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Abstract

Background: Relative to other pediatric cancers, survival for rhabdomyosarcoma (RMS) has not improved in recent decades, suggest-
ing the need to enhance risk stratification. Therefore, we conducted a genome-wide association study for event-free survival (EFS)
and overall survival (OS) to identify genetic variants associated with outcomes in individuals with RMS.

Methods: The study included 920 individuals with newly diagnosed RMS who were enrolled in Children’s Oncology Group protocols.
To assess the association of each single nucleotide polymorphism (SNP) with EFS and OS, we estimated hazard ratios (HRs) and 95%
confidence intervals (CIs) using multivariable Cox proportional hazards models, adjusted for clinical covariates. All statistical tests
were two sided. We also performed stratified analyses by histological subtype (alveolar and embryonal RMS) and carried out sensitiv-
ity analyses of statistically significant SNPs by PAX3/7-FOXO1 fusion status and genetic ancestry group.

Results: We identified that rs17321084 was associated with worse EFS (HR¼ 2.01, 95% CI¼ 1.59 to 2.53, P¼ 5.39� 10�9) and rs10094840
was associated with worse OS (HR¼ 1.84, 95% CI¼ 1.48 to 2.27, P¼ 2.13� 10�8). Using publicly available data, we found that
rs17321084 lies in a binding region for transcription factors GATA2 and GATA3, and rs10094840 is associated with SPAG1 and RNF19A
expression. We also identified that CTNNA3 rs2135732 (HR¼ 3.75, 95% CI¼ 2.34 to 5.99, P¼ 3.54� 10�8) and MED31 rs74504320
(HR¼ 3.21, 95% CI¼ 2.12 to 4.86, P¼ 3.60� 10�8) were associated with worse OS among individuals with alveolar RMS.

Conclusions: We demonstrated that common germline variants are associated with EFS and OS among individuals with RMS.
Additional replication and investigation of these SNP effects may further support their consideration in risk stratification protocols.

Rhabdomyosarcoma (RMS) is the most common soft-tissue sar-
coma of childhood and is commonly classified into two major
histological subtypes: embryonal RMS (ERMS) and alveolar RMS
(ARMS). Importantly, 80% of ARMS have a chromosomal trans-
location that results in fusion of the gene PAX3 or PAX7 with
FOXO1. Several studies have shown that children with PAX/
FOXO1 fusion-positive RMS have statistically significantly worse
survival than those with fusion-negative RMS (1-3). These

findings led to the incorporation of fusion status in risk stratifi-
cation for Children’s Oncology Group (COG) protocols (4).

Clinical trials testing novel therapeutics for children with RMS
have largely been unsuccessful in increasing survival outcomes
over the past several decades; this is especially true for patients
with intermediate- and high-risk RMS (5-7). One strategy to
address poor outcomes among these children is to enhance risk-
stratified diagnostic protocols through the incorporation of
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prognostic genomic markers. For example, somatic mutations in
TP53 and MYOD1 are associated with poor survival for children
with fusion-negative RMS (8); these markers are being included in
upcoming risk-stratified COG clinical trials to identify individuals
with higher risk of poor outcomes (4).

Germline variants play a role in RMS predisposition (9);
whether they affect RMS outcomes remains unclear. Addressing
these questions could help design COG risk-stratified clinical tri-
als that assess whether individuals with certain germline var-
iants might benefit from more aggressive treatment. Further,
providing insight into the etiology of response could inform novel
therapeutic developments for RMS. Although genome-wide asso-
ciation studies (GWAS) have detected common variants associ-
ated with poor outcomes for other pediatric cancers (10-13), there
have been no published GWAS of outcomes among individuals
with RMS. Therefore, we conducted a GWAS for event-free sur-
vival (EFS) and overall survival (OS) in a large, unselected cohort
of individuals with RMS.

Methods
Study population
The Institutional Review Board for Human Subjects Research at
Baylor College of Medicine approved this study. The initial cohort
comprised 924 individuals (age <40 years) with newly diagnosed
RMS who were consented to the COG soft-tissue sarcoma biobank-
ing protocol D9902. Additional information on data collection can
be found in the Supplementary Methods (available online).

The analysis included all risk groups. We recoded case histol-
ogy that was not ERMS or ARMS. Specifically, we coded botryoid
(n¼ 74) and spindle cell (n¼ 49) RMS as ERMS because individuals
with these subtypes have similar outcomes (14). Mixed RMS, RMS
with ganglionic differentiation, and RMS not otherwise specified
were coded as “other.” In sensitivity analyses by PAX/FOXO1 fusion
status, all ERMS were coded as fusion-negative RMS because virtu-
ally all ERMS lack the PAX3/7-FOXO1 fusion gene (1,14).

Genotyping and quality control
All individuals underwent genome-wide genotyping on Illumina
BeadChip arrays. Genotyping and quality control were performed
as described in the Supplementary Methods (available online).
After quality control, the total number of single nucleotide poly-
morphisms (SNPs) was 159 354, and the total number of individu-
als in the study cohort was 920. We imputed the dataset using
the Michigan Imputation Server (15) with reference data from the
Haplotype Reference Consortium. The number of SNPs with an
imputation quality score (r2) of at least 0.6 was 5 387 542; these
SNPs comprised the final dataset.

Statistical analysis
The primary endpoints of the study were: 1) EFS, defined as the
time from date of study enrollment to tumor recurrence or pro-
gression, secondary malignancy, or death due to any cause; and
2) OS, defined as the time from study enrollment to death due to
any cause. Individuals without an event were censored at time of
last contact.

Using the gwasurvivr 1.12.0 R package (16), we conducted Cox
proportional hazards regression to calculate a hazard ratio (HR),
95% confidence interval (CI), and P value for each SNP with EFS
and OS in an additive model. In the Cox regression model, age at
diagnosis (categorical: <1 year, 1-9 years, �10 years), tumor stage
(categorical: 1, 2, 3, 4), and histological subtype (categorical:
ARMS, ERMS, other) were statistically significantly associated

(P< .05) with outcome across the cohort (Supplementary Table 1,
available online). Therefore, the Cox models were adjusted for
these factors. The top five genetically estimated principal compo-
nents were generated using PLINK (17) and were also included in
the final model to account for population stratification or differ-
ences in allele frequency due to the presence of underlying
ancestral subgroups (18). We then generated quantile-quantile
plots to assess residual genomic inflation (Supplementary Figure
1, available online). PAX/FOXO1 fusion status was not included in
the final model because this variable was unknown for 83.4% of
the study cohort.

We defined genome-wide, statistically significant associations
as those with a P value less than 5� 10–8, which is a Bonferroni
correction for multiple testing across 1 million independent seg-
ments of the genome (19). To identify independent SNP associa-
tions, we performed conditional analyses using GCTA software
(20). For genome-wide statistically significant associations, we
used the Kaplan-Meier estimator and log-rank test to evaluate
differences in survival by genotype. Based on calculating and vis-
ualizing Schoenfeld residuals, we found no statistically signifi-
cant violations of the proportional hazards assumption. All
statistical tests were two sided and conducted in R version 4.0.4.

Analytic groups
We conducted a GWAS across all subtypes and then stratified the
GWAS by the two major histological subtypes: ARMS and ERMS.
We also performed post hoc analyses using logistic regression
models to determine whether the frequency of genome-wide
statistically significant SNPs across the entire cohort differed by
histological subtype.

Sensitivity analyses
We conducted sensitivity analyses of SNP associations that were
genome-wide statistically significant across the entire cohort.
SNPs were evaluated within Admixed American, African, and
European genetic ancestry groups, which were defined as
described in the Supplementary Methods (available online). In a
separate analysis, we evaluated SNP effects by PAX/FOXO1 fusion
status.

Functional annotation
We visualized linkage disequilibrium patterns and generated
regional association plots using LocusZoom v0.14.0 (21).
Additionally, we utilized publicly available databases (described
in Supplementary Methods, available online) to provide genomic
annotation for each locus that contained a genome-wide statisti-
cally significant SNP. We also queried the Genotype-Tissue
Expression (GTEx) Portal (22) for expression quantitative trait loci
(eQTL) and splicing QTL (sQTL) across the 49 tissues analyzed in
the v8 release.

Results
Study population
The characteristics of the 920 individuals in the final study cohort
(Table 1) are consistent with previous population-based studies of
RMS (23,24). The median age at diagnosis was 5.6 years (range ¼
3.7 days to 37.5 years), and there was a male predominance (1.4
males to 1 female). The most common histological subtype was
ERMS followed by ARMS. Of the individuals with ARMS who had
known PAX/FOXO1 fusion status, 78.6% had fusion-positive ARMS.
The median follow-up time was 4.7 years (range ¼ 1.1 days to
14.9 years).
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SNPs associated with EFS
We identified a genome-wide statistically significant association
between rs17321084 (chr8q24.13) and EFS (Figure 1, A);
rs17321084 was not in strong linkage (r2 < 0.8; 1000 Genomes
Phase 1 European population) with other SNPs in the region
[Figure 2, A; HaploReg (25)]. The T allele was statistically signifi-
cantly associated with worse EFS (HR¼ 2.01, 95% CI¼ 1.59 to
2.53, P¼ 5.39� 10�9, Table 2). Further, individuals who were het-
erozygous or homozygous for the T allele had statistically signif-
icantly worse EFS (P< .0001) compared with those who were
homozygous for the C allele (Figure 2, B). The odds of having the
T allele were greater in those with ARMS compared with those
with ERMS (odds ratio ¼ 1.07, 95% CI¼ 1.01 to 1.13, P¼ .01). In
sensitivity analysis by histology, the effect estimates were con-
sistent with our initial findings (Supplementary Table 2, avail-
able online).

There were no SNP-gene expression associations reported in
GTEx for rs17321084. However, rs17321084 lies in a binding region
for transcription factors GATA2 and GATA3 [neuroblastoma cell
line; ENCODE GEO: GSM935589 (26)]. Additionally, publicly avail-
able RMS tissue microarray and OS data on individuals with RMS
[Oncogenomics DB (27)] showed that those with high tumor
expression of GATA2 or GATA3 had worse OS compared with
those with low expression (GATA2: P¼ 3.63� 10�4, GATA3:
P¼ 5.92� 10�4).

At a lower statistical significance threshold (P< 1� 10�6), the
SNP with the strongest association with EFS was rs113830923
(ch12p12.1; Figure 2, C). The G allele was statistically significantly
associated with worse EFS (HR¼ 1.97, 95% CI¼ 1.53 to 2.53,
P¼ 1.23� 10�7; Supplementary Table 3, available online).

Table 1. Demographic and clinical characteristics of the
rhabdomyosarcoma study cohort

Characteristic No. (%)

Histological subtype
Alveolar 268 (29.1)
Embryonal 544 (59.1)
Other 108 (11.8)

Sex
Female 384 (41.7)
Male 536 (58.3)

Race and ethnicity
Hispanic or Latino 135 (14.7)
Not Hispanic or Latino

American Indian or Alaska Native 8 (0.9)
Asian 32 (3.5)
Black or African American 110 (12.0)
Native Hawaiian or Pacific Islander 3 (0.3)
White 557 (60.5)
Unknown 75 (8.1)

Age at diagnosis, y
<1 54 (5.9)
1-9 556 (60.4)
�10 310 (33.7)

Tumor stage
1 271 (29.5)
2 160 (17.4)
3 311 (33.8)
4 178 (19.3)

Event-free survival status
Event 359 (39.0)
No event 561 (61.0)

Overall survival status
Event 273 (29.7)
No event 647 (70.3)
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Figure 1. Association of common variants with survival outcomes among 920 individuals with rhabdomyosarcoma. Manhattan plots of a genome-wide
association study of A) event-free survival and B) overall survival, displaying genome-wide statistically significant single nucleotide polymorphism
associations on chromosome 8.
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Individuals who were heterozygous or homozygous for the G
allele had statistically significantly worse EFS (P< .0001) com-
pared with those who were homozygous for the A allele (Figure 2,
D). There were no statistically significant differences in the fre-
quency of the risk allele by histological subtype.

SNP rs113830923 lies approximately 5 kb from SLCO1B1, a gene
that encodes the organic anion transporter polypeptide 1B1
(OATP1B1) (28). This SNP is an eQTL for SLCO1B1 and SLCO1B7 in

tibial nerve tissue; increasing copies of the G allele were associ-
ated with higher SLCO1B1 expression (GTEx). However, there
were no statistically significant eQTLs identified in skeletal
muscle or other tissues derived from those of which RMS is
thought to arise. Data from Oncogenomics DB show that individ-
uals with RMS who have low somatic expression of SLCO1B1 have

worse OS than those with high expression (P¼ 8.52� 10�3).

SNPs associated with OS
We identified a genome-wide statistically significant association
between rs10094840 (chr8q22.2) and OS (Figure 1, B). Based on
conditional analysis, rs10094840 was independent of other SNPs
in the region (Figure 3, A). The A allele was statistically signifi-
cantly associated with worse OS (HR¼ 1.84, 95% CI¼ 1.48 to 2.27,
P¼ 2.13� 10�8; Table 2). Individuals who were heterozygous or
homozygous for the A allele had statistically significantly worse
OS compared with those who were homozygous for the G allele
(P¼ .0001; Figure 3, B). There was no difference in the frequency
of the A allele by histological subtype.

The rs10094840 A allele is associated with higher SPAG1 (a
sperm-associated ciliary protein) expression in blood and mam-
mary tissues and lower RNF19A (an E3 ubiquitin ligase) expres-
sion in the cerebellum (GTEx). We also found that this SNP lies
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Figure 2. Association of single nucleotide variants with event-free survival (EFS) of 920 individuals with rhabdomyosarcoma. Regional association plot
displaying linkage disequilibrium (LD) and recombination hotspots for the: A) chr8q24.13 locus, which harbors rs17321084; and B) Kaplan-Meier curve
of EFS by genotype (CC, CT, TT) of rs17321084. Regional association plot for the C) chr12p12.1 locus, which harbors rs113830923, and D) Kaplan-Meier
curve of EFS by genotype (AA, AG, GG) of rs113830923. Mb ¼ Megabase.

Table 2. Association of genome-wide statistically significant single nucleotide polymorphisms (SNPs) with event-free survival (EFS) and
overall survival (OS) among individuals with rhabdomyosarcomaa

Outcome Subtype Chr Position SNP Alleles MAF HR (95% CI) P

EFS All 8 123323659 rs17321084 C/T 8.7% 2.01 (1.59 to 2.53) 5.39� 10�9

OS All 8 101374772 rs10094840 G/A 16.7% 1.84 (1.48 to 2.27) 2.13� 10�8

ARMS 10 68084977 rs2135732 G/A 10.0% 3.75 (2.34 to 5.99) 3.54� 10�8

ARMS 17 6554921 rs74504320 A/G 8.9% 3.21 (2.12 to 4.86) 3.60� 10�8

a ARMS ¼ alveolar rhabdomyosarcoma; Chr ¼ chromosome; CI ¼ confidence interval; HR ¼ hazard ratio; MAF ¼ sample minor allele frequency. Position is
based on reference hg19. Alleles are shown as major/minor.
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within a DNase I hypersensitivity site in embryonic skeletal muscle
tissues of the leg (Roadmap Epigenomics GEO: GSM1027333).
Oncogenomics DB data show that high RMS expression of SPAG1 is
associated with worse survival (P¼ .01), and low somatic expression
of RNF19A is associated with worse survival (P¼ 4.33� 10�3).

SNPs associated with outcomes by histological
subtype
We identified two genome-wide statistically significant associa-
tions with OS in individuals with ARMS (Figure 4). In individuals
with ERMS, there were no genome-wide statistically significant
SNP associations with either outcome. Estimates for SNPs that
met a lower statistical significance threshold (P< 1� 10�6) in
ERMS or ARMS cohorts are provided in Supplementary Tables 4
and 5 (available online).

SNP rs2135732 (ch10q21.3) was statistically significantly asso-
ciated with OS among individuals with ARMS (Figure 5, A). The A
allele was statistically significantly associated with worse OS
(HR¼ 3.75, 95% CI¼ 2.34 to 5.99, P¼ 3.54� 10�8; Table 2).
Individuals with ARMS who were heterozygous or homozygous
for the A allele had statistically significantly worse OS compared
with those who were homozygous for the G allele (P¼ .002;
Figure 5, B). This SNP lies in an intron of CTNNA3 and is also
located in a DNase I hypersensitivity site (embryonic skeletal
muscle tissues of the arm; Roadmap Epigenomics GEO:
GSM1027349, GSM774223), although there were no eQTLs or
sQTLs reported for this SNP (GTEx).

We also identified a statistically significant association between
rs74504320 (ch17p13.1) and OS among individuals with ARMS
(Figure 5, C). SNP rs74504320 was independent of other SNPs in the
region. The G allele was associated with worse OS (HR¼ 3.21, 95%
CI¼ 2.12 to 4.86, P¼ 3.60� 10�8; Table 2). Among individuals with
ARMS, those who were heterozygous or homozygous for the G
allele had statistically significantly worse OS (P< .0001) compared
with those who were homozygous for the A allele (Figure 5, D).

This SNP lies within the 5’ untranslated region of transcriptional
regulator MED31 and is an eQTL and sQTL for several genes in the
region, including MED31, across numerous tissues (GTEx,
Supplementary Table 6, available online). This SNP also lies within
a DNase I hypersensitivity site across tissues, including those of
embryonic skeletal muscle (Roadmap Epigenomics GEO:
GSM878618, GSM1059533); this site is a dense binding region for
more than 50 transcription factors, including POLR2A, a major sub-
unit of RNA polymerase II (ENCODE). Based on Oncogenomics DB
data, individuals with RMS who have high somatic expression of
MED31 have worse survival than those with low expression (P¼ .01).

Sensitivity analyses
We carried out a sensitivity analysis of the genome-wide statisti-
cally significant SNPs in cohorts of individuals with PAX3/7-
FOXO1 fusion-negative (n¼ 576) and fusion-positive (n¼ 115)
RMS. None of the SNPs were statistically significant in the sensi-
tivity analysis, although effect estimates were consistent
(Supplementary Table 2, available online).
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Figure 4. Association of common variants with overall survival (OS) among 268 individuals with alveolar rhabdomyosarcoma. Manhattan plot of a
genome-wide association study of OS displaying genome-wide statistically significant single nucleotide polymorphism associations on chromosomes
10 and 17.
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We also analyzed the effects of genome-wide statistically signifi-

cant SNPs in three major genetic ancestry groups. The effects of the

SNPs within each genetic ancestry group were similar in magnitude

and direction to the effects across the entire cohort (Table 3).

Though not statistically significant, we did observe that in the

African ancestry group, the rs17321084 risk allele was of lower fre-

quency and the effect estimate was twofold greater than the esti-

mate across the entire cohort and other ancestry groups (minor

allele frequency¼ 1.3%; HR¼ 4.32, 95% CI¼ 0.69 to 27.02, P¼ .12).

Discussion
In our GWAS of survival outcomes among individuals with RMS,

we identified genome-wide statistically significant associations

for EFS and OS. Supported by functional data, we also identified a

locus on chromosome 12 that suggests association with EFS. In

histology-specific analyses, we identified genome-wide statisti-

cally significant loci on chromosomes 10 and 17 that were associ-

ated with OS in individuals with ARMS.
The SNP rs17321084 lies in a binding region for transcription

factors GATA2 and GATA3. GWAS of acute lymphoblastic leuke-

mia have identified SNPs in GATA3 that are associated with poor

outcomes such as minimal residual disease and relapse (12,13).

Because GATA2 and GATA3 expression is associated with survival

for individuals with RMS [Oncogenomics DB (27)], future efforts

could explore the mechanism by which this germline SNP might

result in differential GATA2 or GATA3 expression or regulation.

We also found that the frequency of this variant was statistically

significantly higher in individuals with ARMS compared with

individuals with ERMS. To determine whether this observation is

C D

0.00

0.25

0.50

0.75

1.00

0 5 10
Survival time, y

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

rs74504320

PITPNM3

15

GG
AG
AA

No. at risk (no. of events)

P < .0001GG

AG

AA

KIAA0753

MED31

SLC13A5

Chromosome 17 (Mb)

CTNNA3

Chromosome 10 (Mb)

A

rs2135732

R
ec

om
bi

na
tio

n 
ra

te
 (c

M
/M

b)

++++ ++
+++ +++

++

+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++ ++++++ + ++++ + + + +

+

+

++ +++
+ + + ++ +

223 (0) 68 (93) 8 (97) 0 (97)
42 (0) 5 (29) 2 (29) 0 (29)
3 (0) 0 (3) 0 (3) 0 (3)

0.00

0.25

0.50

0.75

1.00

0 5 10
Survival time, y

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

15

GG
AG or AA

No. at risk (no. of events)

B
++

+

+

+

+

+++ ++ ++ + ++ +

++ ++
+++ ++

+

+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++ + ++++++ +++++++ ++ + + +

P = .0017

45 (0) 6 (28) 0 (28) 0 (28)
223 (0) 67 (97) 10 (101) 0 (101)

GG

AG or AA-lo
g 10

(p
)

-lo
g 10

(p
)

R
ec

om
bi

na
tio

n 
ra

te
 (c

M
/M

b)

C17orf100

TXNDC17

AC004706.3

Figure 5. Association of single nucleotide variants with overall survival (OS) of 268 individuals with alveolar rhabdomyosarcoma. Regional association
plot displaying linkage disequilibrium (LD) and recombination hotspots for the A) chr10q21.3 locus, which harbors rs2135732; and B) Kaplan-Meier
curve of OS by genotype (GG, AG, or AA) of rs2135732. Individuals with AG or AA genotype were grouped because there was only 1 individual with AA
genotype. Regional association plot for the C) chr17p13.1 locus, which harbors rs74504320, and D) Kaplan-Meier curve of OS by genotype (AA, AG, GG)
of rs74504320.

Table 3. Effect estimates of genome-wide statistically significant single nucleotide polymorphisms (SNPs) with event-free survival (EFS)
and overall survival (OS) by genetic ancestrya

Admixed American ancestry (N¼210) African ancestry (N¼96) European ancestry (N¼534)

Outcome/SNP MAF HR (95% CI) P MAF HR (95% CI) P MAF HR (95% CI) P

EFS: rs17321084 7.0% 1.56 (0.83 to 2.92) .16 1.3% 4.32 (0.69 to 27.02) .12 11.0% 1.98 (1.52 to 2.59) 5.80� 10�7

OS: rs10094840 13.8% 2.09 (1.38 to 3.16) 5.29� 10–4 14.7% 2.15 (0.91 to 5.07) .08 18.9% 1.81 (1.37 to 2.37) 2.25� 10�5

a CI ¼ confidence interval; HR ¼ hazard ratio; MAF ¼ sample minor allele frequency.
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driving the association with EFS, additional validation and analy-
sis in independent cohorts is needed.

We also identified a SNP (rs113830923) near SLCO1B1 that was
associated with worse EFS (P< 1� 10�6) among individuals with
RMS. SLCO1B1 encodes a hepatic transporter (OATP1B1) for a
wide range of compounds, including chemotherapeutics (28).
Pharmacogenetic GWAS of children with acute lymphoblastic
leukemia have identified SNPs in SLCO1B1 that are associated
with methotrexate-related toxicity (29-31). In the RMS literature,
Sakaguchi et al. (32) reported an individual with ARMS who har-
bored a haplotype containing two missense SNPs in SLCO1B1 in
addition to a SNP in UGT1A1. The authors hypothesized that
because OATP1B1 specifically transports SN-38, an active metab-
olite of irinotecan, these germline variants contributed to the
individual experiencing irinotecan-related severe neutropenia
while being treated on a COG protocol. Interestingly, Xenopus
models with the individual’s SLCO1B1 haplotype have displayed
reduced OATP1B1 activity and uptake of SN-38 compared with
wild-type models (33).

Because irinotecan is a standard component of chemotherapy
for intermediate-risk RMS (4), we evaluated the effect of
rs113830923 on EFS in the ARST0531 intermediate-risk cohort.
The magnitude and direction of the effect were consistent in the
subset of patients treated with irinotecan (Supplementary Table
7, available online). We did not have consistently collected data
on toxicities in the study cohort. Given our findings, future work
could assess whether this SNP association is driven by specific
treatment-related toxicities that are associated with outcome.
Further exploration could also determine how rs113830923 might
influence RMS SLCO1B1 expression.

We found that rs10094840 was associated with expression of
SPAG1 and RNF19A in certain tissues analyzed by GTEx. Some
sperm-associated antigen genes have been associated with poor
osteosarcoma survival (34), while the oncogenic properties of
both SPAG1 and RNF19A are emerging in other cancers (35,36).
Because rs10094840 lies within a DNase I hypersensitivity site in
embryonic skeletal muscle tissues and somatic expression of
these genes is associated with RMS survival [Oncogenomics DB
(27)], additional work could consider further characterizing the
mechanism underlying this germline association.

CTNNA3 rs2135732 was strongly associated with OS in individ-
uals with ARMS. CTNNA3, an a-catenin, is thought to act as a
tumor suppressor in carcinomas (37). Although CTNNA3 has not
been linked to RMS, mutations in CTNNB1 are frequent in ERMS
(38). Because a-catenin has the ability to bind b-catenin (encoded
by CTNNB1) to stabilize cell adhesion junctions (39), further work
could include characterizing the relationship between a- and b-
catenin in RMS development and outcomes.

We also found a strong association between rs74504320 and
OS in individuals with ARMS. This SNP lies within the 5’ untrans-
lated region of MED31, a subunit of the Mediator complex, which
regulates transcription by binding RNA polymerase II (40). Thus,
this SNP lies in a binding site for more than 50 transcription fac-
tors, including POLR2A, the largest subunit of RNA polymerase II.
MED31 overexpression is involved in osteosarcoma cell prolifera-
tion (41,42), and almost all Mediator subunits have been impli-
cated in cancer (43). Future work could evaluate the specific
effects of germline SNPs in MED31 on transcriptional regulation
in ARMS cell lines.

We carried out sensitivity analyses by fusion status and across
three major genetic ancestry groups. The effects were largely
consistent with our initial analyses in magnitude and direction.
We did note that for rs17321084, the effect was stronger in

individuals with African ancestry. Although our sample size was

small, this result suggests that rs17321084 may play a role in

RMS outcomes in this population. Future replication studies

could further explore this finding and consider evaluating the

effects of ancestry-specific variants on outcome.
This study is not without limitations. We were unable to con-

trol for the effects of treatment on survival outcomes because we

were unable to obtain these data for 80.3% of individuals in the

study. Systemic treatment across risk groups, however, relies on

a common chemotherapeutic background, which has largely

remained unchanged since the 1970s (4,44). Additionally, our

subanalyses may have been biased toward the null effect, espe-

cially for SNPs with moderate effect sizes, due to a lack of power.

Our study also lacked an independent cohort for validation of our

findings due to the rarity of the disease.
We demonstrated that common germline variants are associ-

ated with EFS and OS among individuals with RMS. This GWAS

provides evidence to support future investigation into the biologi-

cal mechanisms underlying these associations. With replication

of our findings and further understanding of the role of these

SNPs in RMS-specific contexts, common germline variants might

be of prognostic value for RMS diagnostic risk stratification.
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