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Biomarker-directed targeted therapy plus 
durvalumab in advanced non-small-cell lung 
cancer: a phase 2 umbrella trial

For patients with non-small-cell lung cancer (NSCLC) tumors without 
currently targetable molecular alterations, standard-of-care treatment 
is immunotherapy with anti-PD-(L)1 checkpoint inhibitors, alone or with 
platinum-doublet therapy. However, not all patients derive durable benefit 
and resistance to immune checkpoint blockade is common. Understanding 
mechanisms of resistance—which can include defects in DNA damage 
response and repair pathways, alterations or functional mutations in STK11/
LKB1, alterations in antigen-presentation pathways, and immunosuppressive 
cellular subsets within the tumor microenvironment—and developing 
effective therapies to overcome them, remains an unmet need. Here the phase 
2 umbrella HUDSON study evaluated rational combination regimens for 
advanced NSCLC following failure of anti-PD-(L)1-containing immunotherapy 
and platinum-doublet therapy. A total of 268 patients received durvalumab 
(anti-PD-L1 monoclonal antibody)–ceralasertib (ATR kinase inhibitor), 
durvalumab–olaparib (PARP inhibitor), durvalumab–danvatirsen (STAT3 
antisense oligonucleotide) or durvalumab–oleclumab (anti-CD73 monoclonal 
antibody). Greatest clinical benefit was observed with durvalumab–
ceralasertib; objective response rate (primary outcome) was 13.9% (11/79) 
versus 2.6% (5/189) with other regimens, pooled, median progression-free 
survival (secondary outcome) was 5.8 (80% confidence interval 4.6–7.4) 
versus 2.7 (1.8–2.8) months, and median overall survival (secondary outcome) 
was 17.4 (14.1–20.3) versus 9.4 (7.5–10.6) months. Benefit with durvalumab–
ceralasertib was consistent across known immunotherapy-refractory 
subgroups. In ATM-altered patients hypothesized to harbor vulnerability 
to ATR inhibition, objective response rate was 26.1% (6/23) and median 
progression-free survival/median overall survival were 8.4/22.8 months. 
Durvalumab–ceralasertib safety/tolerability profile was manageable. 
Biomarker analyses suggested that anti-PD-L1/ATR inhibition induced 
immune changes that reinvigorated antitumor immunity. Durvalumab–
ceralasertib is under further investigation in immunotherapy-refractory 
NSCLC. ClinicalTrials.gov identifier: NCT03334617
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ICB16. Understanding these resistance mechanisms, and developing 
effective therapies to overcome them, remains a critical unmet need 
as there are currently no immunotherapy-based regimens approved 
for patients with NSCLC who have progressed after initial ICB.

A major challenge in this setting is our poor understanding of the 
key immunotherapy-resistance mechanisms in primary and acquired 
resistance. While genotype/biomarker-directed targeted therapy is 
relatively well understood and can offer durable efficacy in NSCLC28–30, 
less is understood about biomarker subgroups in the immunotherapy 
setting16 that may be associated with reduced efficacy. The ongoing, 
open-label, multicenter, nonrandomized, modular, phase 2 umbrella 
HUDSON study (NCT03334617) was designed to build a comprehensive 
understanding of key features in patients and their tumors associated 
with disease progression and to differentiate tumor characteristics 
and treatment activity in primary and acquired resistance phenotypes. 
Rational combination therapies were selected for investigation in HUD-
SON based on targeting proposed mechanisms of immunosuppression 
with the aim of reinvigorating immune-mediated antitumor activity.

Mismatch repair deficiency is associated with greater benefit 
from immunotherapies31–34; HUDSON therefore evaluated inhibitors 
of DNA damage response (DDR) and repair pathways in combination 
with the anti-PD-L1 monoclonal antibody durvalumab. DDR pathway 
defects generate immunogenic neoantigens that are recognized and 
targeted by T cells32,35,36. Inhibition of poly-(ADP-ribose) polymerase 
(PARP)37–39 and ataxia telangiectasia and Rad3-related (ATR) protein 
kinase40,41 represent two key approaches for targeting DDR defects, 

Patients with advanced non-small-cell lung cancer (NSCLC) receive 
initial therapy based on molecular classification of their disease1. For 
NSCLC tumors without currently targetable molecular alterations2 
(>50% of adenocarcinomas3 and >95% of squamous cell carcinomas4), 
standard-of-care treatment is immunotherapy with anti-programmed 
death (ligand)-1 (PD-(L)1) checkpoint inhibitors, alone or with 
platinum-doublet therapy1, which offers long-term disease control 
and overall survival (OS) benefit for some patients5–12. Tumor-intrinsic 
factors and the tumor microenvironment (TME) influence response 
to immune checkpoint blockade (ICB)13–16, including genomic fea-
tures associated with differential response to ICB. Although high 
PD-L1 expression levels7,17 and tumor mutational burden (TMB)18 have 
emerged as important biomarkers, not all patients derive durable ben-
efit, and resistance to ICB is common. Clinical resistance to ICB is com-
plex and can present at various time points during treatment; primary 
resistance is defined as a best response of disease progression or stable 
disease lasting <6 months (24 weeks) and acquired resistance as pro-
gression following a response or stable disease lasting ≥6 months13,19–21. 
Biological mechanisms that render patients with NSCLC recalcitrant to 
ICB include alterations or functional mutations resulting in the inac-
tivation of the tumor suppressor gene STK11/LKB1 and a consequent 
reduction in tumor-infiltrating lymphocytes22–25, inactivating muta-
tions of KEAP1 (refs. 26,27), low expression of PD-L1, and alterations 
in antigen-presentation pathways. Furthermore, immunosuppressive 
cellular subsets within the TME such as myeloid-derived suppressor 
cells (MDSCs), T regulatory cells and others influence responses to 

324 screened for modules 1–3 and 5

941 patients enrolled to HUDSON

Cohort A.1.HRR, n = 21a

• Ongoing therapy, n = 1
• Ongoing study, o�
 therapy, n = 1
• O� study, n = 19

Group A: biomarker-matched cohorts, N = 106 screened
• Failed main screening, n = 18
• Received ≥1 dose, n = 88

Group B: biomarker-nonmatched cohorts, N = 218 screened

Cohort A.1.LKB, n = 21
• Ongoing study, o�
 therapy, n = 1
• O� study, n = 20

Cohort B.1.PRI, n = 22
• Ongoing study, o� therapy, n = 1
• O� study, n = 21

Cohort B.1.ACQ, n = 23
• Ongoing study, o� therapy, n = 2
• O� study, n = 21

Primary resistance cohorts, N = 96
• Failed main screening, n = 19
• Received ≥1 dose, n = 77

Acquired resistance cohorts, N = 122
• Failed main screening, n = 19
• Received ≥1 dose, n = 103

Cohort B.2.PRI, n = 23
• O� study, n = 23

Cohort B.2.ACQ, n = 22
• Ongoing study, o� therapy, n = 2
• O� study, n = 20

Cohort A.3.ATM, n = 23
• Ongoing therapy, n = 2
• Ongoing study, o� therapy, n = 8
• O� study, n = 13

Cohort B.3.PRI, n = 23
• Ongoing therapy, n = 3
• Ongoing study, o� therapy, n = 1
• O� study, n = 19

Cohort B.3.ACQ, n = 33a

• Ongoing therapy, n = 6
• Ongoing study, o� therapy, n = 5
• O� study, n = 22

Cohort A.5.73H, n = 23
• Ongoing therapy, n = 1
• Ongoing study, o� therapy, n = 4
• O� study, n = 18

Cohort B.5.PRI, n = 9
• Ongoing study, o� therapy, n = 2
• O� study, n = 7

Cohort B.5.ACQ, n = 25
• Ongoing study, o� therapy, n = 5
• O� study, n = 20

Module 1: durvalumab + olaparib
N = 106 screened
• Failed main screening, n = 19
• Received ≥1 dose of study
 treatment, n = 87

Module 2: durvalumab + danvatirsen, 
N = 50 screened
• Failed main screening, n = 5
• Received ≥1 dose of study
 treatment, n = 45 

Module 3: durvalumab + ceralasertib,
N = 102 screened
• Failed main screening, n = 23
• Received ≥1 dose of study 
 treatment, n = 79 

Module 5: durvalumab + oleclumab,
N = 66 screened
• Failed main screening, n = 9
• Received ≥1 dose of study 
 treatment, n = 57 

Immunotherapy resistance,
all treated patients, N = 268:

Primary resistance, n = 111
Acquired resistance, n = 157

• Died, n = 18
•  Other, n = 1 

• Died, n = 18
• Patient withdrew, n = 1
• Other, n = 1 

• Died, n = 18

• Died, n = 18
• Patient withdrew, n = 1

• Died, n = 6
• Patient withdrew, n = 1

• Completed study, n = 1
• Died, n = 20
• Patient withdrew, n = 1
• Other, n = 1

• Completed study, n = 1
• Died, n = 20

• Died, n = 20
• Lost to follow-up, n = 1

• Completed study, n = 2
• Died, n = 16
• Lost to follow-up, n = 1
• Patient withdrew, n = 1

• Died, n = 21
• Other, n = 1

• Died, n = 19
• Patient withdrew, n = 1

• Adverse event, n = 1
• Died, n = 11
• Patient withdrew, n = 1

Fig. 1 | CONSORT diagram of patient screening and disposition in HUDSON. 
Based on tumor molecular profiling, patients were assigned to either biomarker-
matched (Group A) or non-matched cohorts (Group B), which included patients 

with primary and acquired resistance determined by their initial response to 
prior immunotherapy-containing regimens. Patients were then treated with one 
of four durvalumab-based combination regimens (Modules 1–4).
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and HUDSON evaluated both PARP and ATR inhibitors in combination 
with durvalumab. Another approach may be to target immunosup-
pression in the TME and resistance lymph nodes. For example, signal 
transducer and activator of transcription 3 (STAT3) signaling results 
in production of tumor-promoting cytokines (by myeloid cells in the 
TME) and inhibition of antitumor cytokines, shifting the TME toward an 
immunosuppressive state42. Targeting STAT3 may help reverse immu-
nosuppression by myeloid cells and directly attack tumor cells (TCs)43. 
Similarly, targeting anti-5′-nucleotidase cluster of differentiation 73 
(CD73) may help reverse the immunosuppressive TME by increasing 
the activity of CD8-positive effector cells, activating macrophages and 
reducing both MDSCs and regulatory T lymphocytes44,45.

In this Article, we report the first clinical efficacy, safety, and transla-
tional data from four modules of HUDSON in patients who have received 
a platinum-doublet regimen and progressed on anti-PD-(L)1-based ther-
apy. Treatments received in these modules were durvalumab plus cer-
alasertib (ATR kinase inhibitor), olaparib (PARP inhibitor), danvatirsen 
(STAT3-targeting antisense oligonucleotide) or oleclumab (anti-CD73 
monoclonal antibody). Patients underwent tumor molecular profiling at 
screening and were assigned to either a biomarker-matched cohort (dur-
valumab–ceralasertib: ATM altered; durvalumab–olaparib: homologous 
recombination repair (HRR) altered, STK11/LKB1 altered; durvalumab–
oleclumab: high CD73 expression) or a biomarker-nonmatched 
group. Patients in the latter group were further stratified into pri-
mary or acquired resistance cohorts (see ‘Study design’ in Methods). 
Multi-omic longitudinal peripheral biomarker profiling was used for 
hypothesis-generating exploratory analyses of possible underlying 
mechanisms of action driving treatment outcomes.

Results
Patients
Between 26 January 2018 and 26 April 2022, 941 patients were screened 
for enrollment in HUDSON, including 324 for the four modules reported 
herein (Fig. 1); of these, 268 patients received treatment, 88 within 
biomarker-matched cohorts and 77 and 103 within primary and 
acquired resistance biomarker-nonmatched cohorts, respectively. 
Overall, 79 patients received durvalumab–ceralasertib and 189 received 
the other regimens, including 87, 45 and 57 who received durvalumab–
olaparib, durvalumab–danvatirsen and durvalumab–oleclumab, 
respectively. Patient demographics and disease characteristics were 
similar between treatment modules (Table 1).

Notable clinical efficacy with ceralasertib–durvalumab
Efficacy was evaluated with the four rational combinations to deter-
mine whether targeting specific pathways potentially associated with 
resistance could improve outcomes. Objective response rate (ORR), 
the primary endpoint, was 13.9% (n = 11/79) with durvalumab–cerala-
sertib, whereas the pooled ORR across the other treatment modules was 
2.6% (n = 5/189) (Extended Data Table 1). All objective responses were 
confirmed partial responses (see Supplementary Table 1 for details of 
prior treatment in responding patients). Disease control rates at 12 and 
24 weeks, respectively, were 50.6% and 35.4% with durvalumab–cerala-
sertib and 32.3% and 15.9% with the pooled other regimens (Extended 
Data Table 1).

Longer progression-free survival (PFS) and OS were seen with dur-
valumab–ceralasertib compared with the pooled other regimens, with  
a median PFS of 5.8 (80% confidence interval (CI) 4.6–7.4) and 2.7 (1.8–2.8) 
months, respectively, and a median OS of 17.4 (14.1–20.3) and 9.4 (7.5–10.6)  
months, respectively (Fig. 2a, b and Extended Data Table 1), after median 
follow-up times in censored patients of 8.3 and 28.2 months.

Durvalumab–ceralasertib in ATM biomarker-matched 
patients
In patients with genetic or immunosuppressive biomarkers of relevance, 
the mechanisms of action of the partner drugs were investigated to 

determine the efficacy and specific sensitivity of durvalumab-based com-
binations in these settings. Patient demographics and baseline disease 
characteristics in the biomarker-matched and biomarker-nonmatched 
groups are summarized in Supplementary Table 2. Responses and out-
comes by treatment module and in individual biomarker-matched and 
primary and acquired biomarker-nonmatched cohorts are summarized 
in Extended Data Table 2 for durvalumab–ceralasertib and in Supple-
mentary Tables 3–5 for durvalumab–olaparib, durvalumab–danvatirsen 
and durvalumab–oleclumab. Kaplan–Meier analyses of PFS and OS by 
cohort are shown in Extended Data Fig. 1.

ATM alterations confer ATR dependency in tumors. We observed 
an ORR of 26.1% (n = 6/23) with durvalumab–ceralasertib in the 
ATM-altered biomarker-matched cohort, higher than the ORRs of 13.0% 
(n = 3/23) and 6.1% (n = 2/33) in the primary and acquired resistance 
biomarker-nonmatched cohorts, respectively (Extended Data Table 
2), suggesting specific benefit of ATR inhibition in patients with ATM 
alterations. Additionally, PFS (median 8.4 versus 4.6 versus 4.6 months) 
and OS (median 22.8 versus 12.0 versus 19.1 months) appeared longer 
in the ATM-altered biomarker-matched cohort versus the primary and 
acquired resistance cohorts, respectively (Extended Data Fig. 1a,b). 
Notably, while OS appeared longer in the acquired versus primary 
resistance cohorts, PFS was similar.

In contrast, PARP inhibition has been successful in targeting tumors 
with DDR defects in other solid tumors, and preclinical data suggest that 
STK11/LKB1 alterations may be associated with enhanced PARP inhibi-
tor sensitivity25,46. However, ORR with durvalumab–olaparib was 4.6%, 
including 9.5% and 4.8% in the HRRm and STK11/LKB1 biomarker-matched 
cohorts, suggesting limited vulnerability from targeting these muta-
tions, and 0% and 4.3% in the primary and acquired resistance cohorts 
(Supplementary Table 3). Similarly, no objective responses were seen 
with durvalumab–danvatirsen (Supplementary Table 4), indicating 
that reprogramming macrophages with STAT3 inhibition using an anti-
sense oligonucleotide does not reverse myeloid-mediated resistance, 
even in the context of STK11 alterations, which have been associated 
with suppression of mononuclear and polymorphonuclear MDSCs22,26. 
One partial response (1.8%) was seen with durvalumab–oleclumab 
(Supplementary Table 5), suggesting that reducing adenosine levels 
through CD73 inhibition is insufficient to reverse CD73-dependent 
immunosuppression. PFS and OS with durvalumab–olaparib 
(Extended Data Fig. 1c,d) and durvalumab–oleclumab (Extended Data  
Fig. 1g,h) appeared similar or shorter in the biomarker-matched versus 
biomarker-nonmatched cohorts, with PFS and OS with each regimen 
also appearing shorter in the biomarker-nonmatched primary versus 
acquired resistance cohorts (Extended Data Fig. 1c–h).

Treatment exposure and safety
Mean durvalumab treatment duration was longer with durvalumab–
ceralasertib (8.7 months) than the other regimens (5.1 months), and 
this was reflected across cohorts (Extended Data Table 3). With dur-
valumab–ceralasertib and the other regimens, similar overall inci-
dences of treatment-emergent adverse events (TEAEs; 93.7% and 
89.9%), grade ≥3 TEAEs (44.3% and 51.3%), treatment-related TEAEs 
(TRAEs; 75.9% and 71.4%), grade ≥3 TRAEs (20.3% and 30.2%) and serious 
AEs (SAEs; 36.7% and 34.4%) were reported (Extended Data Table 4). 
Incidences of treatment-related SAEs (12.7% and 9.0%) and treatment 
discontinuation due to TRAEs (7.6% and 10.1%) were low and similar 
with durvalumab–ceralasertib and the other regimens, respectively. 
Two patients (2.5%) receiving durvalumab–ceralasertib (pneumonia 
and myocardial infarction, each n = 1) and five patients (2.6%) receiv-
ing the other regimens (cor pulmonale, dyspnea, sepsis, pneumonia 
aspiration and renal artery thrombosis, each n = 1), died due to a TEAE; 
none was considered related to treatment. Safety profiles by regimen, 
overall and by cohort, are summarized in Supplementary Tables 6–9.

Among Medical Dictionary for Regulatory Activities (MedDRA) 
System Organ Class (SOC) categories, the incidences of gastrointestinal 

http://www.nature.com/naturemedicine


Nature Medicine | Volume 30 | March 2024 | 716–729 719

Article https://doi.org/10.1038/s41591-024-02808-y

Table 1 | Patient baseline characteristics according to combination regimen received

Characteristic Durvalumab–ceralasertib, n = 79

Durvalumab plus other agents

All, pooled, n = 189 Olaparib, n = 87 Danvatirsen, n = 45 Oleclumab, n = 57

Age, median (range), years 63.0 (42–80) 64.0 (35–85) 63.0 (35–85) 65.0 (39–80) 64.0 (37–79)

 Age <65 years, n (%) 45 (57.0) 102 (54.0) 49 (56.3) 21 (46.7) 32 (56.1)

 Age ≥65 years, n (%) 34 (43.0) 87 (46.0) 38 (43.7) 24 (53.3) 25 (43.9)

Male sex, n (%)a 52 (65.8) 103 (54.5) 50 (57.5) 23 (51.1) 30 (52.6)

Race, n (%)b n = 77 n = 187 n = 86 n = 44 n = 57

 White 47 (61.0) 124 (66.3) 58 (67.4) 29 (65.9) 37 (64.9)

 Asian 9 (11.7) 38 (20.3) 23 (26.7) 7 (15.9) 8 (14.0)

 Black or African American 3 (3.9) 4 (2.1) 0 4 (9.1) 0

 Native Hawaiian or Other Pacific Islander 0 1 (0.5) 0 0 1 (1.8)

 Otherc 18 (23.4) 20 (10.7) 5 (5.8) 4 (9.1) 11 (19.3)

ECOG PS, n (%)b n = 79 n = 188 n = 87 n = 44 n = 57

 0 28 (35.4) 64 (34.0) 20 (23.0) 21 (47.7) 23 (40.4)

 1 51 (64.6) 123 (65.4) 66 (75.9) 23 (52.3) 34 (59.6)

 2d 0 1 (0.5) 1 (1.1) 0 0

Histology, n (%)

 Adenocarcinoma 55 (69.6) 131 (69.3) 62 (71.3) 31 (68.9) 38 (66.7)

 Squamous cell carcinoma 19 (24.1) 43 (22.8) 18 (20.7) 12 (26.7) 13 (22.8)

 Large-cell carcinoma (NOS) 2 (2.5) 6 (3.2) 4 (4.6) 1 (2.2) 1 (1.8)

 Other 3 (3.8) 9 (4.8) 3 (3.4) 1 (2.2) 5 (8.8)

Time from diagnosis, n (%)b n = 79 n = 184 n = 85 n = 43 n = 56

 ≤12 months 13 (16.6) 44 (23.9) 19 (22.4) 14 (32.6) 11 (19.6)

 >12 months 66 (83.5) 140 (76.1) 66 (77.6) 29 (67.4) 45 (80.4)

Group and cohort, n (%)b

 Group A, biomarker matched 23 (29.1) 65 (34.4) 42 (48.3) 0 23 (40.4)

 Group B, biomarker nonmatched 56 (70.9) 124 (65.6) 45 (51.7) 45 (100) 34 (59.6)

 Primary resistance cohort 23 (29.1) 54 (28.6) 22 (25.3) 23 (51.1) 9 (15.8)

 Acquired resistance cohort 33 (41.8) 70 (37.0) 23 (26.4) 22 (48.9) 25 (43.9)

Resistance classification (pooled groups 
A and B)

 Primary resistance 30 (38.0) 81 (42.9) 39 (44.8) 23 (51.1) 19 (33.3)

 Acquired resistance 49 (62.0) 108 (57.1) 48 (55.2) 22 (48.9) 38 (66.7)

Disease classification, n (%)b n = 79 n = 188 n = 87 n = 44 n = 57

 Metastatic 77 (97.5) 184 (97.9) 87 (100) 43 (97.7) 54 (94.7)

 Locally advanced 2 (2.5) 4 (2.1) 0 1 (2.3) 3 (5.3)

Metastatic sites, n (%)

 ≤2 31 (39.2) 112 (59.3) 40 (46.0) 39 (86.7) 33 (57.9)

 ≥3 48 (60.8) 77 (40.7) 47 (54.0) 6 (13.3) 24 (42.1)

Metastatic site location, n (%)

 Bone and locomotor 25 (31.6) 57 (30.1) 31 (35.6) 7 (15.6) 19 (33.3)

 Adrenal gland 15 (19.0) 37 (19.6) 19 (21.8) 8 (17.8) 10 (17.5)

 Brain/CNS and/or other CNS 12 (15.2) 37 (19.6) 21 (24.1) 6 (13.3) 10 (17.5)

 Liver and/or hepatic (including gall 
bladder)

14 (17.7) 36 (19.0) 15 (17.2) 4 (8.9) 17 (29.8)

PD-L1 status, locally assessed, n (%)

 Positive (TC ≥1%) 42 (53.2) 85 (45.0) 27 (31.0) 24 (53.3) 34 (59.6)

  1–49% 25 (31.6) 46 (24.3) 14 (16.1) 14 (31.1) 18 (31.6)

  ≥50% 17 (21.5) 39 (20.6) 13 (14.9) 10 (22.2) 16 (28.1)

 Negative (TC <1%) 21 (26.6) 30 (15.9) 16 (18.4) 6 (13.3) 8 (14.0)
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Characteristic Durvalumab–ceralasertib, n = 79

Durvalumab plus other agents

All, pooled, n = 189 Olaparib, n = 87 Danvatirsen, n = 45 Oleclumab, n = 57

 Unknown 16 (20.3) 73 (38.6) 43 (49.4) 15 (33.3) 15 (26.3)

 Missing 0 1 (0.5) 1 (1.1) 0 0

Prior regimens, n (%)

 1 15 (19.0) 22 (11.6) 12 (13.8) 3 (6.7) 7 (12.3)

 2 27 (34.2) 85 (45.0) 39 (44.8) 22 (48.9) 24 (42.1)

 3 22 (27.8) 47 (24.9) 20 (23.0) 13 (28.9) 13 (22.8)

 ≥4 15 (19.0) 35 (18.5) 16 (18.4) 7 (15.6) 12 (21.1)

Prior immunotherapies, n (%)

 1 77 (97.5) 188 (99.5) 87 (100) 44 (97.8) 57 (100)

 2 2 (2.5) 1 (0.5) 0 1 (2.2) 0

Prior anti-PD-(L)1 immunotherapy, n (%)

 Nivolumab 36 (45.6) 93 (49.2) 51 (58.6) 19 (42.2) 23 (40.4)

 Pembrolizumab 33 (41.8) 52 (27.5) 20 (23.0) 15 (33.3) 17 (29.8)

 Atezolizumab 7 (8.9) 26 (13.8) 9 (10.3) 8 (17.8) 9 (15.8)

 Durvalumab 1 (1.3) 17 (9.0) 6 (6.9) 4 (8.9) 7 (12.3)

 Cemiplimab 0 1 (0.5) 0 0 1 (1.8)

Prior anti-CTLA4 immunotherapy, n (%)

 Tremelimumab 1 (1.3) 5 (2.6) 3 (3.4) 1 (2.2) 1 (1.8)

 Ipilimumab 0 2 (1.1) 2 (2.3) 0 0

Best response on prior immunotherapy, 
n (%)

 Complete response 0 2 (1.1) 0 1 (2.2) 1 (1.8)

 Partial response 17 (21.5) 54 (28.6) 25 (28.7) 12 (26.7) 17 (29.8)

 Stable disease 40 (50.6) 64 (33.9) 29 (33.3) 8 (17.8) 27 (47.4)

  Stable disease, biomarker-matched 
patients

11 (13.9) 27 (14.3) 15 (17.2) 0 12 (21.1)

  Stable disease, 
biomarker-nonmatched patients

29 (36.7) 37 (19.6) 14 (16.1) 8 (17.8) 15 (26.3)

 Progressive disease 16 (20.3) 57 (30.2) 24 (27.6) 22 (48.9) 11 (19.3)

 Nonevaluable 3 (3.8) 10 (5.3) 7 (8.0) 2 (4.4) 1 (1.8)

 Not applicable 1 (1.3) 1 (0.5) 1 (1.1) 0 0

Time from prior immunotherapy n = 77 n = 188 n = 86 n = 45 n = 57

 Median, months (range) 3.9 (0.7–31.4) 3.2 (0.7–50.1) 2.5 (0.7–50.1) 3.7 (0.8–30.3) 3.7 (0.8–24.7)

Prior immunotherapy and resistance 
classification

 Primary resistance, n (%) 29 (36.7) 80 (42.3) 38 (43.7) 23 (51.1) 19 (33.3)

  Prior monotherapy 22 (27.8) 63 (33.3) 31 (35.6) 21 (46.7) 11 (19.3)

  Prior combination 5 (6.3) 16 (8.5) 7 (8.0) 2 (4.4) 7 (12.3)

  Both monotherapy and combination 2 (2.5) 1 (0.5) 0 0 1 (1.8)

 Acquired resistance, n (%) 48 (60.8) 108 (57.1) 48 (55.2) 22 (48.9) 38 (66.7)

  Prior monotherapy 36 (45.6) 85 (45.0) 36 (41.4) 18 (40.0) 31 (54.4)

  Prior combination 7 (8.9) 18 (9.5) 10 (11.5) 4 (8.9) 4 (7.0)

  Both monotherapy and combination 5 (6.3) 5 (2.6) 2 (2.3) 0 3 (5.3)

 Not available, n (%) 2 (2.5) 1 (0.5) 1 (1.1) 0 0

Prior platinum-based therapies, n (%)

 1 62 (78.5) 154 (81.5) 70 (80.5) 39 (86.7) 45 (78.9)

 2 15 (19.0) 28 (14.8) 14 (16.1) 4 (8.9) 10 (17.5)

 ≥3 2 (2.5) 7 (3.7) 3 (3.4) 2 (4.4) 2 (3.5)

Table 1 (continued) | Patient baseline characteristics according to combination regimen received
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disorders (58.2% and 34.9%), metabolism and nutrition disorders 
(25.3% and 10.1%) and nervous system disorders (19.0% and 4.8%) 
showed >10 percentage point differences between durvalumab–cer-
alasertib and the other regimens, pooled; of the individual TRAEs 
occurring in ≥10% of patients treated with durvalumab–ceralasertib 
or other regimens, nausea (50.6% and 22.2%), vomiting (27.8% and 
11.1%) and decreased appetite (21.5% and 7.4%) were the only TRAEs 
for which there was a >10 percentage point difference between groups 
(Extended Data Table 4). Incidences of TRAEs by MedDRA SOC and of 
individual TRAEs, and common grade ≥3 TRAEs by individual regimen, 
are summarized in Extended Data Tables 5 and 6, respectively. With 

durvalumab–ceralasertib, the only grade ≥3 TRAE with an incidence 
of ≥5% was thrombocytopenia (5.1%), while with durvalumab–olapa-
rib anemia was reported in 13.8% of patients, and with durvalumab–
danvatirsen increased alanine aminotransferase was reported in 
11.1% and thrombocytopenia in 8.9% of patients (Extended Data  
Table 6).

Distinct features delineate patients with ICB-recalcitrant 
NSCLC
In an exploratory post-hoc analysis to examine clinical and molecular 
biomarker characteristics associated with recalcitrance to ICB, we 

Characteristic Durvalumab–ceralasertib, n = 79

Durvalumab plus other agents

All, pooled, n = 189 Olaparib, n = 87 Danvatirsen, n = 45 Oleclumab, n = 57

Smoking status, n (%)

 Never 9 (11.4) 28 (14.8) 18 (20.7) 5 (11.1) 5 (8.8)

 Current 18 (22.8) 23 (12.2) 6 (6.9) 6 (13.3) 11 (19.3)

 Former 52 (65.8) 138 (73.0) 63 (72.4) 34 (75.6) 41 (71.9)
aSex as recorded by investigator in the case report form. bFor parameters for which data are missing, the numbers of patients with data are indicated for each regimen and are used as the 
denominators for calculating percentages. cRecorded as ‘Other’ in the case report form. dPatient did not meet the eligibility criterion for ECOG PS of 0–1. CNS, central nervous system; ECOG 
PS, Eastern Cooperative Oncology Group performance status; NOS, not otherwise specified.
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Fig. 2 | PFS and OS with durvalumab–ceralasertib and with durvalumab plus olaparib, danvatirsen or oleclumab in HUDSON. a,b, Kaplan–Meier analysis of PFS 
(a) and OS (b) among all patients who received durvalumab–ceralasertib or who received durvalumab plus olaparib, danvatirsen or oleclumab on HUDSON.

Table 1 (continued) | Patient baseline characteristics according to combination regimen received
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measured TME inflammation status using a validated 18-gene tumor 
inflammation signature (TIS)47,48 in subgroups with known association 
with poor immunotherapy response among patients with evaluable pre-
screening tumor biopsy suitable for bulk-RNA sequencing who received 
durvalumab plus olaparib, danvatirsen or oleclumab (Supplementary 
Table 10). This composite signature, which reflects the state, function 
and phenotype of the TME and is a widely used predictive biomarker for 
benefit with ICB therapy47,49,50, was used to characterize TME immune 
and inflammation status in patient subgroups in which clinical data for 
durvalumab–ceralasertib and durvalumab plus olaparib, danvatirsen 
or oleclumab were evaluated.

TIS scores (with pooled OS data among all patients who received 
durvalumab plus olaparib, danvatirsen or oleclumab, for context) 
are shown in Fig. 3. OS was numerically longer and TIS score higher 
among patients with acquired versus primary resistance, with multi-
ple markers of inflammation including lymphocyte-activation gene 3 
(LAG3), T cell immunoreceptor with immunoglobulin and immuno-
receptor tyrosine-based inhibitory motif (ITIM) domains (TIGIT) and 
nonclassical human leukocyte antigen (HLA) molecule HLA-E more 
highly expressed in those with acquired resistance to prior immu-
notherapy (Fig. 3a and Extended Data Fig. 2a). Analysis according 
to PD-(L)1 TC expression status (<1%, negative, versus ≥1%, positive) 

showed similar outcomes in both groups and a similar TIS score (Fig. 3b) 
but with elevated expression of some inflammation markers in some 
PD-(L)1-positive tumors (Extended Data Fig. 2b). OS appeared longer 
and TIS score was higher (P = 0.0517) in patients with adenocarcinoma 
versus squamous cell histology, with most markers of inflammation 
more highly expressed in adenocarcinomas (Fig. 3c). Similarly, the 
presence of bone and/or liver metastases was associated with shorter 
OS; however, there was no difference in TIS score between those with 
or without metastases, albeit sites of biopsy differed and may have 
impacted the findings (Fig. 3d). Outcomes and TIS score were broadly 
similar in subgroups with high or low TMB, and altered or wild-type 
STK11 (Fig. 3e,f). Heat maps showing expression of the 18 genes in the 
TIS in the above subgroups are shown in Extended Data Fig. 2.

Durvalumab–ceralasertib broadly active in patient subgroups
Given the encouraging observations with durvalumab–ceralasertib 
versus other regimens, we evaluated outcomes in subgroups defined 
by molecular and tumor-related features to determine whether 
specific factors were associated with benefit from, or resistance 
to, durvalumab–ceralasertib. Demographics and baseline disease 
characteristics in patients treated with durvalumab–ceralasertib 
or the other regimens by primary or acquired resistance and by 
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Fig. 3 | OS and gene expression profiling in subgroups known to be associated 
with poor immunotherapy response among patients who received 
durvalumab plus olaparib, danvatirsen or oleclumab. a–f, Kaplan–Meier 
distributions of OS (left) and TIS ssGSEA enrichment score (ES) distributions 
(violin plots, right) comparing patients with primary or acquired resistance 
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histology are summarized in Supplementary Tables 11 and 12, respec-
tively. In patients with primary resistance, median PFS (6.0 versus 
1.8 months) and OS (12.6 versus 6.3 months) were longer with dur-
valumab–ceralasertib compared with the other regimens (Fig. 4 and 
Extended Data Fig. 3a), with nonoverlapping 80% CIs, with similar 
findings in patients with acquired resistance (median PFS 5.8 versus 
2.8 months; median OS 19.1 versus 12.6 months) (Fig. 4 and Extended 
Data Fig. 3b). PFS and OS were also consistently longer in patients 
with PD-L1-negative (median PFS 7.5 versus 2.1 months; median OS 
20.3 versus 10.7 months) or PD-L1-positive (median PFS 4.6 versus 
3.0 months; median OS 14.2 versus 9.7 months) tumors (Fig. 4 and 
Extended Data Fig. 3c,d), and in patients with squamous (median 
PFS 4.8 versus 2.6 months; median OS 15.9 versus 6.0 months) or 
nonsquamous (median PFS 6.0 versus 2.7 months; median OS 18.8 
versus 10.8 months) histology (Fig. 4 and Extended Data Fig. 3e,f). 
Similar findings were seen across all recalcitrant subgroups (Fig. 4), 
including those with liver or bone metastases, low TMB, and variant 
STK11 (Extended Data Fig. 3g) and KRAS.

Kaplan–Meier analysis of PFS and OS with durvalumab–cerala-
sertib in subgroups defined by the presence or absence of the adverse 
prognostic factors described above (Extended Data Fig. 4) indicated 
that outcomes were similar in patients with primary or acquired resist-
ance, PD-L1-negative or PD-L1-positive tumors, squamous or nonsqua-
mous tumor histology, high or low TMB, and STK11 or KRAS mutant or 
wild-type tumors. Presence of liver or bone metastases was associated 
with somewhat shorter PFS and OS, but benefit compared with the 
other durvalumab-based regimens was nevertheless evident in this set-
ting (Fig. 4). Overall, these findings indicate that tumors with features 
commonly associated with immunotherapy resistance are nevertheless 
sensitive to durvalumab–ceralasertib.

We also explored differential gene alterations between patients 
with a PFS of ≥6 or <6 months on durvalumab–ceralasertib in the 
biomarker-matched (ATM altered) and biomarker-nonmatched (ATM 
wild-type) cohorts (Supplementary Fig. 1). A difference in alteration 
frequency was observed for CDKN2A alterations, which were more com-
mon in patients with PFS <6 months (n = 4/10, 40.0%) than in patients 
with PFS ≥6 months (n = 0/11) in the biomarker-matched cohort. The 
small sample sizes in these analyses limit interpretation of the findings.

Ceralasertib immunomodulation enhances durvalumab 
effects
Pretreatment and on-treatment blood biomarkers were evaluated 
in exploratory hypothesis-generating analyses using multi-omic 
approaches to assess potential underlying mechanisms of action with 
durvalumab–ceralasertib treatment (Fig. 5). Longitudinal matched 
blood samples were collected at baseline, after 7 days of ceralasertib ther-
apy and after durvalumab treatment (Fig. 5a) to evaluate gene expression 
and T cell receptor (TCR) profile dynamics in 48 and 62 patients, respec-
tively (patient demographics and disease characteristics in Supplemen-
tary Table 13). Gene expression analysis revealed dynamic, reversible 
changes following 7 days of ceralasertib and before the first dose of dur-
valumab. In addition, changes in innate and adaptive immunity-relevant 
signatures51,52 were seen, including decreases in monocyte lineage and 
CD8 T-cell-associated and dysfunctional/exhausted T-cell-associated 
signatures, and increases in the hallmark tumor necrosis factor 
(TNF)-α-associated, interferon-γ response-associated and interferon-α 
response-associated signatures (Fig. 5b–g).

Longitudinal TCR sequencing demonstrated cyclical changes 
including, most notably, a reduction in clonality after 7 days of cer-
alasertib (P < 0.0001), with a return to baseline after durvalumab 
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treatment (Fig. 5h,i). An increase in peripheral TCR clonality was 
observed in most patients (n = 48/58) after the addition of durvalumab 
(Fig. 5h,j); similar changes in T cell clonality were not observed in 
samples from patients receiving durvalumab–olaparib (Fig. 5k,l) or 
durvalumab–danvatirsen (Fig. 5m,n). An increase in peripheral T cell 
clonality in patients receiving durvalumab–ceralasertib was followed 
by an increase in expanded clones (P < 0.0001) (Fig. 5o) and newly 
detected expanded T cell clones (P < 0.0001) (Fig. 5p) after the addi-
tion of durvalumab. The net result of changes in the circulating T cell 
repertoire after ceralasertib followed by durvalumab treatment was 
an overall increase in clonality in most patients, but without a sig-
nificant difference in the composition of the most abundant T cell 
clones, as measured by the Morisita index (Fig. 5q). Overall, in periph-
eral blood, signatures indicating decreases in exhausted T cells and, 

conversely, increased interferon pathway activation were observed 
in the on-ceralasertib treatment period. Furthermore, we observed 
enhanced expansion and maintenance of abundant T cell clones 
indicative of antitumor response. These results suggest a comple-
mentary mechanism of action whereby ceralasertib induces systemic 
immunomodulation that may be indicative of an enhanced antitumor 
immune response in combination with durvalumab (Fig. 5r).

Discussion
Critical challenges in the treatment of advanced NSCLC include iden-
tifying resistance mechanisms and finding new treatment options for 
use following failure of all standard-of-care therapies. For patients 
without targetable molecular alterations, this comprises treatment 
with platinum-doublet therapy and immunotherapy with an anti-PD-1/
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Fig. 5 | Ceralasertib induces systemic immunomodulation that enhances 
the immune-mediated effects of durvalumab in patients with NSCLC with 
progression on prior anti-PD-(L)1 treatment. a, Schema depicting treatment 
schedule for modules 1 (durvalumab–olaparib), 2 (durvalumab–danvatirsen) 
and 3 (durvalumab–ceralasertib), showing durvalumab administration (blue 
arrows), combination agent dosing (continuous colored bars), and pretreatment/
on-treatment blood sample collection time points (stars). BID, twice daily.  
b–g, Effects of ceralasertib and durvalumab treatment on longitudinal 
blood-derived transcriptomes are depicted in the box plots showing 
differentially expressed monocyte-associated signatures (b), CD8 
T-cell-associated signatures (c), dysfunctional/exhausted CD8 T-cell-associated 
signatures (d), TNF-α-associated signatures (e), interferon-γ-associated 
signatures (f) and interferon-α-associated signatures (g). P values are for 
comparisons with respective cycle 0, day (D) 1 time points. P values for visit 
dates represent linear mixed model effects, illustrating changes in on-treatment 
samples. h–q, Effects of ceralasertib, olaparib and danvatirsen with durvalumab 
on longitudinal blood-derived T cell repertoire: box plots showing productive 
Simpson T cell clonality with durvalumab–ceralasertib (h); waterfall plots 

showing changes in clonality on treatment by patient with durvalumab–
ceralasertib on cycle 0, day 1 versus cycle 1, day 1 (i) and cycle 1, day 1 versus cycle 
1, day 22 (j); box plots showing distributions of T cell clonality with durvalumab–
olaparib (k), and waterfall plots showing changes in clonality on treatment by 
patient with durvalumab–olaparib on cycle 1, day 1 versus cycle 1, day 15 (l); box 
plots showing distributions of T cell clonality with durvalumab–danvatirsen 
(m), and waterfall plots showing changes in clonality on treatment per patient 
with durvalumab–danvatirsen on cycle 1, day 1 versus cycle 1, day 15 (n); box 
plots of expanded T cell clones (o), newly detected expanded T cell clones (p) 
and Morisita index for durvalumab plus olaparib, danvatirsen or ceralasertib at 
indicated visit dates (q). P values for visit dates represent two-sided Wilcoxon 
paired signed-rank tests between time points or two-sided Wilcoxon signed-rank 
tests between study modules, with correction for multiplicity of testing 
(Benjamini–Hochberg procedure), illustrating changes in on-treatment samples. 
r, Proposed immunomodulatory mechanism of action effects of ceralasertib with 
durvalumab in the periphery and tumor. For all box plots (b–h, k, m and o–q), 
box centerlines show medians, box limits show upper and lower quartiles, and 
whiskers show range.
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PD-L1 checkpoint inhibitor. Currently, there are few options offering 
clinical benefit for patients following failure of standard-of-care thera-
pies31; therefore, one of the key aims of the HUDSON study is to identify 
regimens that can overcome inherent immune resistance in this set-
ting. With its innovative, modular study design incorporating patient 
cohorts with specific biomarkers as well as biomarker-nonmatched 
cohorts with primary or acquired resistance, coupled with comprehen-
sive characterization of key gene alterations via biological analysis of 
tumor material, HUDSON has enabled evaluation of multiple rational 
combinations and investigation of specific biomarkers associated 
with resistance.

Tumor-intrinsic factors and inflammation influence responses to 
ICB13–16. Higher TIS score is associated with anti-PD-(L)1 treatment bene-
fit49 in the context of more substantial TME inflammation. We observed 
numerically higher TIS scores in subgroups with acquired resistance 
and adenocarcinoma histology compared with more ‘immune-cold’ 
subgroups with primary resistance and squamous cell histology. We 
found no differences in TIS score according to TMB or STK11 status; 
this contrasts with published findings49,53 and may be associated with 
differences in biology between the post-ICB samples in HUDSON and 
ICB-naive samples in prior publications. Of note, liver and bone metas-
tases are generally associated with immune-cold features; however, 
the biopsies we analyzed were not limited to these metastatic sites, 
which may explain the lack of association with inflammation in this 
subgroup of patients.

This first report from HUDSON demonstrates a notable effi-
cacy signal with durvalumab–ceralasertib, with substantially higher 
response and disease control rates and substantially longer PFS and OS 
than with the other regimens, pooled. Furthermore, the median PFS 
and OS with durvalumab–ceralasertib of 5.8 and 17.4 months, respec-
tively, are notable in the context of reports from prospective clinical 
trials in previously treated NSCLC of docetaxel as second- or third-line 
therapy following platinum-based chemotherapy and immunotherapy 
(median PFS and OS of 4.0 and 10.5 months in the CONTACT-01 study54; 
median OS of 8.3 months with docetaxel or pemetrexed (81%/19%) in 
the ATALANTE-1 study55; median PFS and OS of 4.5 and 11.3 months in 
primarily nonsquamous NSCLC in the CodeBreaK 200 study56) or fol-
lowing platinum-based chemotherapy (median PFS and OS ranges of 
2.8–4.2 and 8.1–9.9 months, respectively57–61), in which findings were 
better than or similar to the data for the other HUDSON regimens, 
pooled. These outcomes indicate that durvalumab–ceralasertib war-
rants further investigation in this NSCLC patient population with a high 
unmet need for new treatment options62.

Durvalumab–ceralasertib had greater activity in the ATM-altered 
biomarker-matched cohort, with higher response rates and longer 
outcomes compared with biomarker-nonmatched cohorts. This 
observation is consistent with the study’s predefined hypothesis that 
ATM-altered patients would derive greater benefit from ATR inhibi-
tion with ceralasertib, associated with the known dependence of 
ATM-altered tumors on ATR signaling63. It should be noted that, while 
data were mature for the majority of patients of the reported modules, 
follow-up was limited for a small number of more recently enrolled 
patients receiving durvalumab–ceralasertib, some of whom were not 
evaluable for response and/or had not reached the 12-week time point 
at data cutoff. Nevertheless, findings from the ATM biomarker-matched 
cohort reflect the promising antitumor activity, notably in patients 
with alterations in the DDR pathway, seen in a study of durvalumab–
ceralasertib in patients with advanced/metastatic melanoma following 
anti-PD-1 failure64. By contrast, the hypothesis of greater benefit with 
durvalumab plus the PARP inhibitor olaparib in patients with HRR muta-
tions or STK11 alterations did not appear to be borne out by our find-
ings. Similarly, we did not see the hypothesized activity of durvalumab 
in combination with the STAT3 antisense oligonucleotide danvatirsen 
targeting the immunosuppressive TME or with the anti-CD73 monoclo-
nal antibody oleclumab in patients with high CD73 expression.

Our subgroup analyses demonstrated broad activity with dur-
valumab–ceralasertib compared with the other regimens, including 
in patients with primary resistance, PD-L1-negative tumors, squamous 
histology, liver/bone metastases, low TMB, and STK11 or KRAS vari-
ants; these exploratory analyses suggest that other subgroups such as 
patients with RBM10 variants merit further investigation. These results 
suggest a potential sensitizing effect from the addition of ceralasertib 
to durvalumab in post-ICB NSCLC, and our data provide insights into 
the potential underlying mechanisms of action. Durvalumab–cerala-
sertib treatment induces systemic effects that associate with immune 
and inflammatory activities; thus, we hypothesize that these dynamic 
biomarkers could impact TME immunomodulation and thereby prime 
enhanced immune-mediated killing of TCs. Ongoing studies are cur-
rently investigating baseline and on-treatment tumor biopsies to fur-
ther elucidate our mechanistic understanding of ceralasertib-mediated 
immune changes.

Durvalumab–ceralasertib demonstrated a generally acceptable 
safety profile and was broadly tolerable, with a low rate of treatment 
discontinuation due to TRAEs. Common TRAEs reflected those seen in 
previous studies64,65, with no new safety signals. Overall rates of TRAEs, 
grade ≥3 TRAEs and serious TRAEs were similar or numerically lower 
with durvalumab–ceralasertib compared with the other regimens, 
despite a >3-month longer mean duration of treatment. However, 
as with the efficacy data, these findings should be interpreted in the 
context of the limited follow-up in a number of patients receiving 
durvalumab–ceralasertib at data cutoff.

The heterogeneous nature of the NSCLC patient population in this 
setting highlights one of the benefits of platform or umbrella study 
designs such as in HUDSON, COAST45, NeoCOAST66 and Lung-MAP67. 
Modular designs provide the ability to evaluate multiple combina-
tions within a specific treatment setting simultaneously. Addition-
ally, in the context of investigating molecularly targeted treatment, 
such study designs can encompass patients with a range of different 
targetable aberrations, potentially resulting in an increased propor-
tion of screened patients meeting specific cohort eligibility require-
ments, in contrast to single-arm phase 2 studies with a single set of 
eligibility criteria. Furthermore, central molecular screening of fresh 
biopsy samples, with molecular characterization of tumors, increased 
the chances of obtaining hypothesis-generating findings for both 
the biomarker-matched and biomarker-nonmatched primary and 
acquired resistance populations. However, the use of different NGS 
and immunohistochemistry assays for allocation of patients to the 
biomarker-matched or biomarker-nonmatched cohorts, and of archival 
or fresh biopsies, in HUDSON highlights the need for robust assessment 
using standardized biomarker testing with a short turnaround time.

HUDSON and platform studies in general also have limitations 
associated with their design. HUDSON was designed to allow the 
addition of new modules to adapt to developing understanding of 
anti-PD-(L)1 resistance mechanisms. Therefore, it is an open-label, 
nonrandomized study, and so it is not feasible to conduct formal con-
trolled comparisons between treatment regimens, particularly with the 
limited cohort sizes. Additionally, because treating patients who had 
progressed on prior ICB with ICB alone was deemed to not be medically 
appropriate, it was not feasible to directly compare these combination 
regimens against durvalumab monotherapy, and so the specific ben-
efit of adding each combination partner to durvalumab could not be 
determined. Comparison of outcomes between cohorts and regimens 
is further confounded by differences in patient demographics and 
baseline disease characteristics associated with the different subsets 
of patients treated within each cohort.

In conclusion, these findings have demonstrated an efficacy sig-
nal of interest with durvalumab–ceralasertib in advanced/metastatic 
NSCLC following prior failure of anti-PD-1/PD-L1 immunotherapy and 
platinum-doublet therapy. The regimen showed particular efficacy in 
patients with ATM alterations and in biomarker-nonmatched primary 
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and acquired resistance cohorts across various subgroups recalcitrant 
to ICB. Our findings have thus resulted in initiation of the phase 3 LAT-
IFY study (NCT05450692), which compares durvalumab–ceralasertib 
versus docetaxel for the treatment of patients with NSCLC whose dis-
ease progressed during or following prior anti-PD-1/PD-L1 therapy and 
platinum-based chemotherapy. Additionally, HUDSON is ongoing, with 
continued accrual to biomarker-matched and biomarker-nonmatched 
cohorts receiving durvalumab–ceralasertib or ceralasertib monother-
apy and to cohorts investigating additional treatment combinations of 
durvalumab plus trastuzumab deruxtecan or cediranib.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Study design
HUDSON (NCT03334617) is an ongoing open-label, multicenter, 
umbrella phase 2 study of the anti-PD-L1 human monoclonal antibody 
durvalumab in combination with novel molecular-targeted antican-
cer agents in patients who have progressed on an anti-programmed 
death-1 (PD-1)/PD-L1-containing therapy and been exposed to a 
platinum-doublet regimen for locally advanced or metastatic NSCLC, 
either separately or in combination. HUDSON has a modular design, 
allowing initial assessment of the efficacy, safety and tolerability of 
multiple treatment combinations tailored by molecular alteration, 
with the goal of overcoming resistance to PD-(L)1 blockade.

The study is being performed in accordance with consensus ethi-
cal principles derived from international guidelines including the 
Declaration of Helsinki and Council for International Organizations 
of Medical Sciences International Ethical Guidelines, applicable Inter-
national Council for Harmonisation Good Clinical Practice Guidelines, 
all applicable laws and regulations, and the AstraZeneca policy on 
Bioethics and Human Biological Samples. The study protocol, pro-
tocol amendments, informed consent form, investigator’s brochure 
and other relevant documents were reviewed and approved by the 
Institutional Review Board/Ethics Committee at each participating 
center: Austria—Wiener Gesundheitsverbund–Klinik Floridsdorf; 
Uniklinikum Salzburg; LBI for Lung Health, c/o Klinik Penzing, Wiener 
Gesundheitsverbund; Universitätsklinik Innsbruck. Canada—Princess 
Margaret Cancer Centre; William Osler Health System–Brampton 
Civic Hospital; Alberta Health Services; The Ottawa Hospital; Centre 
Hospitalier de l'Universite de Montreal. France—CHU Nantes Hôpital 
Laennec; Institut Gustave Roussy; Institut Bergonié; Hôpital Bichat–
Claude-Bernard. Israel—Rabin Medical Center–Beilinson Hospital; 
Rambam Health Care Campus; Meir Hospital. South Korea—Samsung 
Medical Center; Seoul National University Hospital; Asan Medical 
Center. Spain—Hospital Universitario Ramón y Cajal; Hospital Uni-
versitario Virgen Macarena. United States—The University of Texas; 
Johns Hopkins University; UCLA; Washington University in St. Louis 
School of Medicine; St Joseph Heritage Healthcare; Dana Farber Mass 
General Brigham Cancer Care; City of Hope National Medical Center; 
Fox Chase Cancer Center; Sarah Cannon Research Institute at Tennes-
see Oncology; New York-Presbyterian; University of California San 
Diego; Sibley Memorial Hospital; Virginia Cancer Specialists; Univer-
sity of Pittsburgh School of Medicine. Protocol sections covering the 
modules reported in the manuscript are available as outlined in the 
data availability statement.

Patients are assigned to either a biomarker-matched group (group 
A) or a biomarker-nonmatched group (group B) based on tumor molec-
ular profile at screening, as assessed by a consistent genomic testing 
protocol. Within the biomarker-matched group, patients with tumors 
with a mutation detected in a homologous recombination repair gene 
(HRRm) or with detectable aberrations in LKB1 (liver kinase B1; also 
known as serine threonine kinase 11 (STK11)) were enrolled to separate 
cohorts to receive durvalumab plus the PARP inhibitor olaparib (mod-
ule 1); patients with detectable aberrations in ATM (ataxia telangiectasia 
mutated) on next-generation sequencing (NGS; tissue-based Foun-
dationOne CDx assay68 (Foundation Medicine) or circulating tumor 
DNA (ctDNA)-based GuardantHealth360 (Guardant Health) assay) or 
low ATM protein expression on immunohistochemistry (Ventana ATM 
(Y170) assay) received the ATR protein kinase inhibitor ceralasertib 
(AZD6738)69 (module 3); and patients with tumors expressing high 
levels of CD73 received durvalumab plus the anti-CD73 monoclonal 
antibody oleclumab (MEDI9447) (module 5). Other cohorts within the 
biomarker-matched group were opened or remain open for patient 
enrollment but are not described here as data are not sufficiently 
mature or planned initial accrual has not been completed. Within the 
biomarker-nonmatched group, patients without prespecified biomark-
ers are enrolled to cohorts according to whether they had primary or 

acquired resistance to their prior anti-PD-1/PD-L1 therapy, defined 
respectively as disease progression within ≤24 weeks or after >24 weeks 
from the start of treatment, while still on that treatment. At data cutoff 
for this report (modules 1, 3 and 5: 26 April 2022; module 2: 26 Octo-
ber 2020), data were available from biomarker-nonmatched cohorts 
treated with durvalumab plus olaparib (module 1), the signal trans-
ducer and activator of transcription 3 (STAT3) inhibitor danvatirsen 
(AZD9150) (module 2), ceralasertib (module 3) and oleclumab (module 
5); other cohorts were opened or remain open. For each cohort within 
the biomarker-matched and biomarker-nonmatched groups, planned 
enrollment was 20 evaluable patients, with expansion to 40 evalu-
able patients determined on the basis of efficacy findings. Module 4,  
investigating durvalumab plus the dual mammalian target of rapa-
mycin complex 1 and 2 (mTORC1/2) inhibitor vistusertib (AZD2014)70 
in patients with RPTOR independent companion of MTOR complex 2 
(RICTOR) mutations, was halted after one patient had been dosed due 
to discontinuation of drug development, and is not reported here.

The primary objective is to assess the objective response rate 
(ORR) for each treatment combination according to Response Evalu-
ation Criteria for Solid Tumours (RECIST) version 1.1 (refs. 71,72). Sec-
ondary objectives include the assessment of disease control rate, PFS 
and OS, as well as the safety and tolerability of each treatment regi-
men. Exploratory objectives include investigations of cancer-relevant 
immune status, including biomarker analyses according to specific 
gene or protein expression profiles (for example, PD-L1), and the usage 
of subsequent anticancer therapy.

Patients
To be eligible for enrollment, all patients had to be ≥18 years of age and 
to have histologically or cytologically confirmed metastatic or locally 
advanced and recurrent NSCLC that was progressing. Patients were 
required to be eligible for second- or later-line therapy and must have 
received an anti-PD-1/PD-L1-containing therapy and a platinum-doublet 
regimen for locally advanced or metastatic NSCLC either separately or 
in combination. Prior durvalumab was permitted. Patients must have 
had disease progression on a prior line of anti-PD-1/PD-L1 therapy. 
Patients needed to be suitable for a new tumor biopsy or to have had 
a biopsy post-progression on an anti-PD-1/PD-L1 containing therapy 
within approximately 3 months of screening, and required ≥1 lesion 
that could be accurately measured predose as ≥10 mm in the longest 
diameter (except for lymph nodes, for which the requirement was a 
short axis ≥15 mm) using computed tomography (CT) or magnetic 
resonance imaging and that was suitable for accurate repeated meas-
urements. Additionally, patients were required to have a body weight 
of >30 kg, no cancer-associated cachexia, an Eastern Cooperative 
Oncology Group (ECOG) performance status of 0 to 1, a minimum life 
expectancy of 12 weeks, and a treatment-free interval of ≥3 weeks from 
any prior therapy before starting study treatment.

Patients were excluded if their tumors had targetable alterations 
in EGFR and/or ALK or were known to have targetable alterations in 
ROS1, BRAF, MET or RET. Patients must not have had toxicity that led to 
permanent discontinuation of prior anti-PD-1/PD-L1 immunotherapy, or 
any grade ≥3 immune-related adverse event (AE) or an immune-related 
neurologic or ocular AE of any grade while receiving prior immuno-
therapy. All AEs that occurred while receiving prior immunotherapy 
must have completely resolved or resolved to baseline before screening. 
Other exclusion criteria were the following: history of active primary 
immunodeficiency; active or prior documented autoimmune or inflam-
matory disorders (except vitiligo, alopecia, hypothyroidism that was 
stable on hormone replacement therapy, any chronic skin condition not 
requiring systemic therapy, or celiac disease controlled by diet alone); 
a history of allogenic organ transplantation; any uncontrolled intercur-
rent illness; spinal cord compression or symptomatic brain metastases; 
active infection; history of another primary malignancy (except malig-
nancies treated with curative intent and with no known active disease 
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≥2 years before the first dose of study drug and of low potential risk for 
recurrence, adequately treated nonmelanoma skin cancer or lentigo 
maligna without evidence of disease, adequately treated carcinoma 
in situ without evidence of disease, and localized noninvasive primary 
under surveillance); small-cell lung cancer; presence of prespecified 
cardiac criteria; and inadequate bone marrow reserve or organ function.

Patients could not be receiving any concurrent chemotherapy, 
immunotherapy, biologic or hormonal therapy for cancer treatment, 
but use of hormones for non-cancer-related conditions and local 
treatment of isolated lesions, excluding target lesions, for palliative 
intent were acceptable. Current or prior use of immunosuppressive 
medication within 14 days before the first dose of durvalumab was 
not permitted (except for intranasal, inhaled, topical steroids or local 
steroid injections; systemic corticosteroids at doses not exceeding 
10 mg per day of prednisone or its equivalent; steroids as premedica-
tion for hypersensitivity reactions). Patients were not allowed to have 
received a live attenuated vaccine within 30 days before the first dose 
of study drug, although authorized/approved coronavirus disease 
2019 vaccines were permitted, with the recommendation to avoid 
administration for 72 h before the first dose of study drug.

All patients provided written informed consent. Prescreening 
consent was obtained for access to preexisting molecular information 
(if available), testing of an archival tumor sample (if available) and/or 
plasma ctDNA, and provision of a new tumor biopsy sample and blood 
sample for ctDNA testing. Following prescreening, and a valid molecu-
lar analysis result, patients were assigned to, and invited to consent to, 
a specific treatment cohort.

Treatment and assessments
All patients received durvalumab 1,500 mg via intravenous infusion 
once every 4 weeks. Patients also received: olaparib orally at a dose 
of 300 mg twice daily (module 1 cohorts); danvatirsen intravenously 
at a dose of 200 mg every other day for a 1-week lead-in period before 
starting durvalumab and then weekly in combination with durvalumab 
(module 2 cohorts); ceralasertib orally at a dose of 240 mg twice daily 
on days 1–7 of a 1-week lead-in period before starting durvalumab and 
then on days 22–28 of each 4-week cycle in combination with dur-
valumab (module 3 cohorts); or oleclumab intravenously at a dose of 
3,000 mg once every 2 weeks in cycles 1–2 and then once every 4 weeks 
from cycle 3 onwards (fixed dosing for patients with body weight 
>30 kg) (module 5 cohorts).

Tumors were assessed using contrast enhanced CT (or magnetic 
resonance imaging if CT was contraindicated) scans of the chest, abdo-
men and pelvis (including liver and adrenal glands) at baseline, every 
6 weeks (±1 week) for the first 24 weeks from the start of combination 
therapy, and every 8 weeks (±1 week) thereafter until disease progres-
sion (confirmed with a subsequent scan). Patients who, in the opinion 
of the investigator, were still receiving clinical benefit from treatment, 
were permitted to continue treatment following confirmed radiologi-
cal disease progression per RECIST v1.1 (refs. 71,72). Scheduled radio-
logical scans were continued for these patients while they were still 
receiving study treatment. Objective tumor responses were assessed 
and categorized programmatically per RECIST v1.1 (refs. 71,72). Survival 
status was recorded every 3 months (±1 week) after a safety follow-up 
visit (90 days after study drug discontinuation) and until the earlier 
of: 12 months after the last patient had discontinued treatment in the 
last cohort within a module; or 75% of patients had died in all cohorts 
within a module. Safety was assessed and AEs recorded throughout the 
treatment period and the safety follow-up (90 days after the discontinu-
ation of all study drugs or until initiation of another therapy, unless the 
investigator assesses that the event occurring within 90 days after last 
dose of study treatment but after the initiation of another therapy is 
related to the study treatment). Severity of AEs was assessed per the 
National Cancer Institute’s Common Terminology Criteria for Adverse 
Events version 4.03. Causal relationship between study drug and each 

AE was assessed by the investigators, by answering ‘yes’ or ‘no’ to the 
question ‘Do you consider that there is a reasonable possibility that 
the event may have been caused by the study drug?’.

Biomarker analyses
A collection of tumor samples, including both resections (archival) 
and post-anti-PD-1/PD-L1 progression biopsies (new), was assembled 
from patients during screening. Each sample was sequenced using 
the Foundation Medicine NGS FoundationOneCDx assay68. The assay 
detects mutations and copy number variations in 324 cancer-related 
genes and selected rearrangements. The assay also provides informa-
tion on microsatellite instability and TMB. Detailed information on 
the assay and the variant calling pipeline are available at ref. 73. TMB 
is reported as low (<10 mutations Mb−1) or high (≥10 mutations Mb−1). 
Mutation profiles included co-occurring and mutually exclusive gene 
alterations. For each gene, substitutions, short insertions and dele-
tions, rearrangements and copy number changes of known or likely 
functional relevance detected using the assay were included. Addi-
tionally, tumor PD-L1 expression was assessed locally using PD-L1 
immunohistochemistry assays. PD-L1 expression was evaluated in 
TCs and considered positive when expressed in ≥1% of neoplastic cells.

RNA extraction and whole transcriptome library preparation
Bulk-RNA sequencing was conducted on suitable fresh biopsies 
acquired from a subset of patients with evaluable prescreening tumor 
biopsies, before patient allocation to a HUDSON treatment module. 
Fresh frozen core needle biopsy samples were divided (where pos-
sible) while frozen on dry ice, with one portion consumed for total 
RNA extraction. Total RNA was extracted using Qiagen RNeasy Mini 
kit (Qiagen, cat. no. 74104) with on-column DNase digestion (cat. no. 
79254) and eluted in 30 ml nuclease-free water. RNA concentration, 
RNA integrity number and %DV200 (percentage of RNA fragments 
>200 nucleotides) were determined using Agilent RNA ScreenTapes 
or Agilent High Sensitivity RNA ScreenTapes via Agilent TapeStation. 
Total RNA was arrayed on a 96-well polymerase chain reaction plate, 
and whole transcriptome libraries were generated using KAPA RNA 
Hyper Prep Kit with RiboErase (HMR) Globin (Roche cat. no. KK8563), in 
accordance with the manufacturer’s protocol. Library concentrations 
were determined using Agilent D1000 ScreenTapes on Agilent TapeSta-
tion. Whole transcriptome sequencing libraries were sequenced with 
the Illumina NovaSeq 6000 kit v1.5 300 cycles (150 × 2).

Transcript-per-million (TPM)-normalized bulk-RNA sequenc-
ing data were available for 49 prescreening samples from 49 unique 
patients. The TPM matrix was used as input for single-sample 
gene set enrichment analysis (ssGSEA) as implemented in GSVA R 
package version 1.42.0 to compute enrichment scores (ES) for the 
18-gene TIS47. ssGSEA ES were compared between patients with 
immunotherapy-refractory/relapsed NSCLC, including recalcitrant 
subgroups, using the two-sided Wilcoxon rank-sum test. Specifically, 
TIS ssGSEA ES was compared between patients with primary (progres-
sion within 24 weeks) or acquired (progression after 24 weeks) resist-
ance to prior ICB therapy, patients with PD-L1-positive (≥1% positive 
TCs based on immunohistochemical staining) or PD-L1-negative (<1% 
TCs) tumors, patients with or without bone and/or liver metastases, and 
patients with adenocarcinoma or squamous cell tumors. In addition, 
comprehensive genomic profiling using targeted next-generation 
sequencing was performed on archived or baseline tissue samples 
using the FoundationOne CDx assay68. Detailed information on the 
assay and the variant calling pipeline is available at ref. 73. Based on the 
mutational status, TIS ssGSEA ES were compared between patients with 
STK11-altered or STK11-wild-type tumors, and patients with TMB-low 
(<10 mutations Mb−1) or TMB-high (≥10 mutations Mb−1) tumors. The 
TPM matrix was z-scored gene-wise to display the expression level of 
the 18 genes composing the TIS as heat maps. It is important to note 
that analyses were not restricted to specific biopsy sites because of the 
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limited numbers of prescreening biopsies assessed using bulk-RNA 
sequencing.

RNA extraction and NanoString gene expression
Total RNA was extracted from pre- and posttreatment blood sam-
ples using the PAXgene Blood RNA Kit (PreAnalytiX GmbH) per the 
manufacturer′s recommended protocol. RNA concentration and qual-
ity were assessed on the TapeStation 2200 System (Agilent). nCounter 
gene expression assays (NanoString Technologies) were performed on 
patients’ blood RNA samples using the 770-gene human PanCancer 
Immune Profiling panel74 (NanoString Technologies) and a custom 
30-gene spike-in panel, per NanoString′s recommended protocol. The 
custom spike-in panel target genes included APOBEC3B, B2M, CALB2, 
CD69, CGAS, CMPK2, DHX58, EGFR, GBP1, GBP4, GBP5, GDF15, HAP1, 
HOPX, IFNG, IL12A, KEAP1, NKG7, OASL, PF4, PROM1, RGS16, RSAD2, 
SAP30, SLAMF8, STING1, STK11, TREX1, TSLP and VTCN1. Raw count 
data were preprocessed using background subtraction and house-
keeping gene normalization functions in nSolver 4.0 (NanoString 
Technologies). The data that passed quality control using nSolver’s 
default quality control parameters were then analyzed using a linear 
mixed effects model.

TCR sequencing and analysis
Deep sequencing of the CDR3 regions of TCR-β genes was performed 
by Adaptive Biotechnologies using the immunoSEQ assay on genomic 
DNA purified with the Qiagen DNeasy Blood extraction kit from total 
peripheral blood mononuclear cells obtained at each study visit. Only 
productive (in-frame) TCR sequences were considered in the analy-
ses75,76. To identify expanded and contracted T cell clones between 
samples from an individual patient at different visits, we used the Fisher 
exact test to compute a P value for each TCR clonotype across the two 
samples, against the null hypothesis that the population abundance of 
the clone is identical in the two samples. We corrected for multiple test-
ing to control the false discovery rate using the Benjamini–Hochberg 
procedure and employed a significance threshold of 0.01 on adjusted  
P values. Expanded clones not observed at baseline and detected above 
a threshold of five reads were classified as newly detected expanded 
clones. We calculated Simpson’s clonality (as 1 − Pielou’s evenness), 
which normalizes sampling depth to compare TCR repertoires between 
samples. To measure the stability of the clonotypes in the circulating 
repertoire across visits, we used the Morisita–Horn similarity index, 
which accounts for the number of common clonotypes and the dis-
tribution of clonotype sizes and is most sensitive to the clone sizes of 
the dominant clonotypes75,76. Wilcoxon paired signed-rank tests were 
used to compare groups of matched samples.

Statistical analysis
Initial sample size for each cohort was to be 20 evaluable patients, 
with possible expansion based on observation of an efficacy signal 
per the primary endpoint of ORR. Evaluations were to be carried out 
after the ~20th evaluable patient in a cohort, or the final patient dosed 
in a cohort if enrollment ended early, had had the opportunity for two 
on-treatment response assessments per RECIST or had discontinued or 
withdrawn from treatment. A statistical framework was built around a 
prespecified ORR to inform the Sponsor if an efficacy signal had been 
observed and a recommendation to expand should be made. Deci-
sions regarding stopping recruitment in specific cohorts were at the 
discretion of the Sponsor and were based on emerging efficacy, safety 
and tolerability data.

PFS was defined as the time from start of treatment until the date 
of objective disease progression according to RECIST 1.1 or death (by 
any cause in the absence of progression) regardless of whether the 
patient withdrew from therapy or received another anticancer therapy 
before progression. Patients who had not progressed or died at the time 
of analysis were censored at the time of the latest date of assessment 

from their last evaluable RECIST 1.1 assessment. However, if a patient 
progressed or died after two or more missed visits, the patient was 
censored at the time of the latest evaluable RECIST 1.1 assessment 
before the two missed visits. OS was defined as the time from the start 
of treatment until death due to any cause. Any patient not known to 
have died at the time of analysis was censored on the basis of the last 
recorded date on which the patient was known to be alive. PFS and OS 
were evaluated using Kaplan–Meier methodology. Analyses of clinical 
data were conducted using SAS v9.3.

Data cutoff for modules 1, 3 and 5 was 26 April 2022. Due to the 
nature of this platform study, which enrolled different cohorts at dif-
ferent time periods, data cutoff for module 2 was 26 October 2020.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The relevant sections of the study protocol, plus data under-
lying the findings described in this paper, may be obtained in 
accordance with AstraZeneca’s data sharing policy described at  
https://astrazenecagrouptrials.pharmacm.com/ST/Submission/
Disclosure. Data for studies directly listed on Vivli can be requested 
through Vivli at www.vivli.org. Data for studies not listed on Vivli 
could be requested through Vivli at https://vivli.org/members/
enquiries-about-studies-not-listed-on-the-vivli-platform/. Astra-
Zeneca’s Vivli member page is also available outlining further details 
(https://vivli.org/ourmember/astrazeneca/).
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Extended Data Fig. 1 | PFS and OS by treatment cohort. PFS and OS with a, b, durvalumab-ceralasertib (median OS not yet mature in ATM biomarker-matched 
cohort), c, d, durvalumab-olaparib, e, f, durvalumab-danvatirsen, g, h, durvalumab-oleclumab.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-02808-y

Extended Data Fig. 2 | Gene expression profiling in subgroups with known 
association with poor immunotherapy response among patients who 
received durvalumab plus olaparib, danvatirsen or oleclumab. Gene-wise 
transcript-per-million (TPM) z-score heatmaps for the 18 genes comprising the 
tumour inflammation signature (TIS) in tumour samples from patients with a, 
primary or acquired resistance to prior immune checkpoint blockade therapy  
(n = 18, n = 31; overall prevalence: n = 81 [43.1%], n = 107 [56.9%]), b, PD-L1-positive 

or PD-L1-negative tumours (n = 16, n = 18; overall prevalence: n = 73 [58.9%], 
n = 51 [41.1%]), c, adenocarcinoma or squamous cell histology (n = 38, n = 6; 
overall prevalence: n = 130 [75.1%], n = 43 [24.9%]), d, with or without bone/liver 
metastases (n = 23, n = 26; overall prevalence: n = 76 [40.4%], n = 112 [59.6%]),  
e, high or low TMB (n = 16, n = 18; overall prevalence: n = 60 [41.1%], n = 86 [58.9%]) 
and f, STK11-altered or STK11-wild-type tumours (n = 5, n = 38; overall prevalence: 
n = 26 [14.9%], n = 148 [85.1%]). Tumour location and histology are annotated.
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Extended Data Fig. 3 | PFS and OS with durvalumab-ceralasertib and with 
durvalumab plus olaparib, danvatirsen or oleclumab in patient subgroups 
defined by presence or absence of adverse prognostic factors. Kaplan–Meier 

analyses of (left) PFS and (right) OS in patients with a, primary resistance,  
b, acquired resistance, c, PD-L1-negative tumours, d, PD-L1-positive tumours,  
e, squamous histology, f, non-squamous histology, and g, STK11 mutations.
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Extended Data Fig. 4 | PFS and OS with durvalumab-ceralasertib in patient 
subgroups defined by presence or absence of adverse prognostic factors. 
Kaplan–Meier analyses of (left) PFS and (right) OS with durvalumab-ceralasertib 
in patients with a, primary vs acquired resistance, b, PD-L1-negative vs -positive 

status, and c, squamous cell carcinoma vs non-squamous histology, and in 
patients d, with or without bone/liver metastases, e, with high or low tumour 
mutational burden, and according to f, STK11 status and g, KRAS status (variant or 
wild-type).
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Extended Data Table 1 | Treatment efficacy by combination regimen: durvalumab-ceralasertib versus durvalumab plus 
olaparib, danvatirsen or oleclumab

Analyses by individual cohort are provided in Extended Data Table 2 and Supplementary Tables 3–5.
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Extended Data Table 2 | Treatment efficacy with durvalumab-ceralasertib, by cohort
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Extended Data Table 3 | Duration of treatment by cohort
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Extended Data Table 4 | Safety profile and incidence of treatment-related adverse events according to MedDRA SOC and PT 
(≥10% in either group) by combination regimen: durvalumab-ceralasertib versus durvalumab plus olaparib, danvatirsen or 
oleclumab

Analyses by individual cohort are provided in Supplementary Tables 6–9.
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Extended Data Table 5 | Incidence of treatment-related adverse events according to system organ class (all) and preferred 
term (≥10% in any treatment cohort), by combination regimen
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Extended Data Table 6 | Incidence of grade ≥3 treatment-related adverse events according to preferred term (≥2 patients in 
any treatment cohort), by combination regimen
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