extensive experiments
demonstrate a high

recognition rate
and efficiency

Training requires
ample labeled data
and computational

complexity

The model is more
robust to diverse user

behaviors and
optimized for its
computational

efficiency
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Table 5. Cont.

Articles Approach Research Innovation Empirical Conclusion Limitations Proposed Future

[92] DT, RF, ET,
XGBoost

Propose an intelligent
traffic system for the
IOV network with

tree ML

High detection accuracy
and low computational
costs are key features

- -

[93] Hadoop,
Spark DL

Introduce City
Administration

Dashboard for urban
traffic analysis

Road network
prediction accuracy

reaches 94.05%

Suitability, data
privacy, and

security for specific
city environments

-

[94] CNN
Implement resource

load balancing and DL
for real-time scheduling

ATM system
outperforms traditional

traffic management
methods

Applicability to the
specific urban
environment,

generalization
ability of model

Improve data
processing and

transmission efficiency

[95] ATM

Enhance travel pattern
extraction and path

estimation with U-Net
and GNN

RMSE, MAE, and MAPE
are 4%, 20.49%, and 18%,

respectively

Dependence on
infrastructure and
vehicle equipment

Consider a variety of
traffic situations

[96] U-Net, GNN
Identify malicious traffic
in SDN-based Internet

of Vehicles

Enhanced attack
detection reduces

latency and prevents
buffer overflow issues

-
Extend the study to

other urban
traffic datasets

[97] Fuzzy, logic
Introduce the ST-GCRN

model for traffic-flow
estimation

Bike-sharing system
errors reduced by 98%

and 63% in
the estimation

- -

[98] GCN, LSTM
Propose MTLM model

for travel time
estimation

Real-world data sets
have been extensively

experimented on
- -

[99] MTLM

Batam City Government
adopts smart mobility

for sustainable
transportation

Optimal implementation
and sustainable

approach are yet to be
fully realized

-
Extend the datasets to

other cities or
transit systems

[100]

Qualitative
analysis
research
method

SafePath algorithm
ensures differential

privacy with minimal
data impact

SafePath enhances
efficiency and scalability

for large and sparse
data situations

- -

[101] SafePath
Establish ML framework
for smart traffic, achieve

optimal accuracy

Implementing intelligent
transportation systems

improves transportation
and air quality

- -

Despite numerous advances, research and development challenges in the scope of ITS
remain substantial. These include data privacy and security constraints and issues, algo-
rithm interpretability, data quality and consistency, system integration and interoperability,
and the practical application and sustainability of these systems. The key objectives for
advancing ITS involve ensuring secure data storage and transmission, enhancing algorithm
interpretability, maintaining high data quality and consistency, achieving effective system
integration and interoperability, and promoting these technologies’ practical application
and long-term sustainability. Addressing these challenges comprehensively requires a
multidimensional approach that considers technological, policy, social, and economic fac-
tors, which are important for the continued development of smart cities and the effective
management of ITS.
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4.5. Intelligent Parking Systems

As urbanization accelerates, the surge in vehicle numbers has exacerbated parking
difficulties, becoming a significant issue in urban traffic management. Efficient parking
infrastructures can prevent, mitigate, and resolve these risks and issues by enabling the
identification of available parking spaces, thus, reducing carbon emissions from excessive
fuel combustion, decreasing wait times, and alleviating traffic congestion [102]. Intelligent
parking systems are becoming indispensable in urban areas [103]. Leveraging technologies
such as the Internet of Things and big data, these systems facilitate the real-time monitoring
and management of parking spaces, optimize resource allocation, and reduce the time
drivers spend searching for parking, enhancing urban traffic flow and operational efficiency.

Table 6 summarizes multiple research studies on intelligent parking systems, en-
compassing methods, innovations, empirical findings, limitations, and future research
directions. An analysis of this table highlights several key insights:

• diverse research methods: studies use various ML and DL techniques, including
random forest (RF), CatBoost, LSTM, ANN, CNN, and SVM, supplemented with
genetic algorithms and Bayesian regularized NN;

• varied innovative points: innovations use contextual data to predict parking utilization
rates, integrate renewable energy sources for electric vehicle charging control, and
improve intelligent parking rates through advanced DL;

• rich empirical conclusions: the results demonstrate that the proposed models and
methods significantly enhance parking utilization rates, profitability, accuracy, and
reliability.

Table 6. Summary of the literature related to smart parking.

Articles Approach Research Innovation Empirical Conclusion Limitations Proposed Future

[104] RF, CatBoost Evaluate RF and
CatBoost for ML

Using context data has a
positive impact on
parking utilization

prediction

- Use POI data as
context data

[105] LSTM Study of electric vehicle
presence in urban IoT

Proper EV charging
control boosts profits - Use renewable energy

input in the model

[106] LSTM
Identify optimal

predictive model in ML
and DL

The results obtained
improve the existing

results in the literature
- -

[107] ANN
Use ANN for
parking-space
data collection

The proposed method
improves the intelligent
parking rate through DL

-
Use genetic algorithm
and neural network

for training

[108] LSTM Develop a mobile smart
parking app with DL

High accuracy
and reliability -

Investigate the
influence of parking
lots on traffic density

under different
parameters

[109] CNN, LSTM,
GA

Establish a
parking-space

availability system

Compared to existing
states, this model has
better performance

-
Study of traffic density

under different
parameters

[110] ANN, SVM,
ARIMA, RNN

Predict available
parking in city garages

Bayesian regularized
neural network is a

reliable and fast
time-period

prediction method

- -
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Table 6. Cont.

Articles Approach Research Innovation Empirical Conclusion Limitations Proposed Future

[111] IoT Address tourist city
parking layout issues

Simple and easy to
operate, with low
requirements for

data accuracy

- -

[8] CNN, ELM
Propose parking-spot
detection with CNN

and ELM

The CNN elm method
outperforms other

hybrid CNN models
using different classifiers

-
Verify the performance
of CNN-ELM on other

parking datasets

[112] IoT, LSTM
Predict parking

availability via IoT,
cloud, and sensors

The proposed model is
superior to the most
advanced prediction

model at present

Only parking
space occupancy

information is
considered

without
considering

weather conditions
and social events

Consider weather
conditions, social

event information, and
parking-lot occupancy

information

Research on intelligent parking systems faces numerous constraints, risks, and is-
sues, including data privacy and security, technical integration and interoperability, cost-
effectiveness and sustainability, user experience and acceptance, and compatibility with
urban planning and policy frameworks. The implementation of critical success factors
includes safeguarding user data, effectively integrating diverse technologies, minimizing
costs, enhancing user experiences, and ensuring alignment with broader urban-planning
objectives. Additionally, focusing on sustainability, social inclusivity, data governance, and
transparency is important for advancing the development and application of intelligent
parking systems in urban settings. By addressing these challenges comprehensively, intelli-
gent parking systems can more effectively meet urban transportation management needs
and contribute to the development of smarter cities.

4.6. Traffic Congestion

Smart cities have been evolving for nearly a decade, with reducing traffic congestion
remaining a critical focus of their development [113]. Traffic congestion, a pervasive issue
in urban transportation systems, leads to significant fuel waste and increases in accidents,
traffic jams, and driver frustration. Managing traffic delays, especially during rush hours
in metropolitan areas, is crucial due to the high volume of vehicles involved.

Table 7 comprehensively reviews methods, innovations, empirical results, limitations,
and future directions in traffic-congestion research. Researchers have used various ap-
proaches to address this issue, including remote sensing, DL, and neuro-fuzzy systems.
Applications of these technologies include IoT integration and advanced analytics, such as
deep Q-learning, which enhance congestion prediction and optimize traffic flow. Although
empirical outcomes indicate improved prediction capabilities and reduced wait times
under various conditions, the studies also reveal performance limitations, data quality,
and scalability challenges. The table recommends further development of communication
protocols and expanding algorithm applicability across broader road networks to advance
ITS and address persistent research gaps.
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Table 7. Summary of the literature related to traffic congestion.

Articles Approach Research Innovation Empirical Conclusion Limitations Proposed Future

[113] FITCCS-VN
Remote viewing of road

traffic flow and
vehicle volume

The system achieves an
accuracy of 95% and a

miss rate of 5%
-

[114] Logit, SVM
Common multivariate

outlier detection
methods

Outlier detection plays
an important role in

discovering useful and
valuable information

-

(1) Identify variables
with high

discriminatory power
(2) Apply the

algorithms to various
road types in a

smart city

[115] DNN
TC2S-DNN model

integrates IoT and DL
for congestion forecast

The performance of the
TC2S-DNN model is
reported to be better

than previously
published approaches

If the information
is obtained in

delay, or there is
too much noise by
the signal sensors.

It can be
influenced by the

output of the
proposed solution

-

[116] Deep double-Q
learning

Adaptive traffic signal
adjustments based on

vehicle types

The average waiting
time at intersection

points by up to 91.7%

The sampled data
is biased and not

exactly the same or
the same

distribution

-

[117] Hybrid
Neuro-Fuzzy

Enhance congestion
prediction accuracy with

IoT sensor data

The model has an even
higher accuracy of
99.214% during the

training phase

- -

[118] AFT
Apply survival analysis
methods for congestion

assessment

The results show a
dramatic improvement

in data quality and
successful evaluation of
traffic conditions with

high reliability

-

Apply proposed
methods for effective

traffic control and
management in

smart cities

[119] C-V2X network

Optimize cellular AP
and vehicle throughput

with user-AP
associations

Results confirm the
effectiveness and

superiority of the traffic
offloading method via
DL in CV2X networks

- -

Research on traffic congestion encounters several issues and constraints. Data col-
lection and privacy concerns are prominent due to the reliance on in-vehicle sensors or
IoT devices, highlighting the necessity for stringent data compliance and privacy safe-
guards. Moreover, the accuracy and practical application of models based on DL and
NN require validation in real-world traffic scenarios, taking into account external fac-
tors such as weather and road conditions. Additional obstacles include integrating these
proposed methods effectively into current traffic management systems, ensuring their cost-
effectiveness and gaining social acceptance. Future research should enhance the reliability,
practicality, and societal acceptance of intelligent traffic management systems to realize
effective intelligent transportation management.
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4.7. Vehicle Detection and Tracking

Moving-object detection and tracking have recently emerged as research hotspots in
satellite video processing and analysis. In traditional approaches, moving-object detection
is treated as a problem of foreground and background segmentation [120].

Table 8 provides a comprehensive summary of research papers focused on vehicle
detection and tracking, encompassing methods, innovations, data preprocessing tech-
niques, empirical findings, limitations, and directions for future research. The analysis
indicates that studies have applied various methods, such as KEF, SVM, LSTM, GCN,
RNN, and GAN, to address challenges in traffic-flow prediction. Innovations include
incorporating noise data, trusted authority principles, and dynamic correlation. Various
data preprocessing techniques, such as min–max normalization, data interpolation, clean-
ing, and conversion, have enhanced model performance and accuracy. Most studies have
shown promising empirical results, surpassing existing technologies or baseline models in
traffic-flow prediction.

Table 8. Summary of the literature related to vehicle detection and tracking.

Articles Approach Research Innovation Empirical Conclusion Limitations Proposed Future

[121] EKF, NN, SVM
Integrating data from

GPS augmentation and
low-cost DR systems

EKF/SVM trained with
particle-swarm

optimization is more
suitable for localization

GPS quality may
decrease in

actual situations

Research on vehicle
prototype based

on Arduino

[122] -

Adapt to time-varying
and unbalanced tracking

workloads caused by
traffic dynamics

Shows 100% tracking
coverage and real-time

assurance
- -

[123] EKF, SVM, RF

Using SVM to overcome
the shortage of EKF
when the GPS signal

is interrupted

Experience 94%
improvement over

simple EKF prediction

When interrupted,
GPS quality

will decrease

(1) Test and improve
this hybrid solution in

case of GPS
interruption

(2) Combine this
method with a

distributed algorithm

[124] EKF, SVM,
Faster R-CNN

An intelligent vision
sensor is preset for the
detection and tracking

of synchronous
attitude estimation

Integrating vehicle
position and attitude

into EKF enhances
tracking results

- -

[125] RetinaNet

Using RetinaNet
architecture and Cars

Overhead with Context
dataset to find vehicles

in satellite images

The model has good
vehicle-detection
accuracy and low

detection time

-

(1) Expand
experimental

evaluation and
conduct ablation

experiments
(2) Enhance the

model with a
street-detection model

[126] DNN

A vehicle detection and
tracking method in bad

weather conditions
is proposed

This method is superior
to the most advanced

method under adverse
weather conditions

-
Some hard cases still
need more attention
and improvement

While innovative methods have been introduced to improve the systems in the domain
of research on vehicle detection and tracking systems, several challenges remain. Some
studies primarily focus on novel algorithms and models but encounter difficulties with
computational complexity and real-time performance. Despite the significant advances
facilitated by such technologies as DL, practical applications often require substantial
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computational resources and time to process large-scale data, which may limit the sys-
tems’ practicality. Furthermore, while certain research performs well on specific datasets,
the generalization ability across different environments or datasets needs further valida-
tion to ensure robust and safe vehicle detection and tracking systems operation. Future
research should focus on enhancing the real-time capabilities of algorithms, improving
generalization performance, and boosting system robustness to ensure more stable and
reliable operation. By integrating sensor fusion, ML, and DL technologies, further improve-
ments in system performance can be achieved, advancing the development of intelligent
transportation systems.

4.8. Vehicle Identification and License Plate Number Recognition

In transportation and traffic management systems, vehicle recognition, particularly
through reading license plates, is paramount [127]. Vehicle recognition involves the automatic
identification of vehicles using computer-vision technology, which is extensively applied
in traffic monitoring, intelligent parking management, and other areas. On the other hand,
license plate number recognition focuses on the automatic detection and reading of vehicle
license plates primarily through image processing and character recognition technologies.

Table 9 summarizes the research literature on intelligent parking systems, covering
methods, innovations, empirical findings, limitations, and future research directions. An
analysis of this data reveals (1) diversified research methods, where various studies have
implemented different ML and DL techniques, such as the DLVLPNR model, RCNN, and
deep active learning frameworks; (2) diversified innovation points, where innovations
include using CNNs to capture and extract distinct vehicle features effectively, integrating
Fast R-CNN with Extractive V2 and Tesseract OCR for enhanced license plate character
recognition, and using memory space to aid active learning in vehicle-type recognition;
and (3) abundant empirical conclusions, where the studies demonstrate that the proposed
models or methods have yielded positive results, such as improved accuracy and reliability
in empirical research.

Table 9. Summary of the vehicle identification and license plate number recognition literature.

Articles Approach Research Innovation Empirical Conclusion Limitations Proposed Future

[128] CNN CNN for vehicle feature
extraction

The accuracy of the
CNN model was

evaluated based on the
confidence values of the

detected objects

The larger and
lower size of the
image can affect
the validation

process

(1) Expand the system to
include more
vehicle types

(2) Improve the accuracy
and robustness of

the model

[129] DLVLPNR
model

Fast R-CNN with
Inception V2 and
Tesseract OCR for

license plate recognition

The DL-VLPNR model
can achieve optimal

detection and
recognition performance,
as it attained the highest

accuracy of 0.986

-

Handle more diverse
conditions and
integration into

real-time applications
for smart-city
management

[130] RCNN Extending vehicle ID for
counting and analysis

The average accuracy of
the proposed method

is 90.4%

Increasing the
number after some
time, the network
goes into the stage
of overfitting, and
the accuracy of the
network decreases

Optimize the method for
enhanced performance

[131]
Deep active

learning
framework

Memory space for active
learning in

vehicle-type recognition

Over 90% accuracy for
20 vehicle types

The sample data is
biased and does

not have the same
distribution

-
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Research into vehicle and license plate recognition has advanced significantly in recent
years, benefiting from the adoption of cutting-edge technologies and methodologies. How-
ever, issues persist, and areas for improvement remain. These include issues related to the
quality and scale of datasets, the robustness of models against noise and lighting variations,
the need for real-time performance and efficiency, and concerns over privacy and secu-
rity. Additionally, the interpretability of DL models in these applications is important for
building user trust and ensuring safety. Future research should concentrate on enhancing
dataset quality, improving model robustness, optimizing real-time performance, addressing
privacy and security concerns, and increasing model interpretability. Addressing these
challenges will facilitate further advancements in vehicle and license plate recognition
technologies, enhancing their effectiveness within intelligent transportation systems.

4.9. Traffic-Light and Streetlight System

With the evolution of smart cities, traffic-light control systems have become important
for managing vehicle flow and addressing traffic congestion. A dynamic intelligent traffic-
light control system (DITLCS) has been proposed, which dynamically adjusts traffic-light
durations based on real-time traffic data [132].

Table 10 overviews recent advancements in traffic-signal and streetlight systems,
highlighting innovative technological applications and key findings. These studies use
various methodologies, such as reinforcement learning (RL) and Markov decision processes
(MDP), to enhance the intelligence of traffic management systems.

Table 10. Summary of the literature related to traffic-light and streetlight systems.

Articles Approach Research Innovation Empirical Conclusion Limitations Proposed Future

[133] RL, DQN

A dynamic discount
factor is embedded in
the iterative Bellman

equation to prevent bias
in the estimation of the
action value function

The trained agent
outperforms the fixed

timing plan, cutting total
system delay by 20%

- Apply DRL to multiple
intersections

[134] RL

Combining speed
guidance system with
traffic-signal control

based on reinforcement
learning

The proposed method is
superior to a fixed
timing plan and

traditional drive control

-

(1) Add offset
optimization to signal
timing optimization

(2) Use V2V
communication and

dynamic velocity
guidance strategy

[135] MDP, RL

KS-DDPG is proposed to
achieve optimal control

by enhancing the
cooperation between

traffic signals

KS-DDPG significantly
boosts large-scale traffic

network control and
handles flow

fluctuations effectively

All agents need to
communicate,

resulting in
limited overall
communication

efficiency

Consider using
heterogeneous vehicles
to build a more realistic

traffic flow

The intelligent traffic-signal system presented here offers significant potential for
improving urban traffic management. However, its successful implementation faces several
challenges. These include ensuring the real-time and accurate acquisition of traffic data,
maintaining system stability across varying road conditions, balancing cost-effectiveness
with technological sophistication, addressing privacy and security constraints and issues
related to data collection, integrating the technology with the existing infrastructure and
vehicle systems, and encouraging effective human–machine collaboration to ensure safe
and efficient traffic flow. Addressing these constraints and issues is necessary for optimizing
the system’s performance and realizing its potential to enhance the efficiency and safety of
urban transportation.
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5. Conclusions

This study reviews the recent intelligent transportation research trends in smart cities,
examining the impact of machine learning and deep learning on traffic-flow prediction,
congestion management, smart parking, public transportation, traffic accidents, and driver
safety. It also discusses current research challenges and future trends in smart cities,
emphasizing the critical role of these technologies in improving traffic flow and safety.

In terms of theoretical contribution, this study aims to analyze and visualize intelligent
transportation characteristics using a broad scope and extended timeframe methodology.
The analysis and evaluation use quantitative methods, enhancing objectivity and reliability.
The findings are presented in tabular and graphical formats, such as network maps and
information sheets, with narrative explanations to provide a clearer understanding of
the literature’s social, conceptual, and intellectual structure. This approach allows for a
comprehensive evaluation of intelligent transportation.

As a pivotal component of smart cities, the development of intelligent transportation
is intricately linked to the future of the transportation industry. It has profound implica-
tions for urban management, environmental protection, and socio-economic development.
Despite significant advancements, intelligent transportation systems (ITS) still encounter
numerous issues and constraints. To function efficiently, these systems require integrating
diverse technologies, such as the Internet of Things, big data, cloud computing, and artifi-
cial intelligence. Moreover, deploying various sensors and devices necessitates processing
vast amounts of traffic data, which, in turn, demands robust data processing capabilities
and efficient algorithmic support.

Furthermore, an ITS often involves handling extensive personal location and be-
havioral data, making data security and privacy protection critical. Additionally, these
systems should encourage eco-friendly transportation modes to reduce greenhouse-gas
emissions. Thus, the design and implementation of ITSs should consider their long-term
environmental impacts to ensure the sustainable development of urban transportation.

Addressing the constraints, risks, and issues of technology integration, data processing,
security and privacy, and environmental sustainability will be central to the future of
intelligent transportation research. Key areas of focus will include:

• developing more sophisticated data processing algorithms and analysis models through
the deep integration of big data and artificial intelligence to enhance traffic manage-
ment and control;

• enhancing information security and privacy protection by innovating encryption
technologies and anonymization methods to safeguard personal data;

• utilizing ML and other advanced technologies to improve the accuracy of traffic
predictions, optimize traffic flow and accident prediction models, and facilitate more
precise traffic decisions;

• pairing quantum technologies with AI to open new research, development, and
implementation opportunities (e.g., combinatorial optimization);

• building cross-departmental data sharing and collaboration platforms to enhance
overall efficiency and promote optimal information resource allocation;

• advancing the development of autonomous vehicle technologies, including autonomous
navigation and safe obstacle avoidance systems, will be critical to driving the next
wave of innovations in the transportation sector.

By focusing on these areas, future research can significantly advance intelligent trans-
portation systems, encouraging revolutionary changes in the transportation industry and
contributing to the broader goals of smart-city development.

Practically, the findings offer valuable insights for researchers, organizations, editorial
boards, and practitioners, focusing on author collaboration, literature citations, keyword
co-occurrence, and literature trend topic analysis, which can help identify collaboration
opportunities and focus on promising research topics.

Despite its depth, this study has limitations due to its focus on the English literature,
potential bias due to its reliance on the Web of Science database and the VOSviewer
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tool, and the subjective judgment of the author in selecting and interpreting the results.
When interpreting the study’s results, these limitations should be considered to ensure a
comprehensive understanding of intelligent transportation.
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Abbreviations

AM Activation maximization
ANN Artificial neural network
APY Average year of publication
ARI Adjusted rand index
ATM Automatic topic modeling
BS Batch size
BiGRU Bidirectional gated recurrent unit
BOA Butterfly optimization algorithm
BSP Binary space partitioning
BSS Blind source separation
BSVR Bayesian support vector regression
BUC Bottom-up clustering
CNN Convolutional neural networks
CS Citation score per author
CSTN Continuous surface transition network
DAN Deep adaptation network
DBN Deep belief networks
DCRFNN Dynamic convolutional recurrent fusion neural network
DL Deep learning
DQN Deep q-network
DT Document type
EAI Explainable artificial intelligence
EC Evolutionary computation
EdRVFL Enhanced random vector functional link
ELM Extreme learning machine
FDA Fisher discriminant analysis
FedSTN Federated spatial transformer network
FL Federated learning
GA Genetic algorithm
GAN Generative adversarial network
GAS Gather-apply-scatter
GCN Graph convolutional network
GCNN Genetic convolutional neural network
GNN Graph neural network
GRU Gate recurrent unit
IDT Intelligent data transform
IoT Internet of Things
IRM Invariant risk minimization
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ITS Intelligent transportation systems
KDE Kernel density estimation
KNN K-nearest neighbor
LR Logistic regression
LSTM Long short-term memory neural networks
MDN Mixture density network
MDP Markov decision process
ML Machine learning
MLP Multi-layer perceptron
MLR Multiple linear regression
MMN Mismatch negativity
MTLM Multi-task learning model
MVSNET Multi-view spatiotemporal network
NB Naive bayes
NN Neural networks
NP Number of documents per author
POA Probabilistic output analysis
POI Point of interest
RBF Radial basis function
RBM Restricted Boltzmann machine
RCNN Regions with convolutional neural networks
ResNet Residual network
RF Random forest
RNN Recurrent neural network
SMO Sequential minimal optimization
SVC Support-vector classification
SVM Support-vector machine
TBI Target bearing indicator
TFP Traffic-flow prediction
TMS Traffic management systems
WoS Web of Science
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