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A B S T R A C T

Purpose: Orofacial clefts (OFCs) are common birth defects including cleft lip, cleft lip and
palate, and cleft palate. OFCs have heterogeneous etiologies, complicating clinical diagnostics
because it is not always apparent if the cause is Mendelian, environmental, or multifactorial.
Sequencing is not currently performed for isolated or sporadic OFCs; therefore, we estimated the
diagnostic yield for 418 genes in 841 cases and 294 controls.
Methods: We evaluated 418 genes using genome sequencing and curated variants to assess their
pathogenicity using American College of Medical Genetics criteria.
Results: 9.04% of cases and 1.02% of controls had “likely pathogenic” variants (P < .0001),
which was almost exclusively driven by heterozygous variants in autosomal genes. Cleft palate
(17.6%) and cleft lip and palate (9.09%) cases had the highest yield, whereas cleft lip cases had a
2.80% yield. Out of 39 genes with likely pathogenic variants, 9 genes, including CTNND1 and
IRF6, accounted for more than half of the yield (4.64% of cases). Most variants (61.8%) were
“variants of uncertain significance”, occurring more frequently in cases (P = .004), but no in-
dividual gene showed a significant excess of variants of uncertain significance.
Conclusion: These results underscore the etiological heterogeneity of OFCs and suggest
sequencing could reduce the diagnostic gap in OFCs.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American College of Medical
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Introduction

Orofacial clefts (OFCs) are etiologically heterogeneous
structural birth defects,1 including cleft lip (CL), cleft palate
(CP), and cleft lip and palate (CLP). Genetic factors, such as
point mutations, copy number variants, and chromosomal
abnormalities, contribute to the etiology of OFCs, especially
in Mendelian OFC syndromes, which contain other struc-
tural anomalies, cognitive anomalies, or intellectual dis-
abilities. Hundreds of rare Mendelian syndromes involving
OFCs have been described but most OFC cases occur as
apparently isolated birth defects (often termed non-
syndromic). These are considered etiologically complex
disorders with genetic and environmental risk factors. It is
possible, however, that both syndromic and isolated cases
have an etiology caused by genetics, environment, or the
combined effect of both. The heterogeneity of OFCs is
further compounded by phenotypic heterogeneity, incom-
plete penetrance, and variable expressivity, making clinical
diagnostics challenging. Recurrence risk estimates vary with
an approximate sibling recurrence of about 4%,2 which is
much lower than the sibling risk for an autosomal dominant
(AD) disorder or the empirical risk of being affected with an
incompletely penetrant disorder, but is also significantly
higher than expected if the risk were driven by de novo
variants alone. It is, therefore, important to determine the
cause of OFCs because it could inform recurrence risk es-
timates and the approaches for genetic counseling and
clinical management.

Molecular diagnoses from genetic testing is an alternative
to diagnosis based on the phenotype alone. However, ge-
netic testing is not routinely performed for most individuals
with OFCs, which are typically isolated and without any
family history. Furthermore, existing commercial clinical
testing panels are highly variable in their content, leading to
potentially missed diagnoses. Multiple studies have
explored the use of sequencing to improve diagnostics for
OFCs. We previously investigated the proportion of isolated
OFC cases attributable to variants in IRF6; however, our
estimate of 0.2% to 0.4% was too low to recommend broad
screening of this gene.3 The use of exome sequencing (ES)
and genome sequencing (GS) in OFCs has recently
increased. Basha et al tested the diagnostic rate from ES in
46 multiplex OFC families, finding 10% of cases carried
“likely pathogenic” (LP) variants, primarily in genes
causing AD OFC syndromes.4 However, ES in large cohorts
has not been performed; therefore, diagnostic yield esti-
mates in OFCs are still uncertain.

We aimed to estimate the diagnostic yield of 418 genes
associated with OFCs using GS in 841 OFC cases and 294
controls. We previously investigated de novo variants in 756
OFC trios from this same cohort and found 6% of sequenced
trios had a de novo variant in genes broadly associated with
OFCs.5 Two genes (IRF6 and TFAP2A) mutated in OFC
syndromes were individually associated with OFCs, raising
the question of the clinical impact of de novo variants and

other types of variants in similar genes. We therefore
developed the present study to utilize GS to fully charac-
terize the clinical impact of variants in OFC cases by
analyzing de novo and transmitted single nucleotide and
structural variants (SVs).

Materials and Methods

Study population

The case sample consisted of 841 total OFC cases (765
case-parent trios, 60 parent-child dyads, and 16 singletons)
sequenced through the Gabriella Miller Kids First Pediatric
Research Program. The case sample was sequenced in 3
cohorts based on recruitment site/ancestry: (1) “Europeans”
from the United States, Argentina, Turkey, Hungary, and
Spain; (2) “Latinos” from Colombia; and (3) “Asians” from
Taiwan (Supplemental Table 1). Participant recruitment
occurred over many years using different research protocols,
but each protocol generally included a physical exam to
exclude individuals with major anomalies or known intel-
lectual disability indicative of an OFC syndrome. This
cohort is, therefore, enriched for isolated OFCs and depleted
of multiple congenital anomalies and severe manifestations
of syndromes. The case sample includes probands with cleft
lip only (eg, CL, cleft lip and cleft alveolus) (107 cases),
cleft lip and cleft secondary palate (CLP; 660 cases), and
cleft secondary palate only (CP; 74 cases). The cases were
primarily male (56% CL, 65% CLP, and 53% CP) reflecting
the large proportion of the cases having CLP where males
are overrepresented. The 756 trios were analyzed previously
for de novo variants only.5

A total of 621 probands were considered “simplex”
because they reported no family history, defined as not
reporting any affected relative within the 3rd degree. 220
probands reported having at least 1 affected relative (1st,
2nd, or 3rd degree) were classified as “multiplex”
(Supplemental Table 2); this included 63 probands with at
least 1 affected parent. All probands were confirmed to be
unrelated with kinship calculations using Kinship-based
INference for Gwas (KING) software.

The control sample comprised 294 child-parent trios
from the 1000 Genomes Project (1KGP).6 Because some
1KGP samples are derived from cell lines, these samples
have excessive numbers of de novo variants acquired
through multiple passages and are not comparable to the
pattern of variation in the Gabriella Miller Kids First sam-
ples.7 Therefore, we selected 1KGP trios through a quality
control process (described below) to have approximately the
same amount of total variation including de novo variant
rates (all selected 1KGP trios had fewer than 138 de novo
events per trio) as the case cohorts. This cohort included
trios from multiple ancestries: 84 African, 116 US and
European, 52 East Asian, and 42 South Asian trios.
Although phenotype information is unavailable for 1KGP,
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we would expect at most 1 OFC in the 294 trios (882 total
individuals) based on the prevalence rate of OFCs at 1 in
1000 individuals worldwide. Thus, 1KGP can serve as a
comparison group because it is unlikely to have LP variants
influencing risk to OFCs.

Sequencing and quality control

Sequencing and variant calling of the OFC cohort was
described by Bishop et al.5 Sequencing of the control cohort
was described by Byrska-Bishop et al.8 The same quality
control procedures were performed on case and control
variant call files. We retained genotype calls with a geno-
type quality ≥20, read depth ≥10, and biallelic variants
passing VSQR with a Quality Normalized by Depth score
>4 using VCFTools (v0.1.13) and BCFtools (v1.9). Vari-
ants with >2 Mendelian errors, >5% missingness, or de-
viations from Hardy-Weinberg equilibrium (P <10−7) in
unaffected samples were dropped. For de novo variants, we
required an allele balance between 0.3 and 0.7 in each
proband and <0.05 in both parents.

Selection of gene list

We created a comprehensive set of 418 genes (Supplemental
Table 3; Supplemental Figure 1A) to prioritize variants
possibly associated with OFCs from 4 sources (all down-
loaded on September 4, 2020): (1) the National Health
Service (NHS) Genomic Medicine Service cleft panel
(v2.2), an expert-curated list of genes for familial cleft lip
and/or cleft palate (CL/P), isolated and syndromic clefting;
(2) the Prevention Genetics CL/P clinical genetic testing
panel; (3) Clinical synopses/genes from the Online Men-
delian Inheritance in Man (OMIM) that included OFCs with
a known inheritance and molecular basis. OMIM clinical
synopses search terms included the following: “cleft lip,”
“cleft palate,” “oral cleft,” “orofacial cleft,” and “cleft lip
and/or palate”; and (4) a manually curated list from recent
OFC genetic studies. The NHS panel included an evidence
level indicator corresponding to expert consensus for genes
on the panel: “green” for genes of known clinical utility and
scientific validity, “amber” for moderate evidence levels,
and “red” indicating little evidence.9 We classified genes
based on the mechanism by which variants lead to OFC
phenotypes and hereafter refer to these genes as AD, auto-
somal recessive (AR), or X-linked (XL). Genes in which
variants have been described as acting in dominant and
recessive manners or unspecified modes of inheritance were
considered in both AD and AR analyses. Average read
depth for each gene was comparable between cases and
controls and among all case populations (Supplemental
Figure 1B). In our previous work, we analyzed 336 genes
associated with OFCs, which included genes from OMIM
and those nominated by linkage, candidate gene, and asso-
ciation studies. The current list of 418 genes includes 200
genes not analyzed previously, the majority of which came

from NHS and OMIM. There were 118 genes on the Bishop
et al gene list absent from this analysis, most of which were
genome-wide association studies genes that lacked the
necessary support to be included in a clinical gene panel.

SNV and indel annotation and variant filtering

Variants were annotated using ANNOVAR (version
201707) and Variant Effect Predictor (release 102, 103, and
106). Protein-altering variants were extracted for the 418
genes. Variants were filtered using a maximum allele fre-
quency (AF) threshold of 0.1% for variants in AD and XL
genes and 0.5% for variants in AR genes using gnomAD (v2
and v3)10 and ExAC (v0.3),11 and a cohort allele count (AC)
≤10. Variant-level annotations used in the prioritization and
interpretation included 9 in silico pathogenicity predictions
(eg, SIFT,12 PolyPhen,13 MutationTaster,14 LRT,15

FATHMM,16 PROVEAN,17 MetaSVM,18 MetaLR,18 and
M-CAP19), CADD20 scores, variant pathogenicity classifi-
cations from ClinVar,21 and constrained regions within
genes.22

SVs identification and filtering

We detected SVs in the OFC cohort with the GATK-SV
discovery pipeline as previously described.23 GATK-SV
(https://github.com/broadinstitute/gatk-sv) relies on an
ensemble approach that harmonizes SV detection from
multiple tools, including Manta24 and Gatk-gCNV,25 fol-
lowed by machine learning to remove likely false positive
events and then performs joint genotyping and refined
variant resolution. The derived variant call file was anno-
tated with svtk26 to predict the functional impact of SVs and
compare AF against gnomAD SV (v2.1).23 We obtained
SVs overlapping the 418 genes and filtered the SVs by AF
(OFC cohort AF ≤ 0.03 and gnomAD SV AF ≤ 0.01). SVs
overlapping recurrent genomic disorder regions were
investigated independently and we reported the gene(s)
within our gene list from those regions. Further inheritance-
specific genotype and frequency filters were applied to
identify de novo (gnomAD SV AF ≤ 0.001, AC ≤ 10, and
cohort sample count ≤ 5), homozygous (homozygous AC ≤
10 and absent in unaffected individuals in cohort), com-
pound heterozygous, and XL recessive SVs. We also
considered SVs inherited from unaffected parents if the
cohort AC was ≤ 10, of which ≤ 5 were unaffected in-
dividuals. Candidate SVs (Supplemental Table 4) were
manually reviewed and visually inspected in normalized
read-depth plots using Integrative Genomics Viewer.27

Classification into the tier system

Rare SNVs and indels located within the 418 genes were
classified into a ranked tier system designed to minimize the
number of variants undergoing manual American College of
Medical Genetics and Genomics (ACMG) review while

K.K. Diaz Perez et al. 3

https://github.com/broadinstitute/gatk-sv


retaining as many potential LP variants as possible. Each tier
was based on gene or variant annotation criteria, including
variant type and gene constraint (Supplemental Figure 2A).
Tiers were ranked based on qualitative assessments of their
likelihood to contain LP variants. Assessments were made
by KDP, MRB, and EJL, and the final tiers were formed
from a consensus of these assessments.

After sorting variants into tiers, we identified a cutoff
point above which variants would be manually reviewed
according to ACMG criteria. To determine the cutoff point,
we extracted variants in ClinVar from 418 genes classified
as either pathogenic (“likely pathogenic” or “pathogenic”)
or benign (“likely benign” or “benign”). We sorted the 526
pathogenic and 274 benign variants into tiers (Supplemental
Figure 2B) and identified Tier 1B as a point where 95% of
pathogenic variants but only 49% of benign variants would
be retained for review.

ACMG variant classification

All SNVs and indels meeting the Tier 1B threshold, in-
frame indels, and SVs meeting the review criteria were
assessed using ACMG criteria blinded to case-control sta-
tus28 (Supplemental Figure 2A). We considered variants
with “damaging” pathogenicity predictions from ≥5 out of 9
algorithms to meet the PP3 criteria, whereas variants with
≥5 out of 9 “tolerant” predictions met the BP4 criteria
(Supplemental Table 5). For criteria based on AF alone
(PM2 or BS1), we used the maximum AF observed in any
population across gnomAD v2 genomes and exomes, gno-
mAD v3 genomes, and ExAC exomes. Variants with an AF
< 0.001% met criteria PM2, and variants with AF ≥ 0.005%
(heterozygous) and AF ≥ 0.2% (homozygous) met BS1. We
estimated the maximum credible AF for a variant consid-
ering an OFC prevalence of 1 in 1000, 5% of allelic het-
erogeneity, 100% of genetic heterogeneity, and 50%
penetrance.29 All variants classified as “pathogenic” or
“likely pathogenic” were counted toward the diagnostic
yield calculation and are referred to as “likely pathogenic”
(LP) throughout the manuscript.

Statistical analysis

Statistical tests were performed to calculate differences be-
tween groups using two-sided χ2 and Fisher exact tests, which
were conducted using R (version 3.6.3). We performed
10,000 permutations for the χ2 tests comparing cases and
controls (overall, by cleft subtype, population, and sex) to
adjust for multiple hypothesis testing under the null hypoth-
esis of no association between the number of individuals with
LP variants and case-control status. The significance level
was set at P < .05 for these tests. Odds ratios (OR) and 95%
confidence intervals were estimated through χ2 tests in R.

We tested gene-based associations in genes with variants
of uncertain significance (VUS) using the Optimal Sequence
Kernel Association test (SKAT-O), which unites the

Sequence Kernel Association test (SKAT) and the burden
test to maximize statistical power while allowing for vari-
ants of opposite effects.30 Data were converted to binary
PLINK files and imported into the SKAT package (version
2.0.1)31 in R (version 3.6.3). First, we performed SKAT-O
tests for 139 genes with more than 1 VUS or LP variant.
We then excluded “solved” cases and controls with LP
variants and conducted SKAT-O tests for 129 genes with
more than 1 VUS in the remaining samples. We used a
Bonferroni correction to adjust for multiple testing.

Results

We identified 2549 SNVs, small indels, and SVs within the
418 genes from841OFCcases and 294 controls. After sorting
variants into tiers designed to prioritize variants, we narrowed
our list to 1483 variants for manual review under ACMG
criteria (Supplemental Figure 2C). On average, we reviewed
1.33 variants per case and 1.24 variants per control (P= .07).

After ACMG review, 79 variants (5.33%) were classified
as “likely pathogenic” (LP) (Supplemental Table 6). The LP
variants were dominated by those presumed to be loss-of-
function (LoF) variants: 46.8% were stop gain, frameshift-
ing indels, and canonical splice site variants; 15% were SVs.
Overall, 9.04% of cases and 1.02% of controls had LP
variants (P < .0001, Figure 1). Stratifying our gene list by
the mode of inheritance, we found LP variants were almost
exclusively in AD genes (8.80% of cases vs 1.02% of
controls; P < .0001). Consistent with previous analysis of an
excess of de novo variants in clinically relevant genes
among OFC cases,5 3.69% of cases (vs none in controls;
P = .0008) had a de novo LP variant. Notably, we did not
identify any LP homozygous or compound heterozygous
variants in AR genes. This lack of signal was unexpected
because a subset of the trios came from consanguineous
families from Turkey and Colombia. Similarly, there was a
limited contribution from XL genes. Only 2 individuals
(0.24% of cases) had LP variants on the X chromosome: a
hemizygous male with an LoF variant in PHF8 inherited
from his unaffected mother and a heterozygous female with
a de novo in-frame deletion in FLNA.

Epidemiology and association studies suggest some dif-
ferences in the genetic architecture of specific OFC sub-
types.32,33 Therefore, we stratified the case cohort to test for
differences in diagnostic yield across CL, CLP, and CP
subtypes (Figure 1B). Among CLP cases, which comprise
78% of the OFC cohort, 9.09% had a LP variant (60 out of
660 total CLP cases) (P = .0003 vs controls). The diagnostic
yield was much higher among CP cases (13 out of 74 total
CP cases), where 17.6% had a LP variant (P < .0001 vs
controls and P = .035 vs CLP). Equally striking was the
difference between CL and CLP, which have historically
been viewed as a variation in severity of the same disorder
and are commonly analyzed together. Only 2.80% of CL
cases (3 out of 107 total CL cases) had a LP variant, which
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was not significantly different than controls (P = .353) and
only nominally different from CLP (P = .045). These data
suggest the differences in genetic architecture between CL
and CLP seen in genome-wide association studies34,35 may
extend to rare variants.

There are characteristic sex biases in OFCs where CP
occurs twice as frequently in females than males, and CL/P
occurs twice as frequently in males than females.36 We
considered whether these sex biases were also reflected in
the yields. Although the less frequently affected sex had
consistently higher diagnostic yields within each subtype,
none was statistically significant (Figure 1C). These results
could be consistent with a “protective effect” model; when
there are disease prevalence differences between sexes,
affected individuals among the less commonly affected sex
have, on average, greater enrichment for disease-causing
alleles or alleles of larger effect than members of the more

commonly affected sex. This would also be consistent with
the observation that sex biases are not as commonly
observed in Mendelian OFC syndromes. We also observed
small (but nonsignificant) differences in yield when strati-
fying by population by cleft type (Supplemental Figure 3).
Although this is loosely correlated with OFC prevalence
rates,37 it is more likely that these differences are because of
disparities in representation of these populations in reference
databases that impact the filtering of variants based on AF.

The 76 LP variants in OFC cases were found across 39
genes, constituting 9.33% of the gene list (Figure 2). Sixteen
genes had multiple variants and 9 of these had at least 3 LP
variants in cases. These 9 genes: CTNND1 (6 cases),
ARHGAP29 (5 cases), COL2A1 (5 cases), IRF6 (5 cases),
TFAP2A (5 cases), CDH1 (4 cases), CHD7 (3 cases),
PDGFC (3 cases), and TBX1 (3 cases, all 22q11.2 deletions)
accounted for 4.64% of OFC cases alone. All of these genes
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with the exception of PDGFC (and 35 out of 39 genes with
LP variants) were genes in which variants cause disease in
an AD manner. Of 163 genes associated with AD disease,
21.5% had at least 1 LP variant, demonstrating the genetic
heterogeneity of OFCs. Although previous studies have
found LP variants in 2 or more disease loci in the same
individual,38 we did not identify cases with more than 1 LP
variant.

Previous OFC studies report incomplete penetrance for
several genes, including CTNND1 and TP63,4,39 but few
have studied large data sets drawn from both simplex and
multiplex families, allowing us to weigh the contribution of
de novo and transmitted variants and estimate penetrance for
AD variants. A total of 220 probands were from multiplex
families, defined as having at least 1 other affected relative
(up to the 3rd degree). There was no difference in yield
between individuals from multiplex and simplex families
(11.8% multiplex vs 7.73% simplex, P = .089). However,
there were notable differences in the types of variants
identified (Supplemental Figure 4). Twenty of the 26 LP
(76.9%) variants in individuals from multiplex families were
transmitted (Supplemental Figure 5); the rest were de novo
(Supplemental Figure 6). In contrast, 52.1% (25 out of 48)
of LP variants in simplex families were de novo, which were
confirmed by visual inspection of aligned reads
(Supplemental Figure 6). In 3 of the 6 families, 1 parent was
affected, and we cannot exclude the possibility of

mosaicism in other tissues. But it is also possible these
variants are not the only variants conferring risk for OFCs.

Among transmitted variants in multiplex families, we
asked how often the variant was transmitted by the parent
with a personal or family history of OFC. We found 82.4%
(14 out of 17) of variants were transmitted by the parent
with a family history but found no differences in trans-
mission for those with a maternal family history compared
with a paternal family history. Of the 14 variants transmitted
by a parent with a family history, 64% (9 out of 14) were
transmitted by an affected parent. We can, therefore, esti-
mate the penetrance for these transmitted variants in
multiplex families to be 64%. If we count all transmitting
parents, including unaffected parents from simplex families,
the penetrance of transmitted variants falls to 25% (9/36).
Interestingly, most of these variants are predicted to be LoF,
and affected genes included ARHGAP29, CTNND1, and
TP63, which are considered haploinsufficient with reduced
penetrance.40,41

The majority (61.8%) of classified variants were VUS.
Overall, we found a significant enrichment of VUS among
OFC cases compared with controls (56.6% cases vs 46.6%
controls, P = .004). This result was consistent across pop-
ulations but not OFC subtypes (Supplemental Table 7).
VUS were not clustered in cases with LP variants or in cases
without such variants as removing “solved” cases/controls
resulted in a similar enrichment: 56.1% of 765 cases had at
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least 1 VUS versus 46.7% of 291 controls (P = 8.03 ×
10−3).

One possible hypothesis to explain the excess of VUS
among cases is that there are cryptic LP variants among this
set of VUS, where some are truly disease-causing but are not
recognized as such in the ACMG classification because of
lack of sufficient variant- or gene-specific information. For
both cases and controls, VUSwere overwhelmingly missense
variants, which is not surprising given the challenges of
interpreting missense variation. We expected VUS among
cases would have greater “damaging” prediction scores, but
there was no difference in the distribution of pathogenicity
predictions aggregated under 9 different algorithms (see
Supplemental Table 5; Supplemental Figure 7).

We next hypothesized that the excess of VUS in cases
could be localized to genes with LP variants. Collectively,
VUS were similarly enriched among genes with LP variants
(OR 1.63, P = .008) because they were among genes
without LP variants (OR 1.36, P = .033) (Figure 3A). To
further parse which sets of genes were contributing to the
VUS signal, we used the evidence level of genes on the
NHS panel, corresponding to 3 levels of support for the
genes’ association with OFCs reviewed by an expert panel
(“green” for high evidence, “amber” for moderate evidence,
and “red” for low evidence). The enrichment of VUS was
strongest among 69 “green” genes (OR 2, P = 1.36 × 10−4)
(Figure 3A). We then performed SKAT-O tests for auto-
somal genes with LP variants and/or VUS to pinpoint in-
dividual genes with significant VUS contributions.
Although no gene reached formal significance because of an
unbalanced sample size favoring cases, PRICKLE1
608500was nominally significant with an OR indicating an
increased risk for OFC (Supplemental Figure 8). Further-
more, many genes with multiple LP variants had an increase
in OR from the addition of VUS (Figure 3B).

Lastly, we assessed which gene list resulted in the
highest yield of LP variants. The yield for individual lists
was between 6.18% and 7.61%, but no list had a statistically
different yield from the others (Supplemental Table S8). The
manually curated, Prevention Genetics, and NHS gene lists
had the highest proportion of genes with LP variants, which
is not surprising given that 82% of the 418 genes appear on
at least 1 of those 3 lists (Supplemental Figure 9A). Most
AD genes with LP variants (27 out of 35) were shared
among at least these 3 sources (Supplemental Figure 9B). In
contrast, the OMIM list had the lowest percentage (10.3%)
of LP variants and a yield of 6.18% for all OFCs. The
OMIM list performed better than the Prevention Genetics or
NHS lists for CP (16.2% vs 14.8%), but these differences
were not statistically different (Supplemental Table S8).

Discussion

Genetic diagnostics are currently performed on OFC cases
with an OFC family history consistent with Mendelian in-
heritance patterns or individuals with syndromic

presentations. Consequently, diagnostic testing is conducted
in only a small fraction of cases, creating a potential clinical
diagnostic gap. Previous OFC studies estimated a diagnostic
yield of about 10% using ES in a small set of 46 multiplex
families.4 In this sample of 841 cases from multiple pop-
ulations and different family structures, we also estimated a
yield of about 10%, confirming previous studies.4,39 Our
study provided confirmation and moves beyond replication
in several substantive ways. First, we showed that diagnostic
yield varied significantly by OFC subtype. We observed an
almost 20% diagnostic yield for CP but a nearly 7-fold
lower yield in CL. The CP yield estimate was comparable
to a recent report of 30 isolated CP cases, where 17% of
cases had LP variants.42 These findings could be clinically
useful because they may suggest a re-examination of
whether routine clinical testing of CP cases is warranted as
standard of care. It is also scientifically useful because it
reinforces the etiologic heterogeneity in OFC subtypes
observed from studies of common variants33,43-45 and ex-
tends it to rare variants. It also motivates future CL-specific
research, which will be necessary to perform genetic testing
clinically for OFCs in general. Second, we show that,
though some risk is clustered in 9 genes, OFCs are highly
heterogeneous within and between subtypes. Finally, we
found that VUS, which constitute most variants categorized
in this study and in clinical tests, are enriched in cases and
subsets of these VUS, such as those in high confidence OFC
genes, are likely to contribute to the OFC phenotype.

Our estimated yield (~10%) is similar to those from
exome- or genome-based studies of other pediatric condi-
tions, including congenital heart disease (12.7%)46 and
autism spectrum disorder (7.5%).47 A major determining
factor in these studies is their approach and cohort ascer-
tainment. For example, Lowther et al estimated the yield
from sequencing in autism spectrum disorder at 7.5% using
a panel of 907 neurodevelopmental genes.47 They found a
similar yield (12%) for a heterogeneous group of fetal
structural anomalies in 2535 genes but noted cases had been
pre-screened by karyotype and chromosomal microarray
analyses, lowering their diagnostic yield. Targeted in-
vestigations such as ours may favor specificity (but lose
sensitivity) because the overall yield will be lower than
exome-wide studies or including other first-tier techniques,
such as karyotyping or microarray. Further, diagnostic
yields are typically higher in syndromic cases or those with
multiple congenital anomalies.48,49 We note that our study
was not population-based; therefore, the true diagnostic
yield remains to be determined.

We identified LP variants in 39 genes. Although several
genes had multiple variants, few individual variants
recurred, underscoring the extensive allelic and genetic
heterogeneity of OFCs. We observed patterns of variation
across OFC subtypes consistent with the literature. For
example, we found COL2A1 variants exclusively among CP
cases,50 TFAP2A variants were found exclusively among
CLP cases,51 and IRF6 variants were found in either CP or
CLP cases.52 Interestingly, despite a strong genotype-
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phenotype correlation between GRHL3 608317and CP,53,54

the only LP variant identified in GRHL3 was in a CL case.
Because of differences in sample sizes for each OFC sub-
type, we were unable to quantitatively analyze genotype-
phenotype correlations for each gene; therefore, these
remain anecdotal observations requiring follow-up in larger
data sets.

Interpreting a VUS is a considerable challenge. Nearly
62% of variants were classified as VUS, most of which were
missense variants. The effect of missense variants is often
difficult to interpret without independent functional evi-
dence, especially for genes with high allelic heterogeneity.
There were multiple genes (eg, PRICKLE1) for which VUS
were identified in cases while 0 VUS were identified in
controls. PRICKLE1 was previously evaluated through
family-based association studies and showed evidence of
association with OFCs.55 Here, we found a similar, but
nominally significant, effect on OFC risk. Therefore, it is
likely these data sets are underpowered to detect genes with
a burden of rare variants and the top-ranked genes should be
considered for further analysis pending functional testing to
sort out the effect of identified variants.

It is important to note that this study was conducted on a
cross-sectional cohort from multiple recruitment protocols
intended for research, and it is not representative of all OFC
cases that may be referred from craniofacial clinics. Clinical

diagnostics and differential diagnoses are aided by detailed
phenotyping and collection of family histories, but data
availability is limited for specific populations in this cohort.
Although those with multiple congenital anomalies and sig-
nificant developmental delays were likely excluded and such
individuals should represent a minority of the data set, the
recruitment timing, varying skills of the clinical and research
teams, and different recruitment goals make this a highly
heterogeneous cohort with incomplete phenotypic data,
which is needed for the clinical setting. However, many OFC
syndromes show incomplete penetrance and variable ex-
pressivity, which can complicate a diagnosis based on
phenotype alone evenwhen detailed phenotyping is available.
In this study, we estimated the penetrance of OFCs for
transmitted alleles but could not estimate the extent of variable
expressivity of other phenotypic features. Moreover, these
estimates represent global penetrance, not gene-level, which
requires additional investigation in larger cohorts. Nonethe-
less, the low penetrance of LP variants was striking because
many variants were predicted to be “loss-of-function.” The
ideal cohort to fully evaluate penetrance and expressivity
would be a prospectively recruited, deeply phenotyped, and
sequenced cohort of sequential cases, which are difficult and
costly to assemble. Lastly, we only reviewed some variants to
limit variant “noise”; however, some variants that did not
meet our prioritization criteria could be disease-causing.
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Sequencing studies such as this one and those investi-
gating the functional consequences of variants in model
systems are necessary to advance research translation to
clinical practice. Although panel-based clinical tests will
inevitably be replaced by GS, our results offer insight into the
breadth of genes that may be found from clinical sequencing.
Our results suggest that there is value in genetic testing of CP
cases but limited utility in using panels for CL cases. It re-
mains to be seen if the yield differences are because of dif-
ferences in architecture (ie, fewer highly penetrant variants in
CL) or differences in panel content that are insufficient for
CL. Besides the potential clinical applications, we highlight
the critical need for high-throughput validation to quantita-
tively distinguish the effects of individual rare variants.
Future work in this area should allow for improved variant
interpretation in a clinical setting, a greater understanding of
the genes influencing craniofacial birth defects and help
explain the variable penetrance observed in this study.

Data Availability

The case data, including cleft subtype and associated genome
sequencing data, analyzed and reported in this manuscript
were accessed from the database of Genotypes and Pheno-
types (dbGaP; European trios, dbGaP: phs001168.v2.p2;
Colombian trios, dbGaP: phs001420.v1.p1; Taiwanese trios,
dbGaP: phs000094.v1.p1) and from the Kids First Data
Resource Center. The control data are available from
public data repositories as described in https://www.inter
nationalgenome.org/data-portal/data-collection/30x-grch38.
Sample IDs in the supplemental data are the same as the “Case
IDs” on the Kids First Cavatica data portal.
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