Received: 5 May 2023

Revised: 19 November 2023

Accepted: 20 November 2023

DOI: 10.1002/brb3.3348

ORIGINAL ARTICLE

Brain and Behavior
WILEY

Predicting suicidality in late-life depression by 3D
convolutional neural network and cross-sample entropy
analysis of resting-state fMRI

Chemin Lin%2%3
Ho-Ling Liu®¢

| Chih-Mao Huang*
| Shu-HangNg’?¢ |

| WeiChang® | You-XunChang® |
Huang-LiLin® | Tatia Mei-Chun Lee®%1! |

Shwu-HualLee? | Shun-Chi Wu®

1Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan

2College of Medicine, Chang Gung University, Taoyuan, Taiwan

3Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan

4Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

5Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan

6Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA

7Department of Head and Neck Oncology Group, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan

8Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan

?Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan

10| aboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong

11State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Pok Fu Lam, Hong Kong

Correspondence

Shwu-Hua Lee, Linkou Chang Gung Memorial
Hospital, No.5, Fuxing St., Guishan Dist.,
Taoyuan 333, Taiwan.

Email: shlee@cgmh.org.tw

Shun-Chi Wu, National Tsing Hua University,
101, Section 2, Kuang-Fu Road, Hsinchu
300044, Taiwan.

Email: shunchiwu@mx.nthu.edu.tw

Funding information

Ministry of Science and Technology,
Grant/Award Numbers:
106-2314-B-182A-084-MY2,
109-2314-B-182A-107-MY3,
110-2314-B-182A-042; Chang

Gung Memorial Hospital, Linkou, Grant/Award
Numbers: CRRPG2K0021, 22,
23;CLRPG2L0053

Abstract

Background: Predicting suicide is a pressing issue among older adults; however, pre-
dicting its risk is difficult. Capitalizing on the recent development of machine learning,
considerable progress has been made in predicting complex behavior such as suicide.
As depression remained the strongest risk for suicide, we aimed to apply deep learning
algorithms to identify suicidality in a group with late-life depression (LLD).

Methods: We enrolled 83 patients with LLD, 35 of which were non-suicidal and
48 were suicidal, including 26 with only suicidal ideation and 22 with past suicide
attempts, for resting-state functional magnetic resonance imaging (MRI). Cross-
sample entropy (CSE) analysis was conducted to examine the complexity of MRI signals
among brain regions. Three-dimensional (3D) convolutional neural networks (CNNs)
were used, and the classification accuracy in each brain region was averaged to predict
suicidality after sixfold cross-validation.

Results: We found brain regions with a mean accuracy above 75% to predict suicidal-

ity located mostly in default mode, fronto-parietal, and cingulo-opercular resting-state
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in late-life suicide.
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1 | INTRODUCTION

With population aging, two billion older adults were estimated by 2050
(Harper, 2014), making late-life suicide a growing concern in public
health (De Leo, 2022). Study has shown that depression remained the
strongest risk factor for late-life suicide, along with poor perceived
health, poor sleep quality, and limited close relatives or friends (Turvey
et al,, 2002). However, predicting suicide has always been difficult. A
recent meta-analysis has suggested that the prediction accuracy of the
traditional risk factor analysis for the last 50 years is only marginally
superior than chance and that machine learning-based algorithm could
outperform the traditional way, as it can deal with complex interplay
among multiple predictors, a scenario often found in suicide (Franklin
et al., 2017). Apart from clinical predictors, people have resorted to
plausible biological markers, but existing biological risk factors only
serve as weak predictors for future suicidal behavior (Chang et al.,
2016). Novel neuroimaging has emerged as a potential marker for its
capability to identify brain alterations associated with suicidal behavior
invivo and to develop targeted preventive strategies.

Studies on neuroimaging have found that the brain regions respon-
sible for emotion and impulse control, including the ventral or dorsal
prefrontal cortex, insula, mesial temporal lobes, striatum, and pos-
terior structures, are associated with suicide-related thoughts and
behavior across different mental disorders (Schmaal et al., 2020). The
orbitofrontal cortex and dorsolateral prefrontal cortex (DLPFC) were
particularly associated with suicide for their involvement in decision-
making, problem solving, and fluency (Van Heeringen et al., 2011). In
patients with late-life depression (LLD) with past suicide attempts, a
study on functional magnetic resonance imaging (fMRI) demonstrated
aweak ventromedial PFC response to expected reward in a probabilis-
tic reversal learning task (Dombrovski et al., 2013). In addition, suicide
attempters with LLD had smaller putamen gray matter volume, indi-
cating the need for immediate reward in a gambling task (Dombrovski
et al,, 2012). These prior studies have demonstrated that neuroimag-
ing can decipher specific brain regions related to the emotional and
cognitive feature of suicidal behavior.

Similar to research on suicide, studies on neuroimaging have also
embraced machine learning in recent years, as machine learning can
exploit the richness of the data in both fields. Imaging analysis bene-
fits from machine learning by using an algorithm to recognize patterns

and features in magnetic resonance imaging (MRI) data (Mateos-Pérez
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networks. The models with right amygdala and left caudate provided the most reli-

able accuracy in all cross-validation folds, indicating their neurobiological importance

Conclusion: Combining CSE analysis and the 3D CNN, several brain regions were

found to be associated with suicidality.

convolutional neural network, cross-sample entropy, machine learning, older adult, resting-state
fMRI, suicide, suicide attempt

etal., 2018). Recently, traditional machine learning has evolved to deep
learning, which uses multiple hidden neural networks to learn complex
and abstract features in a hierarchical way. Using nonlinear trans-
formations, deep learning can discover more complex and abstract
patterns in data (Vieira et al., 2017), which is important to suicide stud-
ies where brain changes are often subtle to detect (Schmaal et al.,
2020). At present, a convolutional neural network (CNN) is a state-
of-the-art tool among deep learning methods because of its ability to
capture delicate feature representation during imaging (Segato et al.,
2020). Using a CNN, diagnosing Alzheimer’s disease (Duc et al., 2020),
attention-deficit hyperactivity disorder (Ariyarathne et al., 2020), or
schizophrenia (Qureshi et al., 2019) by only using resting-state fMRI
data has become attainable. Moreover, using a three-dimensional (3D)
CNN, the algorithm can fully exploit the spatial information in the
resting-state fMRI data to achieve disease classification (autism vs.
healthy subjects) and age prediction (Khosla et al., 2019). Table 1
presents a comprehensive summary, including the diseases under
consideration, the utilized machine learning and deep learning method-
ologies, the modalities of input data, and the respective accuracies from
these studies.

Thus, we aimed to predict suicidality in older adults with depression
by using 3D CNN on resting-state fMRI data. Based on our previ-
ous studies, we will explore the nonlinear property in fMRI data in
each brain region by examining its cross-sample entropy (CSE) value,
a measurement of signal complexity among brain regions (Chen et al.,
2020; Lin et al., 2019). We had successfully used 3D, CNN, and CSE
analysis on resting-state fMRI data to classify patients of LLD from con-
trols (Lin et al., 2023). We also sought to determine the brain regions
with the highest accuracy to differentiate patients of LLD with suicide-
related thought and behavior from counterparts with non-suicidality.
We expect that our findings could extend our knowledge of the neural

basis in late-life suicidality.

2 | MATERIALS AND METHODS

2.1 | Participants

We recruited participants who were more than 60 years old and had
at least one DSM-5 (American Psychiatric Association, 2013) diagnosis
of major depressive disorder after age 55 (i.e., LLD), regardless of the
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TABLE 1 Asummary of the accuracy of the referenced studies using machine learning and deep learning methods.

Diseases Methods Input modalities Accuracy
Alzheimer’s disease SVM, OPLS, random forests T1, PET, DTI, CSF 0.82-0.965
Duc et al. (2020), Mateos-Pérez et al. (2018), CNN, AE, and CNN rs-fMRI 0.80-0.969

and Vieiraetal. (2017)

3DCNN rs-fMRI 0.8527

Autism SVM, decision tree, LDA, QDA T1, DTI, spectroscopy 0.70-0.963
Mateos-Pérez et al. (2018)
Multiple sclerosis SVM, logistic regression T1,T2 0.871-0.96
Mateos-Pérez et al. (2018)
Parkinson’s disease SVM, bootstrap, multinomial T1,T2,DTI 0.42-0.927
Mateos-Pérez et al. (2018) logit
Attention deficit hyperactivity disorder SVM, Gaussian process T1 0.793-0.902
Ariyarathne et al. (2020), Mateos-Pérez et al. classifier

(2018), and Vieira et al. (2017) AE and CNN, FCC.2 DBN .2 rs-fMRI 0.344-0.95

DBaN?
CNN based on extracted seed rs-fMRI 0.84-0.86
correlations

Depression SVM T1,DTI 0.70-0.831
Mateos-Pérez et al. (2018)
Mild cognitive impairment DAE,? SAE rs-fMRI 72.6-87.5
Vieiraetal. (2017)
Schizophrenia SAE rs-fMRI 85.8
Qureshi et al. (2019), Vieiraet al. (2017) 3D CNN rs-fMRI 0.98 +0.01
Early detection of brain tumor MRI CNN, SVM 0.98
Segato et al. (2020)
Volumetric assessment of meningiomas MRI-TIWI CNN, FCNN 0.81 (DSI)
Segato et al. (2020) MRI-T2WI
Segmentation of brain tumor MRI-T1WI CNN, FCNN 0.86 (DSI)
Segato et al. (2020) MRI-T2WI

Note: Accuracy represents the ratio of true outcomes, including both true positives and true negatives within a test.
Abbreviations: AE, autoencoder; CNN, convolutional neural network; DAE, deep autoencoder; DBN, deep belief network; DBaN, deep Bayesian network; DSI,
dice similarity index; FCC, fully connected cascade; OPLS: orthogonal partial least squares; QDA: quadratic discriminant analysis; SAE: stacked autoencoder.

2Incorporating feature selection.

onset age of their first depressive episode. A diagnostic interview was
conducted by two board-certified geriatric psychiatrists (Lin and Lee).
Patients were recruited from psychiatric service in a tertiary medical
center. Disease course and suicide history were probed by using Mini-
international neuropsychiatric interview (Lecrubier et al., 1997). Based
on current suicide ideation and past history of suicide attempt, patients
were divided into patients with suicidality and LLD group without sui-
cidality. Patients with suicidality included those with suicide ideation
and suicide attempter (i.e., inclusive of those who had serious desire to
die and those who had ever attempted suicide). Suicide attempt was
defined as past self-harm behavior with the intention to die. The LLD
group without suicidality referred to those who had no suicide ideation
and no past history of suicide attempt.

Depression severity and suicide intent were evaluated using the
17-item Hamilton Depression Rating Scale (Hamilton, 1960) and Beck
Scale for Suicide Ideation (Beck et al., 1979), respectively. During the
study period, all the patients kept their psychotropics with the same
dosage maintained for at least 2 months because of ethical reasons.

The Antidepressant Treatment History Form was administered to gage

the refractoriness of patients to treatment (Sackeim et al., 2019).
Except for the comorbidity of anxiety disorder, patients were excluded
if they met other DSM-axis | major psychiatric diagnosis or had his-
tory of head trauma, stroke, major neurocognitive decline, Parkinson’s
disease, thyroid dysfunction, and other major neurological disorders.
Patients all had a minimum score of 24 in Mini-Mental State Exami-
nation (Folstein et al., 1975). We focus solely in LLD as depression is
the major risk factor in late-life suicide. Moreover, we try to avoid con-
founding factors of other types of mental illness. All participants signed
aninformed consent that indicates the study protocols approved by the
institutional review board of the Chang Gung Medical Foundation (IRB
No.201202970B0C601).

2.2 | Data acquisition

We collected our MRI data using an eight-channel head coilona 3T MRI
scanner (Discovery MR750, GE Healthcare). Participants were asked to

keep their eyes closed, not to think of anything, and not to fall asleep
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during the scan. Resting-state functional MRI data were collected
using a T2*-weighted gradient-echo echo-planar imaging sequence
using the following parameters: repetition time (TR) = 2000 ms, echo
time (TE) = 30 ms, flip angle = 90°, number of slices = 36, in-plane
matrix size = 64 x 64, and slice thickness = 4 mm. A total of 180
dynamic volumes were acquired for each subject. T1-weighted struc-
tural images were acquired using an with IR-prepared 3D spoiled
gradient echo sequence with: TR = 8.184 ms, TE = 3.2 ms, inversion
time (TI) = 450 ms, flip angle = 12°, FOV = 250 x 250 mm?, voxel
size =0.98 x 0.98 x 1 mm?3, and slice number = 160.

2.3 | Image preprocessing

Preprocessing included the following steps: slice-timing correction,
motion correction by realigning images to the first volume and remov-
ing images showing 2 mm axial displacement or 2° rotation angle, nor-
malization and deformation to Montreal Neurological Institute tem-
plate, and reslicing to 2 x 2 x 2 mm? isotropic voxel dimensions. These
procedures were implemented using SPM12 (statistical paramet-
ric mapping, http://www.fil.ion.ucl.ac.uk/spm/). Further preprocessing
steps used the REST toolbox (http://restfmri.net/forum/REST_V1.8).

At each voxel, the time series were detrended and bandpass fil-

tered (frequencies between 0.01 and 0.08 Hz). The time courses for
various covariates (white matter, cerebrospinal fluid, and six motion
parameters for head movement) were extracted and regressed out
as nuisance regressors to eliminate potential effects of physiologi-
cal artifacts. Finally, the gray matter of the brain was divided into 90
regions of interests (ROIs) based on automated anatomical labeling
(AAL) (Tzourio-Mazoyer et al., 2002). The data time series of all vox-
els in an ROl were averaged. The brain networks were visualized using
the BrainNet Viewer toolbox (http://www.nitrc.org/projects/bnv/) (Xia
etal, 2013).

2.4 | Proposed scheme

The flow of the proposed scheme for suicidal thought and behavior pre-
diction is shown in Figure 1a, with the 3D CSE volume and CNN for
subject classification being the two major components. The CSE matrix
shown in Figure 1ais a 90 x 90 matrix containing the CSE value of all
AAL ROI pairs. The following equation was used to calculate the CSE
between any ROI pair (Gomez et al., 2009; Richman & Moorman, 2000):

pm+1

CSE (mr,L) = —In (1)

m

L—

where p' = 1/(L—1) 2 :11 p:. with | (m or m + 1 in Equation (1) with

m = 2 in this study) being the length of two sub-vectors x(i) =
[Xiy Xit1, s Xizi—1l @and yi() = [V}, Vjs1, -, Yjsi—1] from the data series
x and y of an ROI pair. The parameters p; = né /(L—1)and n; represent
the probability and number of vectors, in which any [-point sub-vector

y,(j) iny matches the I-point sub-vector x;(i) in x. The indices i and j vary
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from 1to L — 1. A match with a tolerance r is defined as d[x;(i), y;(j)] < r
with

d [x (), y ()] = max { Xk —jjsk| 10 <k <1-1}, (2)

which is the maximum difference between the components of x(i) and
yi(j). In this study, the tolerance parameter r was set as.6. The ith row
of the CSE matrix contains the CSE value of the 90 ROls with regard to
the ith ROI. By assigning the entries of CSE matrix’s ith row to the vox-
els of their corresponding ROIs (Chen et al., 2020), we can construct a
91x 109 x91 3D CSE volume seeded at the ith ROI. Each entry ina CSE
matrix was centered and scaled on the basis of the mean and standard
deviation of the CSE matrices of the subjects without suicidal thought
and behavior before CSE volume construction. Finally, each subject has
90 CSE volumes to feed into different classification network models.
A CSE volume provides detailed brain interactions from temporal and
spatial aspects.

The architecture of the network model for suicidal thought and
behavior classification is shown in Figure 1b. For any subject under
test, the network takes one of their 3D CSE volumes to determine
whether or not they have suicidal thoughts and behavior. The network
starts with an average-pooling layer to reduce data dimensionality.
Two of the three convolution layers are followed, each with interven-
ing max-pooling and batch normalization layers. Afterward, the third
convolutional layer was connected, whose output was fed to four suc-
cessive fully connected layers. The number of neurons is 500 in the
first three fully connected layers and two in the last layer. The convo-
lution layers had 32, 64, and 128 filters of sizes 3 x 3 x 3,3 x 3 x 3,
and 2 x 2 x 2, respectively. The filter sizes for average pooling and two
max-pooling layers were all 2 x 2 x 2. All trainable layers were followed
by the ReLU activation function, except for the last fully connected
layer, where the softmax function was used for classification purposes.
One difficulty associated with the seed-based method for brain func-
tional connectivity analysis is that no standard has been established for
selecting seed ROIs, and the selection is often different across studies
(Coleetal.,2010; Sohn et al., 2015). We polled the classification results
from all the 90 classification models trained on the CSE volume seeded
at 90 ROIs to comprehensively investigate the effect of different ROls
on the prediction of suicidal thought and behavior and refrained from
the need of prior knowledge for ROI selection. This ensemble learning
strategy (Sagi & Rokach, 2018) that integrates different ROl selections

could predict suicidal thought and behavior.

2.5 | Model training

We enrolled 83 participants, including 48 and 35 patients of LLD with
suicidal ideation or past suicide attempts, respectively. We employed
k-fold cross-validation to assess the model’s ability to perform well on
unseen data, measuring its generalization error. This widely adopted
technique provides a more comprehensive evaluation by utilizing
diverse data subsets for training and testing, in contrast to a sin-
gle train-test split (Mohri et al, 2018). We randomly divided the
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network model for subject classification.
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participants into six roughly same-size groups to perform cross-
validation (Mobhri et al., 2018). Although the data partition was con-
ducted in a “random” manner, specific criteria were introduced during
this process to ensure that individuals with histories of prior sui-
cide events are included in all folds. To elaborate, we have taken
steps to evenly distribute three distinct groups of individuals—namely,
patients of LLD without suicidality, with suicide ideation, and with sui-
cide attempt—across all folds, thereby ensuring their representationin
each fold. One participant group was retained as the testing dataset
during each CV process to provide an unbiased evaluation of a final
model evaluation on the training and validation datasets. Although
only onefold was designated as the test set for performance evalua-
tion during each iteration, the assessment of its generalization ability
encompassed contributions from all participants, not limited solely to
the 13 or 14 participants. Among the five remaining participant groups,
four were used to train the network model, and one was used to esti-
mate the generalization error of the model acquired from the training
set to avoid model overfitting. These three datasets are normally seen
in deep learning applications. We used the categorical cross-entropy
loss for classification during model training, which was optimized using
the adaptive moment estimation optimizer with an epoch size of 400.
We adopted a batch size of 32, aligning with the previous recommenda-
tions (Bengio, 2012; Kandel & Castelli, 2020). Given that the datasets
are biological images (e.g., fMRI), a batch size of 32 has established
itself as the preferred default choice. Considering our utilization of a
small batch size, we opted for a modest learning rate of 103 based
on previous recommendation (Kandel & Castelli, 2020). If the loss did
not show improvement within 60 epochs, the training procedure was
stopped. The CV process was repeated six times, with each of the six
participant groups used exactly once as the testing dataset. All the
models were trained in TensorFlow 1.2.1 using the CUDA 11.1 Toolkit
and cuDNN v8.0.5 on the computing platform: ASUS ESC8000 G4
server system with Intel Xeon CPU, GeForce RTX 2080 Ti, and 192 GB
RAM.

3 | RESULTS

Table 2 presents the demographic and clinical data of the partici-
pants. A total of 83 patients with LLD were recruited, 35 of which
were non-suicidal and 48 were suicidal. Among the 48 patients with
suicidality, 26 had only suicidal ideation and 22 had past suicide
attempts. Compared with patients without suicidality, patients with
suicidality had an early depression onset with more lifetime depres-
sive episodes, a difference mostly driven by those with suicide attempt
(Table S1).

Five of the six testing datasets had 14 participants, and the remain-
ing one had 13. The classification rate attained by different ROI
classifiers varied during testing, with their classification rates averaged
over six CV processes (Figure 2). We also computed the 95% confi-
dence intervals (Bayle et al., 2020) in each ROL. It is worthy noting that
all the ROIs of accuracy rate above 75% had narrow lower bound of

their confidence intervals that exceed 70%. This not only reinforces

LIN ET AL.

TABLE 2 Demographic data and between group comparisons.
NS Suicidality
(n=35) (n=48) Statistics
Age 672+58 65+4.8 t=20
Sex, (M/F) 7/28 8/40 Chi=0.25
Education 79+29 9.2+3.6 t=-1.8
Disease course
Onset 57.1+79 504 +11.6 t=2.9*
Episodes 19+16 3.3+29 t=-24*
ATHF load 34+12 38+11 t=-15
Psychological scales
HAMD 7.6+47 94+64 F=25
BSS 24+27 6.3+5.6 F=9.4*
MMSE 277 +15 27.9+13 F=0.5

Abbreviations: ATHF, antidepressant treatment history form; BSS, Beck
Scale for Suicide ldeation; HAMD, 17-item Hamilton Depression Scale;
MMSE, Mini-mental Status Examination; NS, non-suicidal late-life depres-
sion.

*p <.05.

**p <.005.

the links between these ROIs and suicidality but also underscores the
consistency observed across different data folds.

We detailed the results of the six cross-validations in Table S2 where
11 patients without suicidality were mis-classified as having suicidality
in the model.

After 6 rounds of cross-validation, we obtained a mean accuracy
rate above 75% in the classifiers of 14 ROIls. These ROls were located
in default-mode network (DMN; orbital part of the left superior frontal
gyrus and right rectus gyrus), fronto-parietal network (FPN; the dor-
solateral part of the right superior frontal gyrus, right midcingulate
gyrus, and right inferior parietal lobule [IPL]), cingulo-opercular net-
work (CON; the orbital part of the left inferior frontal gyrus, left
thalamus, and caudate), and in regions outside the three major resting-
state networks (right rolandic operculum, right amygdala, right inferior
occipital gyrus, temporal poles in the right superior temporal gyrus, and
left middle temporal gyrus; Figure 3). Besides reaching a mean accu-
racy above 75%, the right amygdala and left caudate also obtained this
accuracy in every one of the six cross-validation processes, indicating
that they were the most reliable nodes to classify suicidality.

4 | DISCUSSION

In the present study, we could separate patients of LLD with suici-
dality from those without by 3D convolution neural networks. The
CSE of the brain regions that are most predictive of suicidal behavior
resided primarily in three canonical resting-state networks, including
DMN, FPN, and CON, with a mean accuracy rate above 75%. Moreover,
the machine learning models using fMRI data from the right amyg-

dala and left caudate provided the most reliable accuracy across all six
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cross-validation processes, indicating their unique neuropathological
roles in late-life suicide.

Our finding is consistent with previous meta-analysis showing that
the right amygdala is consistently associated with suicidal thoughts or
behavior (Huang et al., 2020). The right amygdala subserves implicit
and autonomic emotional regulation compared with the left amygdala
(Glascher & Adolphs, 2003; Williams et al., 2005). Emotional dysreg-
ulation, partly resulting from early-life adversity, is a major trait in
suicide (Turecki, 2014). Although prior studies on emotion dysregu-
lation have focused on adolescents and adults (Colmenero-Navarrete
et al.,, 2021), our studies suggest that older adults may share the same
psychological theory. Caudate is another brain region in our study
showing high predictive accuracy in suicide prediction. Increased pro-
dynorphin mRNA expression level, an opioid gene expression, was
found in the caudate of patients with suicidality (Hurd et al., 1997).
The opioid system is implicated in suicidal behavior, as physical pain
and social pain are tightly related (Lutz et al.,, 2017). However, the
putamen showed volume reduction in late-life suicide compared with
the caudate (Dombrovski et al., 2012). By contrast, another study
showed that increased caudate volume was associated with violent sui-
cidal behavior (Jollant et al., 2018). Nevertheless, these inconsistent
results were all derived from structural MRI studies. Another recent
functional fMRI study has found that the functional connectivity and
directionality from the caudate to the ventrolateral prefrontal cortex is
a characterizing feature in suicidal ideation and behavior in LLD (Shao

et al,, 2021). In addition, analyzing resting-state fMRI data using a lin-

ear (Shao et al., 2021) or nonlinear (such as the entropy analysis in
the current study) approach, the caudate was found to be a critical
brain area associated with suicidal behavior in LLD. Caudate is the cen-
ter of the cortico-basal ganglia-thalamocortical system. Our current
study also found the inferior frontal gyrus (orbital part) and thalamus
to be highly predictive of suicidality, which are two regions in this cir-
cuit. The cortico-basal ganglia-thalamocortical system is responsible
for inhibitory control, decision-making, and working memory (Wei &
Wang, 2016), whose malfunction may lead to suicidality (Jollant et al.,
2011; Richard-Devantoy et al., 2012). Moreover, the caudate is con-
nected to the dorsolateral prefrontal cortex (DLPFC) (Graff-Radford
etal., 2017), which is the dorsolateral part of the superior frontal gyrus.
Thus, the caudate could be a pivotal area implicated in late-life suicide.
It is one of the two regions (along with the amygdala) that consistently
show high predictive accuracy in all cross-validation models.

DLPFC dysfunction has been a consistent finding in neuroimaging
studies on suicide, as the consequential top-down behavioral disinhibi-
tion and diminished flexibility may initiate the transition from suicidal
ideation to behavior (Schmaal et al., 2020). Our finding of the right,
but not the left, DLPFC, is consistent with previous studies on suicide
attempters with schizophrenia (Matsuoka et al., 2020) or those with a
family history of suicide (Ding et al., 2017; Jollant et al., 2018). Com-
pared with the left DLPFC, the right DLPFC plays arole in actual mental
generation while considering the interdependence among sequences
in action planning, a phenomenon observed in the study using the

Tower of London test, where intermediate moves are required (Kaller
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FIGURE 3 Regions of interests (ROIs) whose classifiers achieved a more than 75% classification rate: (a) in the fronto-parietal network; (b) in

the cingulo-opercular network; and (c) in the default mode network.

et al.,, 2010). In the lesion study, the right DLPFC is necessary not only
to manipulate working memory, but also to broaden reasoning (Barbey
et al., 2013). Previously, impairment in executive function, particularly
the cognitive control in attaining certain goals, has been found to play
a critical role in suicidal ideation in older adults (Gujral et al., 2014).
Our finding of the right DLPFC and the function it subserves could
infer a specific aspect of the executive dysfunction associated with
late-life suicide. Interestingly, repetitive transcranial magnetic stimu-
lation (rTMS) to the left prefrontal cortex has been shown to have
anti-suicidal effect in patients with mid-life depression (George et al.,
2014). Our finding of right DLPFC could be a potential target of rTMS
for patients of late-life suicide.

The orbital part of the superior frontal gyrus is another region pre-
dictive of suicidality in our study. Gosnell et al. (2019) found that
the decreased functional connectivity between this region and other
regions within the “hate circuitry” can classify patients with suicidal
behavior through machine learning. They hypothesized that “hate” may
be self-referential to precipitate suicidal behavior. Similarly, our find-
ings of the orbital part of the superior frontal gyrus, rectus gyrus, and
IPL all reside in the DMN, a network performing self-referential and
rumination (Hamilton et al., 2015). Another research has found that
decreased functional connectivity between FPN (particularly IPL) and
DMN was associated with higher suicide risk (Dai et al., 2022). There-

fore, our finding of nodes predictive of suicidality in DMN and FPN
can be explained by this inter-network functional connectivity change,
which results in impaired top-down emotional control.

The right rolandic operculum and bilateral temporal poles are
other brain regions predictive of suicidality outside the triple rest-
ing networks. Similarly, Gosnell et al. (2019) also found that the
resting-state functional connectivity increase in the rolandic opercu-
lum and decrease in the temporal pole were associated with suicidality.
Hypoperfusion in the rolandic operculum has been observed in suicide
completers from a cohort study (Willeumier et al., 2011). Other study
has found that the functional connectivity between the middle tempo-
ral pole and rostral anterior cingulate cortex was negatively correlated
with the severity of suicidal ideation in patients with depression (Du
et al,, 2017). The Rolandic operculum and temporal pole are responsi-
ble for the integration of perceptual inputs, including interoceptive or
visceral emotional signals (Olson et al., 2007; Triarhou, 2021). Suicide
attempters exhibited interoceptive numbing; thus, they can override
the painful consequence of self-injury (DeVille et al., 2020). In addition,
the temporal pole can integrate information from various modalities,
and it is associated with social cognition and emotion processing (Pehrs
et al., 2015). In suicide attempters with LLD, impairment in social
cognition was found to be associated with difficulty in interpersonal

relationship and poor social support, which all undermined suicidal
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behavior (Szanto et al., 2012). Thus, our finding of the right middle
temporal pole having the highest mean classification rate in predict-
ing suicidality suggests that social cognition dysfunction could be an
important factor affecting late-life suicide.

Our results were drawn from entropy analysis on the resting-state
fMRI. This nonlinear temporal measure of the fMRI data can reflect
the scale-free property of the resting brain (Pritchard et al., 2014) and
correlate well with neurocognitive function (i.e., brain reserve) (Wang,
2021) and human intelligence (Saxe et al., 2018). In addition, different
brain networks can be discerned on the basis of their entropy values
during rest or working memory test (Nezafati et al., 2020). Our results
further show that the CSE from the three resting-state networks can
be used to predict suicidality in LLD. Using entropy to quantify the
temporal variability during neural processing can reveal brain’s abil-
ity to adapt to the changing environment (Keshmiri, 2020). Failure to
adapt to or resolve real-life difficulties could result in late-life suicide,
as study showed that older adults who attempted suicide often per-
ceived life problems as threatening and unsolvable (Gibbs et al., 2009).
Thus, behavior change highly correlates with the temporal variabil-
ity of brain’s activity (Keshmiri, 2020). Our results support this notion
by demonstrating entropy measurement, which served as a marker to
explore suicidality in older adults.

This study has a few limitations. First, our sample size was small,
which would impede us from having a more fine-grained classification
of suicidal behavior in our participants (e.g., planned vs. unplanned sui-
cide) (Bernanke et al., 2017). However, suicide encompasses various
phenotypes in the clinical setting. Therefore, traditional theoretically
driven models fail to outperform machine learning models to pre-
dict suicidality because of the complexity and heterogeneity in suicide
(Schafer et al., 2021). However, our results obtained from using a
machine learning approach could provide potentially unifying neural
substrates of suicidality in LLD. Moreover, one recent study using gen-
eralized g-sampling imaging with CNN-based model could distinguish
41 depressive patients with suicidal ideation from 58 patients without
suicidal thoughts with a prediction accuracy of 85% (Wenget al., 2020).
This suggests that our sample size is adequate to build a suicide predic-
tion algorithm. However, it is still suggested to increase the sample size
in developing machine learning algorithm from brain MRI data to avoid
risk of bias (preferable with sample sizes more than 20 in contrast to
the number of candidate features) (Parsaei et al., 2023). Second, we
combined the group of suicidal ideation and suicide attempters into
one group of suicidality. Suicide attempts and suicidal ideation are con-
sidered the strongest predictors for suicide death (Szanto et al., 2002).
Among older adults, suicidal ideation is less expressed compared with
other age groups (Conwell et al., 1998). They also had the lowest
ratio of suicide attempts to completion due to their high intention to
end their lives. Therefore, when they express their suicidality, either
through suicidal ideation or attempt, clinicians and health providers
should be at high alert to halt the progression to suicide completion.
Thus, we treated both conditions as one entity in the classification
model. Third, although our machine learning results are promising, we
did not perform external validation (Dwyer et al., 2018). However,

the testing dataset in our model was preserved to provide unbiased

model evaluation. Although our study achieved a mean accuracy rate
above 75% in classifying patients of LLD without or with suicidality, it
is important to note that a significant proportion of errors occurred,
primarily involving the misclassification of patients of LLD without sui-
cidality as suicidal. To address this issue, one potential avenue is the
exploration of a classification model capable of revealing discriminative
information to distinguish between the three distinct patient groups.
However, it is essential to acknowledge that training such a model
presented challenges due to the limited number of patients available
for our study. Moreover, our use of k-fold cross-validation (internal
validation) provides adequate accuracy without inflating the results
(Jacobucci et al., 2021). Furthermore, we propose the extrapolation of

our models to another dataset or in other culture in the future.

5 | CONCLUSION

Suicide has been the most elusive and devastating health problem in
psychiatry, which is lethal for older adults. Translating the advances of
machine learning such as deep learning in neuroimaging data into psy-
chiatric application is still in its infancy (Walter et al., 2019). Although
machine learning can identify those who are at risk, how to develop
a scalable intervention afterward is even more critical (Kirtley et al.,
2022). Moreover, machine learning often yields complex algorithms
that are difficult in clinical application and interpretation (Siddaway
et al., 2021). Our results could help in the development of intervention
in late-life suicide, not only as biological marker for late-life suicidal-
ity, but also as potential target for brain stimulation. Machine learning
has made its foray into suicide research; thus, more research must be
conducted to consolidate our results with scalable implementation in
clinical setting.
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