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Abstract

The catalytic function of lysyl hydroxylase-2 (LH2), a member of the Fe(II)/αKG-dependent 

oxygenase superfamily, is to catalyze the hydroxylation of lysine to hydroxylysine in collagen, 

resulting in stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs). Reports show 

that high amounts of LH2 lead to the accumulation of HLCCs, causing fibrosis and specific types 

of cancer metastasis. Some members of the Fe(II)/αKG-dependent family have also been reported 

to have intramolecular O2 tunnels, which aid in transporting one of the required cosubstrates 

into the active site. While LH2 can be a promising target to combat these diseases, efficacious 

inhibitors are still lacking. We have used computational simulations to investigate a series of 

44 small molecules as lead compounds for LH2 inhibition. Tunneling analyses indicate the 

existence of several intramolecular tunnels. The lengths of the calculated O2-transporting tunnels 

in holoenzymes are relatively longer than those in the apoenzyme, suggesting that the ligands 

may affect the enzyme’s structure and possibly block (at least partially) the tunnels. The sequence 

alignment analysis between LH enzymes from different organisms shows that all of the amino 

acid residues with the highest occurrence rate in the oxygen tunnels are conserved. Our results 

suggest that the enolate form of diketone compounds establishes stronger interactions with the 

Fe(II) in the active site. Branching the enolate compounds with functional groups such as phenyl 

and pyridinyl enhances the interaction with various residues around the active site. Our results 

provide information about possible leads for further LH2 inhibition design and development.

Graphical Abstract
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INTRODUCTION

Lysyl hydroxylases (LHs) belong to the iron(II)/α-ketoglutarate-dependent (Fe(II)/αKG-

dependent) enzyme superfamily, with more than 60 oxygenases, using Fe(II) and 2-

oxoglutarate (αKG) as cofactor and cosubstrate, respectively (Figure 1A).1 The enzymatic 

oxidation reaction catalyzed in the active site of these enzymes occurs by activating 

a nonheme Fe with the concomitant oxidation of αKG into succinate and carbon 

dioxide, followed by a H abstraction and hydroxyl rebound to hydroxylate the substrate 

(Figure 1B).1–3 The LH subfamily consists of LH1, LH2, and LH3, encoded by the 

procollagenlysine, 2-oxoglutarate 5-dioxygenase genes PLOD1, PLOD2, and PLOD3, 

respectively.4–6 All three enzymes catalyze the hydroxylation of lysine to hydroxylysine 

on collagen (Figure 1C), with LH2 being the only modifier for telopeptidyl lysine residues.7

The role of LH2 in the human body is the formation of highly stable hydroxylysine 

aldehyde-derived collagen cross-links (HLCCs) mediated by the telopeptidyl lysine 

residues.8,9 These cross-links are more durable than lysine-derived collagen cross-links 

(LCCs) that form in the absence of LH2.10 The large stabilization and resistance of HLCCs 

to collagenase cleavage are necessary to stabilize the extracellular matrix,8 as the deficiency 

of HLCCs is seen in patients with Bruck syndrome suffering from deformed and fragile 

bones.11 On the other hand, the excessive accumulation of HLCCs by high levels of 

LH2 expression can cause fibrosis.12,13 Moreover, pathological studies on sarcoma14 and 

metastasis in lung and breast cancers15–17 show that high levels of LH2 directly contribute 

to these conditions. Thus, LH2 is a promising target for potential inhibitors to cope with 

these diseases. Various assays have been developed to determine LH2 activity, some of 

which are currently employed to develop possible LH2 inhibitors.18–22 However, as of yet, 

no LH2 inhibitors are available. A recent study by Scietti et al. on self-inhibition of the lysyl 

hydroxylase catalytic site induced by the binding of Fe2 +  in a noncatalytic site showed a 

dual role of iron as a simultaneous cofactor and inhibitor of the lysyl hydroxylase activity.23 

They realized that the LH/PLOD enzyme activity is extremely sensitive to the balance of 

Fe2 +  concentration. The authors believe that developing specific inhibitors of LH/PLOD is 

a challenging effort with probable additional obstacles for which extra care is needed.
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The hydroxylation reaction performed by LH2 is carried out via a reaction mechanism 

consistent with other enzymes in the Fe/αKG-dependent superfamily. This mechanism 

involves molecular oxygen to activate the nonheme Fe to carry out the required 

oxidations. Experimental and computational studies have shown that various enzymes have 

intramolecular tunnels formed by flexible hydrophobic residues to transport molecular 

oxygen into the active site.25–31 This feature has also been observed in some Fe/αKG-

dependent superfamily enzymes such as AlkB.32–36 Yu et al. proposed the possibility of 

oxygen diffusion by intramolecular tunnels based on the original AlkB crystal structure.35 

Subsequently, a computational investigation showed the likelihood of two O2-transporting 

tunnels in this enzyme by various computational approaches.36

Classical atomistic molecular dynamics (MD) simulations have become a useful tool 

to aid in lead development and inhibitor design.37–40 Many applications use classical 

nonpolarizable force fields implemented in various software packages such as OPLS,41 

CHARMM,42,43 AMBER,44,45 and GROMOS.46 Polarizable force fields such as the atomic 

multipole optimized energetics for biomolecular application (AMOEBA) can also be 

employed.47–49 In cases where transition metals are involved, an accurate description of 

the electronic structure around the metal may be required. One approach that can be used in 

these cases is quantum mechanics/molecular mechanics (QM/MM). This method combines 

two levels of theory and can be used to study the interaction energies, reaction energies, and 

reaction mechanisms in chemical and biochemical systems.50–56

A wide variety of combinations can be used to treat the QM subsystem and the MM region, 

such as empirical valence bond, semiempirical or ab initio Hamiltonians for the QM, and 

nonpolarizable or polarizable force fields for the MM region. It has been shown that, similar 

to MD, considering polarization in QM/MM simulations is important and can improve the 

description of the inter- and intramolecular interactions.57–63 Thus, combining high-level 

QM and polarizable/anisotropic force fields can help achieve more reliable results.64–67

Classical molecular dynamics simulations have been employed to study the structural 

features of other members of the αKG-dependent superfamily, such as AlkB and TET,68–73 

where the effects of mutagenesis and different types of DNA/RNA are investigated. 

However, the presence of Fe(II) in the active site requires a highly accurate description of 

intermolecular interactions due to the electronic state of the cation.74 Therefore, high-level 

QM combined with polarizable/anisotropic MM force fields has been employed in tandem 

with other tools and techniques, such as noncovalent interaction (NCI) analysis to investigate 

the interaction of all ligands in the active site in detail.

This contribution presents a combined polarizable MD and QM/MM investigation of a 

series of 44 diketone-, enol-, and enolate-based ligands in three sets as potential inhibitors 

of LH2. Tunnel analyses are also presented for LH2 to investigate the possibility of the 

existence of molecular oxygen transport tunnels and whether the various ligands may 

affect them. Several candidates of this study, in addition to other designed compounds 

based on the findings of this investigation, are used as lead compounds in another hybrid 

computational/experimental contribution, in which we developed a series of antagonists to 

find competitive inhibitors of αKG.75 The remainder of the manuscript is organized as 
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follows: the Methodology section describes the various computational approaches used. 

Subsequently, results for MD, QM/MM, and tunneling simulations are presented and 

discussed, followed by concluding remarks.

METHODOLOGY

Molecular Docking and MD Simulations.

The homology model for LH2 was constructed by using the SWISS-MODEL server.76 The 

PLOD2 sequence (residues 598–737) was submitted. The LH3 PDB structure 6fxm.1.A 

with a 64.29% sequence identity was used as the template. Next, the protonation states of 

the output structure at pH 7 were predicted by using propka77 via the PDB2PQR server78 

with H atoms added/removed on the ionizable residues accordingly. The initial structures of 

LH2–ligand complexes were prepared using GOLD molecular docking software (version 

5.8.1)79. Initially, 16 ligands were considered in this work, followed by 28 modified 

compounds based on the initial results. A visual check of each docked structure was 

performed to confirm that the ligands were in the proper position of the LH2 binding 

pocket. All systems were solvated within an AMOEBA water box and neutralized.80 NaCl 

ions were added to reach a physiological concentration of 0.15 M. The resulting simulation 

boxes are about 70 × 90 × 70 Å3 with total atoms of ~44 000. After 1 ns equilibration, the 

production MD simulations were carried out under an NPT ensemble (298 K and 1 bar) for 

5 ns for each protein–ligand complex. The RESPA integrator,81,82 Monte Carlo barostat,83 

and BUSSI thermostat84 were employed in the simulations. To accelerate the simulation, the 

integration time step was chosen to be 2 fs, and the induced dipole moment was converged 

to 0.0001 D. Following the conventional settings used by AMOEBA simulations, the cutoff 

distances for van der Waals (vdW) interactions and real-space electrostatics are 12 and 7 Å, 

respectively. The long-range interactions were treated with the Ewald summation method, 

as implemented in the Tinker software package. MD trajectories were saved every 50 ps for 

a total simulation time of 5 ns for each system. The generated trajectories were subjected 

to a clustering analysis and further investigation using QM/MM calculations described 

below. All MD simulations were performed using the Tinker software implemented via the 

OpenMM plugin 85 on NVIDIA GPU cards (GTX 1070 or RTX 2070).

Clustering and QM/MM Calculations.

The k-means clustering analysis86 was performed on MD trajectories of the apoenzyme 

and selected lead compounds based on the distances between the Fe2 +  and the donor 

atoms of the coordinated residues (H666, D668, and H718), ligand (N/A for apoenzyme), 

and water molecules (whenever applicable). The Layered Interacting CHEmical Model 

(LICHEM)87,88 program was combined with Gaussian1689 and TINKER790,91 for all 

energy and optimization calculations. The ωB97X-D/6-31G-(d,p)92,93 level of theory and 

AMOEBAbio1894 force field were employed for the QM region and the MM environment, 

respectively. The QM/MM long-range electrostatic correction (QM/MM-LREC) method95 

was applied with a 25 Å cutoff for the QM subsystem coupled with the particle mesh Ewald 

(PME) method96 for the MM calculations. The QM subsystem includes the Fe2 + , ligand 

molecule, H666, D668, H718, and one or two water molecules depending on the ligand 

to complete the octahedral coordination sphere around the divalent cation. In contrast, the 
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remaining residues and solvent molecules were assigned to the MM subsystem. The MM 

environment consists of two subregions: the active region, in which all of the protein atoms 

and the solvent are flexible inside a sphere of a 30 Å radius, and the frozen subregion, 

where the remaining MM atoms are kept fixed. Boundary conditions across the QM and 

MM subsystems, where covalent bonds were cut, were described using the pseudobond 

approach.97 Interaction energies (ΔEInteract.) were calculated using the following approach

ΔELig./Env.
Interact. = [QMActive site+ligand − (QMActive site

+ QMLigand)] + [MMSystem+Ligand
− MMSystem]

(1)

ΔELig./Wat.
Interact. = QMLigand, PCM Water − QMLigand, Gas Phase (2)

ΔΔEInteract. = ΔELig./Env.
Interact. − ΔELig./Wat.

Interact. (3)

Equations 1 and 2 give the interaction energy between the ligand, the solvated protein, and 

water. Equation 3 reports the difference between the two calculated interaction energies. 

The terms QMActive site+ligand and QMActive site correspond to the gas-phase energies of the respective 

systems including the basis set superposition error (BSSE) correction using the counterpoise 

approach.98,99

Noncovalent Interaction and Thermal Fluctuation Index (TFI) Analyses.

Noncovalent interaction (NCI), average noncovalent interaction (aNCI), and thermal 

fluctuation index (TFI) analyses were used as implemented in the Multiwfn3.7100 software, 

employing promolecular densities.101 This analysis has a default RGB color code for 

plotting isosurfaces. Blue surfaces represent strong-attractive interactions; red surfaces refer 

to strong repulsive interactions, and green ones show weak attractive/repulsive interactions. 

The thermal fluctuation index (TFI) visually indicates the variations between NCI surfaces 

and is color-coded like the NCI. Blue (red) surfaces in this analysis mean that the TFI is 

smaller (larger), and the noncovalent interactions do not fluctuate that much (fluctuate a lot). 

NCI analysis was studied on QM/MM-optimized structures, while aNCI and TFI analyses 

were used for the last 5 ns of MD trajectories. A cubic grid of 200 au and an isovalue of 

0.4 au with a color scale of −0.05 au < sign λ2 ρ < 0.05 au were used for all surfaces. The 

VMD102 software package was used to render images and visualize MD trajectories and 

surfaces.

Sequence Alignment.

Forty-one lysyl hydroxylase (LH) enzymes coded by PLOD1, PLOD2, and PLOD3 genes 

from 14 different organisms were aligned with the Human LH2 (UniProtKB: O00469) 

via the Clustal Omega program accessed via UniProtKB.103 A specific portion of the 

studied enzymes (V538 to P737 in human LH2), formed by a sequence of 199 residues 

corresponding to the catalytically active region for the hydroxylase reaction,24 was selected 

for further multiple alignments by the Expresso mode of the T-Coffee server.104–107 Lastly, 
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conserved residues on the target systems from these multiple alignments were assessed by 

visual inspection to determine their proximity and positions toward the active site.

O2-Transporting Tunnels.

Intramolecular tunnel analysis was done with the CAVER 3.01 algorithm108 implemented 

in Caver Analyst 2.0.109 The k-means clustering analysis was used on the MD trajectories 

of selected ligand systems and apo-LH2 to identify representative structures to perform the 

tunneling analysis. The Fe2 +  was considered the starting point of the tunnels in all cases. 

The minimal radius of the computed tunnels (min. probe radius) was set to 0.9 Å, the 

maximum depth of the surface region (shell depth) was set to 4.0 Å, and the radius of the 

shell probe (shell radius), defining which parts of the Voronoi diagram represent the bulk 

solvent, was set to 3.0 Å.110

RESULTS AND DISCUSSION

The natural cosubstrate of the LH2 enzyme, αKG, which is the deprotonated form of 

2-oxoglutaric acid, coordinates with the iron cation of the active site via its carbonyl 

oxygens in a bidentate form (see Figure 1A). Thus, we started with a series of structures 

having diketone, enol, or enolate ligand skeletons branched with aromatic rings and various 

functional groups (see Scheme 1A). We also considered aromatic compounds with two 

N: donor atoms (cpd3 and cpd4 in Scheme 1A) and picolinamide-based compounds with 

C═O: and N: donors (cpd12 and cpd13 in Scheme 1A) to study the interaction tendencies 

of different combinations of donor atoms and negative charges. We analyzed the QM/MM 

interaction energies between each lead compound (ligand) and its environment (ΔELig./Env.
Interact. ) 

in three configurations: first, the docking configuration with the best score; second, the 

last frame of a 5 ns of MD simulation (MD1) with AMOEBAbio18 using NPT ensemble 

at 298 K and 1 bar, with 1 kcal mol−1 Å−2 of positional restraints on all protein atoms 

(excluding solvent, ions, and ligand); and third, the last frame of a 5 ns MD simulation 

without restraints (MD2) with the same conditions as the second configuration.

Figure 2A compares the calculated interaction energies for the first set of ligands. The 

interaction energy differences (ΔΔEInteract.) indicate that the neutral compounds have the 

weakest interaction energies (detailed results in Table S1). Overall, ΔELig./Wat.
Interact.  represents ~20–

50% of ΔELig./Env.
Interact. . The negatively charged ligands, cpd1p, cpd2p, cpd12, and S50356 (IDs: 

2, 4, 14, and 16), have the most negative interaction energies, and their corresponding 

(ΔELig./Wat.
Interact. /ΔELig./Env.

Interact. ) is 0.42, 0.50, 0.48, and 0.44, respectively. Two compounds, cpd3 and 

cpd13, show positive ΔΔEInteract., as shown in Figure 2A. This is because these neutral 

compounds are the only two that coordinate the metal cation in a monodentate fashion, 

and the interaction with the rest of the protein environment is insufficient to stabilize the 

repulsive energy between the ligand and the active site, resulting in an overall unfavorable 

interaction.

Clustering analysis was performed on the ensemble generated from the MD trajectory 

(without restraints) for the ligands with the largest interaction energy differences, 

compounds cpd1p, cpd2p, cpd12, and S50356. The calculated averaged QM/MM interaction 
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energies (ΔΔEAvg.
Intert.) on the selected representatives of the clusters for ligands cpd1p, cpd2p, 

and cpd12 shown in Figure 2B are similar (−103.1, −109.5, and −94.6 kcal mol−1, 

respectively), while this value for S50356 is slightly larger (−112.2 kcal mol−1). Calculated 

standard deviations for cpd12 and S50356 show the largest and smallest values of ±58.91 

and ±6.26 kcal mol−1, respectively. Although compounds cpd1p and cpd2p are similar, the 

standard deviation of cpd1p is smaller than that of cpd2p (±16.27 and ±31.98 kcal mol−1, 

respectively).

To understand the nature of these differences in the calculated QM/MM interaction energies, 

we employed averaged noncovalent interaction index (aNCI) and thermal fluctuation index 

(TFI) analyses. The noncovalent interaction index (NCI) is a qualitative analysis that 

visually identifies the noncovalent interactions between the molecule of interest and the 

surrounding residues. The thermal fluctuation index is another qualitative analysis showing 

fluctuation and instability in the noncovalent interactions between the compound and the 

surrounding residues. aNCI in Figure 2C shows continuous and blue-green surfaces among 

cpd12 and the surrounding residues, which corresponds to van der Waals interactions, and 

red surfaces with well-defined blue spots for the strong repulsive–attractive interactions 

(cpd12-CO2 group and LH2-Arg residue). This visual analysis shows that overall, cpd12 

has many and consistent interactions with the neighboring residues. Based on the TFI 

surfaces for cpd12 in Figure 2D, the high standard deviation is due to the high fluctuations 

(red surfaces) around the carboxylate and ethyl groups. In the case of ligand S50356 (ID: 

16), despite the carboxylate group, more stability is seen due to a polycyclic aromatic 

hydrocarbon (see Figure S3). For cpd1p and cpd2p (ID: 2 and 4), the nitrogen atom’s 

position in the pyridine group affects the enolate’s binding to the Fe2 +  ion (see Figures S1 

and S2).

Based on these results, it became evident that the negative charge significantly increases 

the interaction tendency, but the values of ΔΔEAvg.
Interact. among the ligands with the most robust 

interactions were relatively similar. Thus, the specific effect of the negative charge was 

still unclear. In other words, it is unclear whether the enolate-based compounds with a 

negative charge on the donor oxygen or the anionic compounds with a negative charge 

far from the donor atoms are better ligands. To better understand this issue, we broadened 

the combinations of the second series to have diketone-, enolate-, and picolinamide-based 

structures branched with more aromatic rings and various functional groups (see Scheme 

2). Compounds 2- cpd1p, 4- cpd2p, 8- cpd6 (enolate form), and 9- cpd7 (enolate form) of 

this set were used in a parallel in vitro investigation to study their selectivity and potency to 

inhibit LH2.75

In the second set of the lead compounds listed in Scheme 2A, an equilibrated LH2 

system with one of the selected ligands from the first set (cpd1p, cpd2p, cpd12, or 

S50356) was used, and the ligand was replaced with a new one, followed by QM/MM 

optimization. The results of the interaction energies are shown in Figure 3A. Our QM/MM 

optimizations showed distorted square pyramidal or octahedral geometries based on the 

ligand’s coordination type (see Scheme 2B). All of the neutral diketone compounds 

(IDs: 17, 19, 31, 33, and 35) are coordinated in a monodentate mode, while all of the 
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picolinamide- and enolate-based compounds are bidentate-coordinated (except IDs: 20 and 

24).

Based on the results of the interaction energies, calculated values of ΔELig./Wat.
Interact.  are ~30–

50% of ΔELig./Env.
Interct. , similar to the first set of ligands. Most of the ligands have considerable 

negative values of ΔΔEInteract., except for cpd1ph, cpd2ph, cpd25, cpd26, and cpd27 with 

the corresponding values of −43.3, −33.6, −21.6, −34.9, and −45.2 kcal mol−1, respectively. 

All of the mentioned ΔΔEInteract. correspond to the neutral, monodentate ligands. Moreover, 

once the enolate form of cpd1ph, cpd25, cpd26, and cpd27, which are cpd1php, cpd25p, 

cpd26p, and cpd27p, coordinates to the active site, the ΔΔEInteract. significantly improves to 

−115.0, −124.5, −143.9, and −144.7 kcal mol−1, respectively. These results are consistent 

with our previous observation for the first set, which showed that the enolate ligands have 

stronger interactions than the neutral ligands. We also realized that the negative charge effect 

on the interaction energy is significantly higher when closer to the active site. In other 

words, the enolate-based compounds having a negative charge on their donor oxygen have 

a stronger interaction with the active site than the picolinamide-based ligands in which a 

−COO− group is far from the active site.

Noncovalent interactions between the second set’s ligands and their surrounding residues 

were another important factor that needed to be considered. Interaction energies showed that 

enolate-based compounds are more energetically favorable, while the surrounding residues 

should stabilize a good candidate structurally. The main reason to branch the second series 

of the compounds with more aromatic rings, substituted with electron-donating and electron-

withdrawing groups, was to see the effect of expanding the ligand’s size on the noncovalent 

interactions. The residues that show the most interactions with the ligands are F651, V653, 

Y655, L663, N675, C690, I730, and V732 (Table S2 and Figure S4). As mentioned before, 

based on our ΔΔEInteract. values in Figure 3A, compounds cpd27p and cpd26p exhibit the 

strongest interactions, while cpd2ph had one of the weakest interactions. However, the NCI 

plots for these compounds in Figure 3B–D show negligible differences in the numbers of 

interacting amino acid residues among these compounds. This observation may come from 

the fact that the second series of designed compounds are made from an equilibrated LH2 

system with one of the selected ligands of the first set, subjected to QM/MM optimization 

without MD simulations.

Our observations from the first and the second series of the compounds indicate that the 

enolate-based ligands have stronger interaction with the active site. Additionally, several 

residues around the active site have attractive noncovalent interactions with compounds 

of the second set, which means all of the designed ligands of this series are stabilized 

by the environment. Previous studies have reported O2-transporting tunnels in other αKG-

dependent superfamily members;32–36 based on this, we hypothesize that O2-transporting 

tunnels might also exist in LH2. Therefore, before designing the third set of enolate-based 

compounds, we studied the existence of O2-transporting tunnels in the apoenzyme. We 

performed a 5 ns MD simulation on the apo structure and applied k-means clustering on 

the trajectories. The geometry of the active site was considered octahedral at the starting 

point, in which H666, D668, H718, and two water molecules were coordinated to the iron 
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(see clusters 2 and 4 in Figure S5). However, in agreement with experimental observations, a 

water molecule was replaced by one of the aspartate’s oxygen after 1 ns of MD.

Figure 4A shows the three major tunnels that are accessible for the apoenzyme with the 

priority/availability of 0.92/63% (blue), 0.83/51% (green), and 0.52/32% (red). There were 

some other accessible tunnels, but their availability and priority were much less than the 

three mentioned tunnels (detailed results in Table S11). It should be noted that, in addition 

to the tunnel’s availability, two other factors are essential when considering a calculated 

tunnel as a major tunnel: the cost and priority of the tunnel.110,111 Here, the cost of each 

tunnel, which is defined as the balance between the width and length of the tunnel (Å), was 

considered the priority e−cost  of the tunnels. The tunnels with a cost of less than ~0.7 (wide 

and short) and a higher priority than ~0.5 were considered the threshold for selecting the 

tunnels.

Several common residues are present in most of the representatives’ tunnels.Table S3 shows 

that the tunnel-defining residues present in more than ~80% of the tunnels are V653, Y655, 

L663, H666, D668, T673, N675, C690, H710, H718, E719, G720, I730, V732, and F734. 

These residues are shown in Figure 4B. A sequence alignment between all of the 3 LH 

enzymes of Homo sapiens (LH1, LH2, and LH3) and 14 other organisms shows that all of 

the tunnel-defining residues are conserved (see Figure 4C and Tables S5 and S6). Similar to 

the previous set, selected compounds of the second set (IDs: 18, 19 (enolate form), 32, 34, 

and 36) were studied experimentally to investigate their inhibition properties.75

Based on our observations from the last two series of compounds and the presence of the 

oxygen-transporting tunnels in the apoenzyme with conserved amino acids, we designed a 

third set of lead compounds consisting of eight enolate-based structures with more aromatic 

rings substituted with electron-donating and electron-withdrawing groups (see Figure 5). 

One of the goals for the third set was to see if the new ligands could affect oxygen transport 

by blocking the putative tunnels and establishing further interactions with conserved 

residues around the active site. Furthermore, we calculated the interaction energies between 

each compound and the active site and studied their noncovalent interactions with the 

surrounding amino acids. All of the ligands were parameterized, and holo-structures were 

subjected to MD simulations. The stability of the whole structure during the MD simulations 

has been illustrated by the root-mean-square deviation (RMSD) of the core part of LH2 

bound with the compounds of this set (see Figure S6). At the same time, the main 

interactions between the Fe ion and the surrounding active site (H666, D668, and H718) 

in those complexes have been kept stable. The specific data for those distances have been 

recorded in Table S7. The 5 ns of each structure’s MD trajectories was taken for further 

clustering analysis to select the best representative structures. The k-means clustering results 

and the related QM/MM optimization energies for each representative are given in Table S8. 

The geometries of the active site in all of the representatives for each compound are also 

shown in Figures S7–S14.

Like the apo structure, we used each compound’s six representatives to calculate the O2-

transporting tunnels. The close-ups of the major calculated tunnels for each compound are 

given in Figure 5. The length/width of the three major tunnels in the apo structure—selected 
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by the criteria as mentioned earlier—was 2.2/1.9 (blue), 5.8/1.7 (green), and 10.2/0.9 Å 

(red) (Table S4). Additionally, it is observed that the holo-structures have relatively longer 

tunnels. This may be due to the structural effects of the incoming ligands after binding to 

the active site and elongating the tunnel. Comparing the tunnel availability between apo 

and holo-structures indicates a decrease in tunnel availability by all of the compounds. This 

reduction is 27–51 and 31–53% for the blue and green tunnels, respectively, with the highest 

availability in the apo structure. Analysis of the conserved residues lining the tunnels for the 

holo systems is consistent with the apoenzyme tunnel analysis (Tables S12–S19).

The interaction energies between the most stable representative of each ligand (the 

representative with the zero value of the relative optimization energy in Table S8) and the 

active site were calculated for each ligand in the third set. Calculated interaction energies 

in Figure 6A show that 33–63% of the ΔELig . /Env.
Interat.  is due to ΔELig./Wat.

Interact. . Based on the calculated 

values of ΔΔEInteract., ligands c2d and c24 have the weakest interaction with the active 

site (−37.9 and −48.2 kcal mol−1, respectively), while c28b and c28a have the strongest 

interactions, −199.3 and −147.4 kcal mol−1, respectively (Table S1).

The aNCI analysis for the third set of ligands in Table S10 shows that the amino acid 

residues interacting with most of the ligands from this third set are F651, Y655, C690, 

R728, and F734. The aNCI graphs in Figure 6B qualitatively show that c28a and c28b, 

which have the strongest interaction with the active site, also have noncovalent interactions 

with more surrounding residues than c2d and c24, with the weakest interaction with the 

active site (supplementary aNCI graphs in Figure S15). The QM/MM interaction energies 

and the aNCI show that c28a and c28b are energetically and structurally more favorable 

than the other ligands. These two compounds also had a significant blocking effect on the 

O2-transporting tunnel. Selected compounds of the third set (IDs: 38, 39, and their pyridine 

analogs) were used in the parallel experimental investigation.75

CONCLUSIONS

Forty-four small molecules were investigated as candidate compounds for LH2 inhibition in 

three sequential sets. The first set of compounds was designed to have one or two oxygen, 

nitrogen, or a combination of both to coordinate with the iron cation of the active site. 

Results showed that diketone-based compounds do not interact strongly with the active site, 

while the enolate form has considerably large negative interaction energies. We designed 

compounds with various functional groups for the second set but with the main skeleton 

of diketone-, enol-, enolate- (to see the effect of the negative charge and the structural 

change), and picolinamide-based compounds having oxygen and nitrogen donor atoms. 

Results showed that enolate-based compounds have the most potent interactions with the 

active site, similar to the first set. Intramolecular O2-transport tunnel analysis was carried 

out on apo-LH2 to determine the feasibility of the existence of this feature in LH2. We 

found three major tunnels with the availability of 63, 51, and 32%, in which a series 

of tunnel-defining residues had more than 80% of repetition. Further investigation on the 

evolutionary conservation of amino acid residues via the multiple sequence alignment on LH 

enzymes (LH1, LH2, and LH3) in 41 organisms showed that all residues showing more than 

80% presence in the tunnels are conserved. For the third set of ligands, new enolate-based 
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compounds branched with more rings and functional groups were designed to block the 

O2-transport tunnels and enhance the interactions with the active site and the surrounding 

residues. Results showed that the availability of the tunnels is relatively higher in the apo 

structure than in the holo-structures, with the third set and some of the compounds in this 

third set blocking the tunnels. The interaction energies and the noncovalent interactions 

showed that compounds 37-C28a and 38-C28b have the strongest interactions with the 

active site and noncovalent interactions with most of the surrounding amino acid residues. 

Selected compounds of this study—in addition to some other candidates based on our 

findings—were tested in parallel in another computational/experimental contribution to 

identifying competitive inhibitors of αKG with nanomolar inhibition property.75
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Figure 1. 
(A) Crystal structure of full-length human lysyl hydroxylase LH3 and its active site 

complexed with αKG (PDB ID: 6FXK). 24 (B) The general catalytic mechanism of the 

αKG-dependent hydroxylase superfamily. (C) Hydroxylation of lysine to hydroxylysine by 

the LH2 in the presence of molecular oxygen.
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Figure 2. 
(A) Calculated QM/MM interaction energies (kcal mol−1) for the first set of test compounds 

(ID: 1–16). (B) Average QM/MM interaction energies (ΔΔEAvg.
Intert.) and the standard deviation 

for the compounds with the most negative interaction energies. All of the calculations are 

at the ωB97X-D/6-31G(d,p) level of theory and AMOEBAbio18 force field. (C) Averaged 

noncovalent index (aNCI) and (D) thermal fluctuation index (TFI) analyses for cpd12 (ID: 

14). The isosurface cutoff for NCI and TFI is 0.4 au, and the data is plotted in the color 

range of −0.05 < sign λ2 ρ < 0.05 au.
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Figure 3. 
(A) Calculated QM/MM interaction energies (kcal mol−1) for the second set of the studied 

ligands (ID: 17–36) at the ωB97X-D/6-31G(d,p) level of theory and AMOEBAbio 18 force 

field. The plot of the noncovalent interactions (NCIs) between the ligand and surrounding 

amino acid residues for (B) cpd27p, (C) cpd26p, and (D) cpd2ph. The isosurface cutoff for 

the NCI is 0.35 au, and the data is plotted in the color range of −0.05 < sign λ2 ρ < 0.05 au. 

Residues H666, D668, and H718 are shown in thin sticks, ligand atoms are in ball and sticks 

(with different color codes), Fe2 +  is in pink vdW sphere, and the surrounding residues with 

the noncovalent interactions are in thick sticks. Hydrogen atoms are not shown for more 

clarity.
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Figure 4. 
(A) O2-transporting tunnels with the largest calculated percentages along the trajectory 

observed in the apoenzyme. Calculated tunnels are colored in blue, green, and red based on 

the tunnel’s length (blue: shortest, red: longest). The intersection of the tunnels inside the 

protein is the active site, which is not shown for clarity. The molecular surface of the protein 

is shown in magnification to give a better view of the enzyme’s cavities. (B) Close-up of the 

approximate positions of the tunnel-lining residues with more than ~80% presence in all of 

the calculated tunnels/representatives. (C) Condensed sequence alignment between human 
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LH2 (UniProtKB: O00469) and selected members of the LH family. Key: “*” indicates 

residues conserved in all of the sequences, while “:” and “.” indicate highly and weakly 

conserved residues.
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Figure 5. 
O2-transporting tunnels with the largest calculated percentages along the trajectory observed 

in the third set of lead compounds. The twodimensional (2D) structure of each ligand is also 

given next to its tunnel graph. Calculated tunnels are colored in blue, green, and red based 

on the increase in the tunnel’s length. The intersection of the tunnels inside the protein is 

the active site of the inhibition reaction, but the active site’s residues are not shown for more 

clarity.
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Figure 6. 
(A) Calculated QM/MM interaction energies (kcal mol−1) for the most stable representative 

of the studied ligands of the third set (ID: 37–44) at the ωB97X-D/6-31G(d,p) level of 

theory and AMOEBAbio 18 force field. (B) Averaged noncovalent interactions (aNCIs) 

between the ligand and its surrounding residues for c28a, c28b, c2d, and c24. The 

isosurface cutoff for the NCI is 0.35 au, and the data is plotted in the color range of 

−0.05 < sign λ2 ρ < 0.05 au au. Residues H666, D668, and H718 are shown in thin sticks, 

ligand atoms are in ball and sticks (with different color codes), Fe2 +  is in pink vdW sphere, 
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and the surrounding residues with the noncovalent interactions are in thick sticks. Hydrogen 

atoms are not shown for more clarity.
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Scheme 1. (A) First Set of Test Compoundsa and (B) Possible Coordination Geometries of the 
Ligands to Fe(II) in the Active Site
aThe numbers in parentheses show the ligand’s charge and number of coordinated waters to 

the Fe cation in the active site in MD1 and MD2, respectively.
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Scheme 2. 
(A) Second Set of the Studied Ligandsa and (B) Different Geometries of the Active Site in 

Coordination with the Lead Compounds
a Numbers in parentheses are ligand’s charge, ligand’s coordination mode (monodentate or 

bidentate), and coordination number of the complex, respectively.
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