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Abstract

Background: Predicting suicide is a pressing issue among older adults; however, pre-

dicting its risk is difficult. Capitalizing on the recent development of machine learning,

considerable progress has been made in predicting complex behavior such as suicide.

As depression remained the strongest risk for suicide, we aimed to apply deep learning

algorithms to identify suicidality in a groupwith late-life depression (LLD).

Methods: We enrolled 83 patients with LLD, 35 of which were non-suicidal and

48 were suicidal, including 26 with only suicidal ideation and 22 with past suicide

attempts, for resting-state functional magnetic resonance imaging (MRI). Cross-

sample entropy (CSE) analysiswas conducted to examine the complexity ofMRI signals

among brain regions. Three-dimensional (3D) convolutional neural networks (CNNs)

were used, and the classification accuracy in each brain regionwas averaged to predict

suicidality after sixfold cross-validation.

Results: We found brain regions with a mean accuracy above 75% to predict suicidal-

ity locatedmostly in defaultmode, fronto-parietal, and cingulo-opercular resting-state
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networks. The models with right amygdala and left caudate provided the most reli-

able accuracy in all cross-validation folds, indicating their neurobiological importance

in late-life suicide.

Conclusion: Combining CSE analysis and the 3D CNN, several brain regions were

found to be associated with suicidality.

KEYWORDS

convolutional neural network, cross-sample entropy, machine learning, older adult, resting-state
fMRI, suicide, suicide attempt

1 INTRODUCTION

With population aging, twobillion older adultswere estimated by2050

(Harper, 2014), making late-life suicide a growing concern in public

health (De Leo, 2022). Study has shown that depression remained the

strongest risk factor for late-life suicide, along with poor perceived

health, poor sleep quality, and limited close relatives or friends (Turvey

et al., 2002). However, predicting suicide has always been difficult. A

recentmeta-analysis has suggested that the prediction accuracy of the

traditional risk factor analysis for the last 50 years is only marginally

superior than chance and thatmachine learning-based algorithm could

outperform the traditional way, as it can deal with complex interplay

among multiple predictors, a scenario often found in suicide (Franklin

et al., 2017). Apart from clinical predictors, people have resorted to

plausible biological markers, but existing biological risk factors only

serve as weak predictors for future suicidal behavior (Chang et al.,

2016). Novel neuroimaging has emerged as a potential marker for its

capability to identify brain alterations associatedwith suicidal behavior

in vivo and to develop targeted preventive strategies.

Studies on neuroimaging have found that the brain regions respon-

sible for emotion and impulse control, including the ventral or dorsal

prefrontal cortex, insula, mesial temporal lobes, striatum, and pos-

terior structures, are associated with suicide-related thoughts and

behavior across different mental disorders (Schmaal et al., 2020). The

orbitofrontal cortex and dorsolateral prefrontal cortex (DLPFC) were

particularly associated with suicide for their involvement in decision-

making, problem solving, and fluency (Van Heeringen et al., 2011). In

patients with late-life depression (LLD) with past suicide attempts, a

study on functional magnetic resonance imaging (fMRI) demonstrated

aweak ventromedial PFC response to expected reward in a probabilis-

tic reversal learning task (Dombrovski et al., 2013). In addition, suicide

attempters with LLD had smaller putamen gray matter volume, indi-

cating the need for immediate reward in a gambling task (Dombrovski

et al., 2012). These prior studies have demonstrated that neuroimag-

ing can decipher specific brain regions related to the emotional and

cognitive feature of suicidal behavior.

Similar to research on suicide, studies on neuroimaging have also

embraced machine learning in recent years, as machine learning can

exploit the richness of the data in both fields. Imaging analysis bene-

fits frommachine learning by using an algorithm to recognize patterns

and features inmagnetic resonance imaging (MRI) data (Mateos-Pérez

et al., 2018). Recently, traditionalmachine learning has evolved to deep

learning, which uses multiple hidden neural networks to learn complex

and abstract features in a hierarchical way. Using nonlinear trans-

formations, deep learning can discover more complex and abstract

patterns in data (Vieira et al., 2017), which is important to suicide stud-

ies where brain changes are often subtle to detect (Schmaal et al.,

2020). At present, a convolutional neural network (CNN) is a state-

of-the-art tool among deep learning methods because of its ability to

capture delicate feature representation during imaging (Segato et al.,

2020). Using a CNN, diagnosing Alzheimer’s disease (Duc et al., 2020),

attention-deficit hyperactivity disorder (Ariyarathne et al., 2020), or

schizophrenia (Qureshi et al., 2019) by only using resting-state fMRI

data has become attainable. Moreover, using a three-dimensional (3D)

CNN, the algorithm can fully exploit the spatial information in the

resting-state fMRI data to achieve disease classification (autism vs.

healthy subjects) and age prediction (Khosla et al., 2019). Table 1

presents a comprehensive summary, including the diseases under

consideration, theutilizedmachine learning anddeep learningmethod-

ologies, themodalities of inputdata, and the respective accuracies from

these studies.

Thus, we aimed to predict suicidality in older adults with depression

by using 3D CNN on resting-state fMRI data. Based on our previ-

ous studies, we will explore the nonlinear property in fMRI data in

each brain region by examining its cross-sample entropy (CSE) value,

a measurement of signal complexity among brain regions (Chen et al.,

2020; Lin et al., 2019). We had successfully used 3D, CNN, and CSE

analysis on resting-state fMRIdata to classify patients of LLD fromcon-

trols (Lin et al., 2023). We also sought to determine the brain regions

with the highest accuracy to differentiate patients of LLDwith suicide-

related thought and behavior from counterparts with non-suicidality.

We expect that our findings could extend our knowledge of the neural

basis in late-life suicidality.

2 MATERIALS AND METHODS

2.1 Participants

We recruited participants who were more than 60 years old and had

at least oneDSM-5 (American Psychiatric Association, 2013) diagnosis

of major depressive disorder after age 55 (i.e., LLD), regardless of the
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TABLE 1 A summary of the accuracy of the referenced studies usingmachine learning and deep learningmethods.

Diseases Methods Inputmodalities Accuracy

Alzheimer’s disease

Duc et al. (2020), Mateos-Pérez et al. (2018),

and Vieira et al. (2017)

SVM, OPLS, random forests T1, PET, DTI, CSF 0.82–0.965

CNN, AE, and CNN rs-fMRI 0.80–0.969

3DCNN rs-fMRI 0.8527

Autism

Mateos-Pérez et al. (2018)

SVM, decision tree, LDA, QDA T1, DTI, spectroscopy 0.70–0.963

Multiple sclerosis

Mateos-Pérez et al. (2018)

SVM, logistic regression T1, T2 0.871–0.96

Parkinson’s disease

Mateos-Pérez et al. (2018)

SVM, bootstrap, multinomial

logit

T1, T2, DTI 0.42–0.927

Attention deficit hyperactivity disorder

Ariyarathne et al. (2020), Mateos-Pérez et al.

(2018), and Vieira et al. (2017)

SVM, Gaussian process

classifier

T1 0.793 – 0.902

AE and CNN, FCC,a DBN,a

DBaNa

rs-fMRI 0.344–0.95

CNN based on extracted seed

correlations

rs-fMRI 0.84–0.86

Depression

Mateos-Pérez et al. (2018)

SVM T1, DTI 0.70–0.831

Mild cognitive impairment

Vieira et al. (2017)

DAE,a SAE rs-fMRI 72.6–87.5

Schizophrenia

Qureshi et al. (2019), Vieira et al. (2017)

SAE rs-fMRI 85.8

3DCNN rs-fMRI 0.98± 0.01

Early detection of brain tumor

Segato et al. (2020)

MRI CNN, SVM 0.98

Volumetric assessment of meningiomas

Segato et al. (2020)

MRI-T1WI

MRI-T2WI

CNN, FCNN 0.81 (DSI)

Segmentation of brain tumor

Segato et al. (2020)

MRI-T1WI

MRI-T2WI

CNN, FCNN 0.86 (DSI)

Note: Accuracy represents the ratio of true outcomes, including both true positives and true negatives within a test.
Abbreviations: AE, autoencoder;CNN, convolutional neural network;DAE, deep autoencoder;DBN, deepbelief network;DBaN, deepBayesiannetwork;DSI,

dice similarity index; FCC, fully connected cascade; OPLS: orthogonal partial least squares; QDA: quadratic discriminant analysis; SAE: stacked autoencoder.
aIncorporating feature selection.

onset age of their first depressive episode. A diagnostic interview was

conducted by two board-certified geriatric psychiatrists (Lin and Lee).

Patients were recruited from psychiatric service in a tertiary medical

center. Disease course and suicide history were probed by using Mini-

international neuropsychiatric interview (Lecrubier et al., 1997). Based

on current suicide ideation andpast history of suicide attempt, patients

were divided into patients with suicidality and LLD group without sui-

cidality. Patients with suicidality included those with suicide ideation

and suicide attempter (i.e., inclusive of those who had serious desire to

die and those who had ever attempted suicide). Suicide attempt was

defined as past self-harm behavior with the intention to die. The LLD

groupwithout suicidality referred to thosewho had no suicide ideation

and no past history of suicide attempt.

Depression severity and suicide intent were evaluated using the

17-item Hamilton Depression Rating Scale (Hamilton, 1960) and Beck

Scale for Suicide Ideation (Beck et al., 1979), respectively. During the

study period, all the patients kept their psychotropics with the same

dosage maintained for at least 2 months because of ethical reasons.

TheAntidepressant TreatmentHistory Formwas administered to gage

the refractoriness of patients to treatment (Sackeim et al., 2019).

Except for the comorbidity of anxiety disorder, patients were excluded

if they met other DSM-axis I major psychiatric diagnosis or had his-

tory of head trauma, stroke, major neurocognitive decline, Parkinson’s

disease, thyroid dysfunction, and other major neurological disorders.

Patients all had a minimum score of 24 in Mini-Mental State Exami-

nation (Folstein et al., 1975). We focus solely in LLD as depression is

the major risk factor in late-life suicide. Moreover, we try to avoid con-

founding factors of other types ofmental illness. All participants signed

an informedconsent that indicates the studyprotocols approvedby the

institutional review board of the ChangGungMedical Foundation (IRB

No. 201202970B0C601).

2.2 Data acquisition

WecollectedourMRIdatausinganeight-channel headcoil ona3TMRI

scanner (DiscoveryMR750,GEHealthcare). Participantswereasked to

keep their eyes closed, not to think of anything, and not to fall asleep
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during the scan. Resting-state functional MRI data were collected

using a T2*-weighted gradient-echo echo-planar imaging sequence

using the following parameters: repetition time (TR) = 2000 ms, echo

time (TE) = 30 ms, flip angle = 90◦, number of slices = 36, in-plane

matrix size = 64 × 64, and slice thickness = 4 mm. A total of 180

dynamic volumes were acquired for each subject. T1-weighted struc-

tural images were acquired using an with IR-prepared 3D spoiled

gradient echo sequence with: TR = 8.184 ms, TE = 3.2 ms, inversion

time (TI) = 450 ms, flip angle = 12◦, FOV = 250 × 250 mm2, voxel

size= 0.98× 0.98× 1mm3, and slice number= 160.

2.3 Image preprocessing

Preprocessing included the following steps: slice-timing correction,

motion correction by realigning images to the first volume and remov-

ing images showing 2 mm axial displacement or 2◦ rotation angle, nor-

malization and deformation to Montreal Neurological Institute tem-

plate, and reslicing to 2 × 2 × 2mm3 isotropic voxel dimensions. These

procedures were implemented using SPM12 (statistical paramet-

ric mapping, http://www.fil.ion.ucl.ac.uk/spm/ ). Further preprocessing

steps used the REST toolbox (http://restfmri.net/forum/REST_V1.8 ).

At each voxel, the time series were detrended and bandpass fil-

tered (frequencies between 0.01 and 0.08 Hz). The time courses for

various covariates (white matter, cerebrospinal fluid, and six motion

parameters for head movement) were extracted and regressed out

as nuisance regressors to eliminate potential effects of physiologi-

cal artifacts. Finally, the gray matter of the brain was divided into 90

regions of interests (ROIs) based on automated anatomical labeling

(AAL) (Tzourio-Mazoyer et al., 2002). The data time series of all vox-

els in an ROI were averaged. The brain networks were visualized using

the BrainNet Viewer toolbox (http://www.nitrc.org/projects/bnv/) (Xia

et al., 2013).

2.4 Proposed scheme

The flowof theproposed scheme for suicidal thought andbehavior pre-

diction is shown in Figure 1a, with the 3D CSE volume and CNN for

subject classification being the twomajor components. TheCSEmatrix

shown in Figure 1a is a 90 × 90 matrix containing the CSE value of all

AAL ROI pairs. The following equation was used to calculate the CSE

betweenanyROIpair (Gómezet al., 2009;Richman&Moorman, 2000):

CSE (m, r, L) = − ln
pm+1

pm
, (1)

where pl = 1∕(L − 1)
∑L−1

i = 1 p
l
i with l (m or m + 1 in Equation (1) with

m = 2 in this study) being the length of two sub-vectors xl(i) =

[xi, xi+1,… , xi+l−1] and yl(j) = [yj, yj+1,… , yj+l−1] from the data series

x and y of an ROI pair. The parameters pli = nli ∕(L − 1) and nli represent

the probability and number of vectors, in which any l-point sub-vector

yl(j) in ymatches the l-point sub-vector xl(i) in x. The indices i and j vary

from 1 to L − 1. A match with a tolerance r is defined as d[xl(i), yl(j)] < r

with

d [xl (i) , yl (j)] = max
{||xi+k − jj+k|| : 0 ≤ k ≤ l − 1

}
, (2)

which is the maximum difference between the components of xl(i) and

yl(j). In this study, the tolerance parameter r was set as.6. The ith row

of the CSEmatrix contains the CSE value of the 90 ROIs with regard to

the ith ROI. By assigning the entries of CSEmatrix’s ith row to the vox-

els of their corresponding ROIs (Chen et al., 2020), we can construct a

91×109×913DCSEvolume seeded at the ithROI. Each entry in aCSE

matrix was centered and scaled on the basis of the mean and standard

deviation of the CSE matrices of the subjects without suicidal thought

and behavior beforeCSE volume construction. Finally, each subject has

90 CSE volumes to feed into different classification network models.

A CSE volume provides detailed brain interactions from temporal and

spatial aspects.

The architecture of the network model for suicidal thought and

behavior classification is shown in Figure 1b. For any subject under

test, the network takes one of their 3D CSE volumes to determine

whether or not they have suicidal thoughts and behavior. The network

starts with an average-pooling layer to reduce data dimensionality.

Two of the three convolution layers are followed, each with interven-

ing max-pooling and batch normalization layers. Afterward, the third

convolutional layer was connected, whose output was fed to four suc-

cessive fully connected layers. The number of neurons is 500 in the

first three fully connected layers and two in the last layer. The convo-

lution layers had 32, 64, and 128 filters of sizes 3 × 3 × 3, 3 × 3 × 3,

and 2 × 2 × 2, respectively. The filter sizes for average pooling and two

max-pooling layerswere all 2×2×2. All trainable layerswere followed

by the ReLU activation function, except for the last fully connected

layer, where the softmax function was used for classification purposes.

One difficulty associated with the seed-based method for brain func-

tional connectivity analysis is that no standard has been established for

selecting seed ROIs, and the selection is often different across studies

(Cole et al., 2010; Sohn et al., 2015).We polled the classification results

from all the 90 classificationmodels trained on the CSE volume seeded

at 90 ROIs to comprehensively investigate the effect of different ROIs

on the prediction of suicidal thought and behavior and refrained from

the need of prior knowledge for ROI selection. This ensemble learning

strategy (Sagi & Rokach, 2018) that integrates different ROI selections

could predict suicidal thought and behavior.

2.5 Model training

We enrolled 83 participants, including 48 and 35 patients of LLD with

suicidal ideation or past suicide attempts, respectively. We employed

k-fold cross-validation to assess the model’s ability to perform well on

unseen data, measuring its generalization error. This widely adopted

technique provides a more comprehensive evaluation by utilizing

diverse data subsets for training and testing, in contrast to a sin-

gle train-test split (Mohri et al., 2018). We randomly divided the
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F IGURE 1 (a) Flow diagram of the proposed scheme for suicidal thought and behavior prediction. (b) The architecture of the proposed
networkmodel for subject classification.
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participants into six roughly same-size groups to perform cross-

validation (Mohri et al., 2018). Although the data partition was con-

ducted in a “random” manner, specific criteria were introduced during

this process to ensure that individuals with histories of prior sui-

cide events are included in all folds. To elaborate, we have taken

steps to evenly distribute three distinct groups of individuals—namely,

patients of LLD without suicidality, with suicide ideation, and with sui-

cide attempt—across all folds, thereby ensuring their representation in

each fold. One participant group was retained as the testing dataset

during each CV process to provide an unbiased evaluation of a final

model evaluation on the training and validation datasets. Although

only onefold was designated as the test set for performance evalua-

tion during each iteration, the assessment of its generalization ability

encompassed contributions from all participants, not limited solely to

the 13or 14 participants. Among the five remaining participant groups,

four were used to train the network model, and one was used to esti-

mate the generalization error of the model acquired from the training

set to avoid model overfitting. These three datasets are normally seen

in deep learning applications. We used the categorical cross-entropy

loss for classification duringmodel training, whichwas optimized using

the adaptive moment estimation optimizer with an epoch size of 400.

Weadopted abatch size of 32, aligningwith theprevious recommenda-

tions (Bengio, 2012; Kandel & Castelli, 2020). Given that the datasets

are biological images (e.g., fMRI), a batch size of 32 has established

itself as the preferred default choice. Considering our utilization of a

small batch size, we opted for a modest learning rate of 10−3 based

on previous recommendation (Kandel & Castelli, 2020). If the loss did

not show improvement within 60 epochs, the training procedure was

stopped. The CV process was repeated six times, with each of the six

participant groups used exactly once as the testing dataset. All the

models were trained in TensorFlow 1.2.1 using the CUDA 11.1 Toolkit

and cuDNN v8.0.5 on the computing platform: ASUS ESC8000 G4

server systemwith Intel Xeon CPU, GeForce RTX 2080 Ti, and 192 GB

RAM.

3 RESULTS

Table 2 presents the demographic and clinical data of the partici-

pants. A total of 83 patients with LLD were recruited, 35 of which

were non-suicidal and 48 were suicidal. Among the 48 patients with

suicidality, 26 had only suicidal ideation and 22 had past suicide

attempts. Compared with patients without suicidality, patients with

suicidality had an early depression onset with more lifetime depres-

sive episodes, a differencemostly driven by those with suicide attempt

(Table S1).

Five of the six testing datasets had 14 participants, and the remain-

ing one had 13. The classification rate attained by different ROI

classifiers varied during testing, with their classification rates averaged

over six CV processes (Figure 2). We also computed the 95% confi-

dence intervals (Bayle et al., 2020) in each ROI. It is worthy noting that

all the ROIs of accuracy rate above 75% had narrow lower bound of

their confidence intervals that exceed 70%. This not only reinforces

TABLE 2 Demographic data and between group comparisons.

NS Suicidality

Statistics(n= 35) (n= 48)

Age 67.2± 5.8 65± 4.8 t= 2.0

Sex, (M/F) 7/28 8/40 Chi= 0.25

Education 7.9± 2.9 9.2± 3.6 t=−1.8

Disease course

Onset 57.1± 7.9 50.4± 11.6 t= 2.9*

Episodes 1.9± 1.6 3.3± 2.9 t=−2.4*

ATHF load 3.4± 1.2 3.8± 1.1 t=−1.5

Psychological scales

HAMD 7.6± 4.7 9.4± 6.4 F= 2.5

BSS 2.4± 2.7 6.3± 5.6 F= 9.4**

MMSE 27.7± 1.5 27.9± 1.3 F= 0.5

Abbreviations: ATHF, antidepressant treatment history form; BSS, Beck

Scale for Suicide Ideation; HAMD, 17-item Hamilton Depression Scale;

MMSE, Mini-mental Status Examination; NS, non-suicidal late-life depres-

sion.

*p< .05.

**p< .005.

the links between these ROIs and suicidality but also underscores the

consistency observed across different data folds.

Wedetailed the results of the six cross-validations in Table S2where

11 patients without suicidality weremis-classified as having suicidality

in themodel.

After 6 rounds of cross-validation, we obtained a mean accuracy

rate above 75% in the classifiers of 14 ROIs. These ROIs were located

in default-mode network (DMN; orbital part of the left superior frontal

gyrus and right rectus gyrus), fronto-parietal network (FPN; the dor-

solateral part of the right superior frontal gyrus, right midcingulate

gyrus, and right inferior parietal lobule [IPL]), cingulo-opercular net-

work (CON; the orbital part of the left inferior frontal gyrus, left

thalamus, and caudate), and in regions outside the threemajor resting-

state networks (right rolandic operculum, right amygdala, right inferior

occipital gyrus, temporal poles in the right superior temporal gyrus, and

left middle temporal gyrus; Figure 3). Besides reaching a mean accu-

racy above 75%, the right amygdala and left caudate also obtained this

accuracy in every one of the six cross-validation processes, indicating

that they were themost reliable nodes to classify suicidality.

4 DISCUSSION

In the present study, we could separate patients of LLD with suici-

dality from those without by 3D convolution neural networks. The

CSE of the brain regions that are most predictive of suicidal behavior

resided primarily in three canonical resting-state networks, including

DMN, FPN, andCON,with amean accuracy rate above75%.Moreover,

the machine learning models using fMRI data from the right amyg-

dala and left caudate provided the most reliable accuracy across all six
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F IGURE 2 Themean classification rates with 95% confidence interval of different regions of interests (ROIs) in left and right hemispheres.
AMYG, amygdala; CAU, caudate; IOG, inferior occipital gyrus; IPL, inferior parietal lobule; MCG, middle cingulate gyrus; ORBsup, inferior
orbitofrontal cortex; ORBinf, inferior orbitofrontal cortex; ROL, rolandic operculum; REC, rectus gyrus; SFGdor, dorsal superior frontal gyrus;
THA, thalamus; TPOmid, middle temporal pole; TPOsup, superior temporal pole.

cross-validation processes, indicating their unique neuropathological

roles in late-life suicide.

Our finding is consistent with previous meta-analysis showing that

the right amygdala is consistently associated with suicidal thoughts or

behavior (Huang et al., 2020). The right amygdala subserves implicit

and autonomic emotional regulation compared with the left amygdala

(Gläscher & Adolphs, 2003; Williams et al., 2005). Emotional dysreg-

ulation, partly resulting from early-life adversity, is a major trait in

suicide (Turecki, 2014). Although prior studies on emotion dysregu-

lation have focused on adolescents and adults (Colmenero-Navarrete

et al., 2021), our studies suggest that older adults may share the same

psychological theory. Caudate is another brain region in our study

showing high predictive accuracy in suicide prediction. Increased pro-

dynorphin mRNA expression level, an opioid gene expression, was

found in the caudate of patients with suicidality (Hurd et al., 1997).

The opioid system is implicated in suicidal behavior, as physical pain

and social pain are tightly related (Lutz et al., 2017). However, the

putamen showed volume reduction in late-life suicide compared with

the caudate (Dombrovski et al., 2012). By contrast, another study

showed that increased caudate volumewas associatedwith violent sui-

cidal behavior (Jollant et al., 2018). Nevertheless, these inconsistent

results were all derived from structural MRI studies. Another recent

functional fMRI study has found that the functional connectivity and

directionality from the caudate to the ventrolateral prefrontal cortex is

a characterizing feature in suicidal ideation and behavior in LLD (Shao

et al., 2021). In addition, analyzing resting-state fMRI data using a lin-

ear (Shao et al., 2021) or nonlinear (such as the entropy analysis in

the current study) approach, the caudate was found to be a critical

brain area associatedwith suicidal behavior in LLD. Caudate is the cen-

ter of the cortico-basal ganglia-thalamocortical system. Our current

study also found the inferior frontal gyrus (orbital part) and thalamus

to be highly predictive of suicidality, which are two regions in this cir-

cuit. The cortico-basal ganglia-thalamocortical system is responsible

for inhibitory control, decision-making, and working memory (Wei &

Wang, 2016), whose malfunction may lead to suicidality (Jollant et al.,

2011; Richard-Devantoy et al., 2012). Moreover, the caudate is con-

nected to the dorsolateral prefrontal cortex (DLPFC) (Graff-Radford

et al., 2017), which is the dorsolateral part of the superior frontal gyrus.

Thus, the caudate could be a pivotal area implicated in late-life suicide.

It is one of the two regions (along with the amygdala) that consistently

show high predictive accuracy in all cross-validationmodels.

DLPFC dysfunction has been a consistent finding in neuroimaging

studies on suicide, as the consequential top-down behavioral disinhibi-

tion and diminished flexibility may initiate the transition from suicidal

ideation to behavior (Schmaal et al., 2020). Our finding of the right,

but not the left, DLPFC, is consistent with previous studies on suicide

attempters with schizophrenia (Matsuoka et al., 2020) or those with a

family history of suicide (Ding et al., 2017; Jollant et al., 2018). Com-

paredwith the leftDLPFC, the rightDLPFCplays a role in actualmental

generation while considering the interdependence among sequences

in action planning, a phenomenon observed in the study using the

Tower of London test, where intermediate moves are required (Kaller
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F IGURE 3 Regions of interests (ROIs) whose classifiers achieved amore than 75% classification rate: (a) in the fronto-parietal network; (b) in
the cingulo-opercular network; and (c) in the default mode network.

et al., 2010). In the lesion study, the right DLPFC is necessary not only

tomanipulate workingmemory, but also to broaden reasoning (Barbey

et al., 2013). Previously, impairment in executive function, particularly

the cognitive control in attaining certain goals, has been found to play

a critical role in suicidal ideation in older adults (Gujral et al., 2014).

Our finding of the right DLPFC and the function it subserves could

infer a specific aspect of the executive dysfunction associated with

late-life suicide. Interestingly, repetitive transcranial magnetic stimu-

lation (rTMS) to the left prefrontal cortex has been shown to have

anti-suicidal effect in patients with mid-life depression (George et al.,

2014). Our finding of right DLPFC could be a potential target of rTMS

for patients of late-life suicide.

The orbital part of the superior frontal gyrus is another region pre-

dictive of suicidality in our study. Gosnell et al. (2019) found that

the decreased functional connectivity between this region and other

regions within the “hate circuitry” can classify patients with suicidal

behavior throughmachine learning. They hypothesized that “hate”may

be self-referential to precipitate suicidal behavior. Similarly, our find-

ings of the orbital part of the superior frontal gyrus, rectus gyrus, and

IPL all reside in the DMN, a network performing self-referential and

rumination (Hamilton et al., 2015). Another research has found that

decreased functional connectivity between FPN (particularly IPL) and

DMN was associated with higher suicide risk (Dai et al., 2022). There-

fore, our finding of nodes predictive of suicidality in DMN and FPN

can be explained by this inter-network functional connectivity change,

which results in impaired top-down emotional control.

The right rolandic operculum and bilateral temporal poles are

other brain regions predictive of suicidality outside the triple rest-

ing networks. Similarly, Gosnell et al. (2019) also found that the

resting-state functional connectivity increase in the rolandic opercu-

lum and decrease in the temporal polewere associatedwith suicidality.

Hypoperfusion in the rolandic operculum has been observed in suicide

completers from a cohort study (Willeumier et al., 2011). Other study

has found that the functional connectivity between the middle tempo-

ral pole and rostral anterior cingulate cortex was negatively correlated

with the severity of suicidal ideation in patients with depression (Du

et al., 2017). The Rolandic operculum and temporal pole are responsi-

ble for the integration of perceptual inputs, including interoceptive or

visceral emotional signals (Olson et al., 2007; Triarhou, 2021). Suicide

attempters exhibited interoceptive numbing; thus, they can override

the painful consequence of self-injury (DeVille et al., 2020). In addition,

the temporal pole can integrate information from various modalities,

and it is associatedwith social cognition and emotion processing (Pehrs

et al., 2015). In suicide attempters with LLD, impairment in social

cognition was found to be associated with difficulty in interpersonal

relationship and poor social support, which all undermined suicidal
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behavior (Szanto et al., 2012). Thus, our finding of the right middle

temporal pole having the highest mean classification rate in predict-

ing suicidality suggests that social cognition dysfunction could be an

important factor affecting late-life suicide.

Our results were drawn from entropy analysis on the resting-state

fMRI. This nonlinear temporal measure of the fMRI data can reflect

the scale-free property of the resting brain (Pritchard et al., 2014) and

correlate well with neurocognitive function (i.e., brain reserve) (Wang,

2021) and human intelligence (Saxe et al., 2018). In addition, different

brain networks can be discerned on the basis of their entropy values

during rest or working memory test (Nezafati et al., 2020). Our results

further show that the CSE from the three resting-state networks can

be used to predict suicidality in LLD. Using entropy to quantify the

temporal variability during neural processing can reveal brain’s abil-

ity to adapt to the changing environment (Keshmiri, 2020). Failure to

adapt to or resolve real-life difficulties could result in late-life suicide,

as study showed that older adults who attempted suicide often per-

ceived life problems as threatening and unsolvable (Gibbs et al., 2009).

Thus, behavior change highly correlates with the temporal variabil-

ity of brain’s activity (Keshmiri, 2020). Our results support this notion

by demonstrating entropy measurement, which served as a marker to

explore suicidality in older adults.

This study has a few limitations. First, our sample size was small,

which would impede us from having a more fine-grained classification

of suicidal behavior in our participants (e.g., planned vs. unplanned sui-

cide) (Bernanke et al., 2017). However, suicide encompasses various

phenotypes in the clinical setting. Therefore, traditional theoretically

driven models fail to outperform machine learning models to pre-

dict suicidality because of the complexity and heterogeneity in suicide

(Schafer et al., 2021). However, our results obtained from using a

machine learning approach could provide potentially unifying neural

substrates of suicidality in LLD. Moreover, one recent study using gen-

eralized q-sampling imaging with CNN-based model could distinguish

41 depressive patients with suicidal ideation from 58 patients without

suicidal thoughtswith a prediction accuracy of 85% (Weng et al., 2020).

This suggests that our sample size is adequate to build a suicide predic-

tion algorithm. However, it is still suggested to increase the sample size

in developingmachine learning algorithm from brainMRI data to avoid

risk of bias (preferable with sample sizes more than 20 in contrast to

the number of candidate features) (Parsaei et al., 2023). Second, we

combined the group of suicidal ideation and suicide attempters into

one group of suicidality. Suicide attempts and suicidal ideation are con-

sidered the strongest predictors for suicide death (Szanto et al., 2002).

Among older adults, suicidal ideation is less expressed compared with

other age groups (Conwell et al., 1998). They also had the lowest

ratio of suicide attempts to completion due to their high intention to

end their lives. Therefore, when they express their suicidality, either

through suicidal ideation or attempt, clinicians and health providers

should be at high alert to halt the progression to suicide completion.

Thus, we treated both conditions as one entity in the classification

model. Third, although our machine learning results are promising, we

did not perform external validation (Dwyer et al., 2018). However,

the testing dataset in our model was preserved to provide unbiased

model evaluation. Although our study achieved a mean accuracy rate

above 75% in classifying patients of LLD without or with suicidality, it

is important to note that a significant proportion of errors occurred,

primarily involving themisclassification of patients of LLDwithout sui-

cidality as suicidal. To address this issue, one potential avenue is the

explorationof a classificationmodel capable of revealing discriminative

information to distinguish between the three distinct patient groups.

However, it is essential to acknowledge that training such a model

presented challenges due to the limited number of patients available

for our study. Moreover, our use of k-fold cross-validation (internal

validation) provides adequate accuracy without inflating the results

(Jacobucci et al., 2021). Furthermore, we propose the extrapolation of

our models to another dataset or in other culture in the future.

5 CONCLUSION

Suicide has been the most elusive and devastating health problem in

psychiatry, which is lethal for older adults. Translating the advances of

machine learning such as deep learning in neuroimaging data into psy-

chiatric application is still in its infancy (Walter et al., 2019). Although

machine learning can identify those who are at risk, how to develop

a scalable intervention afterward is even more critical (Kirtley et al.,

2022). Moreover, machine learning often yields complex algorithms

that are difficult in clinical application and interpretation (Siddaway

et al., 2021). Our results could help in the development of intervention

in late-life suicide, not only as biological marker for late-life suicidal-

ity, but also as potential target for brain stimulation. Machine learning

has made its foray into suicide research; thus, more research must be

conducted to consolidate our results with scalable implementation in

clinical setting.
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