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ABSTRACT
◥

Purpose: Identifying molecular and immune features to guide
immune checkpoint inhibitor (ICI)-based regimens remains an
unmet clinical need.

Experimental Design: Tissue and longitudinal blood specimens
from phase III trial S1400I in patients with metastatic squamous
non–small cell carcinoma (SqNSCLC) treated with nivolumab
monotherapy (nivo) or nivolumab plus ipilimumab (nivoþipi)
were subjected to multi-omics analyses including multiplex immu-
nofluorescence (mIF), nCounter PanCancer Immune Profiling
Panel, whole-exome sequencing, and Olink.

Results: Higher immune scores from immune gene expression
profiling or immune cell infiltration by mIF were associated with
response to ICIs and improved survival, except regulatory T cells,
which were associated with worse overall survival (OS) for patients
receiving nivoþipi. Immune cell density and closer proximity of
CD8þGZBþ T cells to malignant cells were associated with

superior progression-free survival and OS. The cold immune
landscape of NSCLC was associated with a higher level of chro-
mosomal copy-number variation (CNV) burden. Patients with
LRP1B-mutant tumors had a shorter survival than patients with
LRP1B-wild-type tumors. Olink assays revealed soluble proteins
such as LAMP3 increased in responders while IL6 and CXCL13
increased in nonresponders. Upregulation of serum CXCL13,
MMP12, CSF-1, and IL8 were associated with worse survival
before radiologic progression.

Conclusions: The frequency, distribution, and clustering of
immune cells relative to malignant ones can impact ICI efficacy
in patients with SqNSCLC. High CNV burden may contribute
to the cold immune microenvironment. Soluble inflammation/
immune-related proteins in the blood have the potential to
monitor therapeutic benefit from ICI treatment in patients with
SqNSCLC.
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Introduction
Immune checkpoint inhibitors (ICI) targeting programmed cell

death protein 1 (PD-1; e.g., nivolumab, pembrolizumab, cemiplimab)
or its ligand PD-L1 (e.g., atezolizumab) have become pillars of
treatment in both frontline and salvage settings for patients with
advanced non–small cell lung cancer (NSCLC; refs. 1–4). In addition,
recent efforts have led to multiple approved frontline regimens
incorporating chemotherapy and other ICIs with anti-PD-1/PD-L1
antibodies (5–8). However, in the salvage setting, anti-PD-1/PD-L1
monotherapy remains the treatment of choice for ICI-na€�ve advanced-
stage NSCLC (9, 10).

Ipilimumab is an ICI targeting CTL-associated protein 4 (CTLA-4).
Its dual inhibition with PD-1/PD-L1 may have synergistic effects on
the anticancer immune response, given the complementary functions
of these two pathways. The combination of nivolumab with ipilimu-
mab (nivoþipi) was demonstrated to have superior efficacy than
nivolumab alone in patients with advanced melanoma (11, 12). For
patients withmetastatic NSCLC, ipilimumab plus nivolumab has been
approved by the FDA in the frontline setting with or without con-
current chemotherapy (7, 8, 13, 14). In the salvage setting, a recent
phase III study, S1400I, evaluated the efficacy of nivoþipi versus
nivolumab monotherapy (nivo) in patients without previous ICI
treatment for squamous NSCLC (SqNSCLC; ref. 15). The study did
not show that ipilimumab plus nivolumab improved clinical out-
comes. However, progression-free survival (PFS) and overall survival
(OS) curves separated during later follow-up, suggesting that a subset
of patients may benefit from combination treatment with ipilimumab
and nivolumab.

Understanding themechanisms underlying response and resistance
to ICIs and establishing predictive molecular and immune features to
identify patients who will benefit the most from ICI therapy remain
unmet clinical needs. High PD-L1 expression is associated with
improved outcomes in patients receiving ICI monotherapy (1, 8).
However, the geographical heterogeneity of PD-L1 expression between
primary tumors and metastatic sites and even between different
regions within the same tumors—as well as the potential dynamic
changes in PD-L1 expression over time—have raised questions about

its reliability as a predictive biomarker (16, 17). Although tumor
mutational burden (TMB) has been approved as a predictive marker
for anti-PD-1/PD-L1 treatment for melanoma and NSCLC, and
several other cancer types (18), one study foundno correlationbetween
TMB or PD-L1 with anti-PD-1 plus anti-CTLA-4 therapy in patients
with NSCLC (19). Furthermore, the predictive value of PD-L1 and
TMB becomes less clear when chemotherapy is added. These findings
underscore the complexity of molecular determinates of the tumor
immune microenvironment and response to ICIs.

In this study, we sought to elucidate the immune and molecular
mechanisms that affect benefit from ICIs in patients with advanced
SqNSCLC. Toward this end, we integrated immune and multi-omics
profiling platforms supported by Cancer Immune Monitoring and
Analysis Centers (CIMAC) in the current study. Specifically, we
performed multiplex immunofluorescence (mIF), gene expression
profiling (ncounter PanCancer Immune Profiling Panel), whole-
exome sequencing (WES), and Olink proteomics on tissue and blood
specimens from the S1400I trial to identify molecular or immune
factors associated with better prognoses in patients treated with anti-
PD-1 monotherapy versus anti-PD-1/CTLA-4 dual combination.

Materials and Methods
Study population and human tissue samples

Lung-MAP (S1400I, NCT02785952) was a multicenter, open-label,
phase III randomized clinical trial. The substudy Lung-MAP-I
(S1400I) was conducted from December 18, 2015, to April 23,
2018, through the National Clinical Trials Network and led by the
SWOG Cancer Research Network. The study was conducted in
accordance with the Declaration of Helsinki and the Lung-MAP
design has been described previously (15). Briefly, the trial compared
nivoþipi with nivo in patients with chemotherapy-pretreated, immu-
notherapy-na€�ve, advanced SqNSCLC. Twohundred fifty-two patients
were randomly assigned to receive nivoþipi (n ¼ 125) or nivo (n ¼
127). The clinical efficacy endpoints were OS, PFS, duration of
response, and best objective response by RECIST 1.1. Each site
required approval by the U.S. NCI central Institutional Review Board
or approval by their local Institutional Review Board. Written,
informed consent was required for all patients prior to registration.

Available tumor tissue samples and blood samples (N ¼ 160;
Supplementary Fig. S1) submitted for Lung-MAP screening were
provided by the SWOG tissue bank. The clinical information for
correlative studies in collaboration with the CIMAC–Cancer Immu-
nologic Data Commons (CIDC) Network is shown in Supplementary
Table S1 across the different assays.

mIF staining and analysis
mIF staining was performed in 82 screening tumor tissue samples

(nivoþipi ¼ 38, and nivo ¼ 42; Supplementary Table S1). Unstained
slides from formalin-fixed, paraffin-embedded (FFPE) tissue were
received from the SWOG bank and stained using methods previously
described and validated (20). Briefly, 4-mm-thick FFPE tumor sections
were stained using an automated staining system (LeicaMicrosystems)
and twomIF panels with the following antibodies: Panel 1, cytokeratin
(CK), CD3, CD8, PD-1/PD-L1, andCD68 and Panel 2, CK, CD3, CD8,
CD45RO, granzyme B (GZB), and FOXP3. Antibody clones, dilutions,
and RRIDs are included in Supplementary Table S2 and have been
described previously (20). All the markers were stained in sequence
using their respective fluorophore contained in the Opal 7-Color
Automation IHCKit (catalog no. NEL821001KT; Akoya Biosciences).
The slides were scanned using the Vectra/Polaris 3.0.3 (Akoya

Translational Relevance

Identifying molecular and immune features to guide immune
checkpoint inhibitor (ICI) regimens remains an unmet clinical
need. We performed multi-omics analysis of biospecimens from a
phase III trial LUNG-MAP S1400I that compared ipilimumab
combined with nivolumab versus nivolumab monotherapy in
patients with metastatic lung squamous cell carcinoma. An overall
cold tumor immune microenvironment correlated with high chro-
mosomal copy-number variant burden and was associated with
inferior benefit from ICIs. In addition to the immune cell density,
the proximity and local neighborhood clustering of a subset of
immune cells to tumor cells also impacted the benefit from ICI
therapy. Interestingly, patient survival was decreased with LRP1B-
mutant tumors, but not with LRP1B-wild type tumors. Many
soluble proteins related to inflammation or T-cell and dendritic
cell activation correlated with clinical outcome from ICI therapy.
Together, these immune features highlight the potential of bio-
marker-based strategies to select patients for ICI-based regimens
and dynamically monitor their response.
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Biosciences) at lowmagnification, 10� (1.0 mm/pixel) through the full
emission spectrum and positive tonsil controls from the run staining to
calibrate the spectral image scanner protocol (21). A pathologist
selected representative areas inside the tumor using regions of interest
for scanning in high magnification by the Phenochart Software image
viewer 1.0.12 (931� 698 mm size at resolution 20�¼ 0.5 mm/pixel) to
capture various elements of tissue heterogeneity. Marker coexpression
was employed to identify malignant cells (CKþ), malignant cells
expressing PD-L1 (CKþPD-L1þ), and the cellular subsets of
tumor-associated immune cells (TAIC) listed in Supplementary
Table S3. Densities of each cell phenotype were quantified as the
number of cells/mm2 in the tumor compartment characterized by
group or nests of malignant cells, in the stroma compartment char-
acterized by the fibrous tissue present between the tumor nets, and in
both compartments described as a total. PD-L1þmalignant cells were
also expressed in percentages. The data were consolidated using R
studio 3.5.3 (Phenopter 0.2.2 packet; Akoya Biosciences).

Spatial point pattern distribution analysis
Using the point pattern distribution of the cell phenotypes relative

to malignant cells, we measured the distance from malignant cells
(CKþ) to TAICs included in each mIF panel using R studio 3.5.3
(Phenopter 0.2.2 packet). We applied the median nearest neighbor
function from malignant cells (CKþ) to different cell phenotypes to
determine where these TAICs were located; specifically, whether the
TAICs were close to (i.e., equal to or less than the median distance) or
far from (i.e., more than the median distance) the malignant cells
(CKþ) and associated with clinical outcomes.

Spatial organization of cells by type
Cells were subset by phenotype using the markers in the

mIF panels and examined as the following: Tumor/PD-L1þ
(CKþPD-L1þ), Tumor (CKþ), Other-Tcells (CD3þ), Other-
Tcells/PD-1þ (CD3þPD-1þ), Macrophages (CD68þ), Macrophages/
PD-L1þ (CD68þPD-L1þ), CTLs (CD3þCD8þ), CTLs/PD-1þ
(CD3þCD8þPD-1þ), CTLs/GBþ (CD3þCD8þGBþ), and Tregs
(CD3þCD8�Foxp3þ). The above phenotypes were used to visualize
the spatial organization of cells by type. This analysis was carried out
in R version 4.2.0 (R studio 2022.07.2).

Spatial neighborhood
Using the marked planar point pattern representations of each mIF

image, we calculated the spatially varying probabilities for each of the
phenotypes (described above). We used the spatstat toolbox (22)
which provides the relrisk function to identify areas of segregation
for a multitype (markers >2) marked point pattern. This function
estimates for each phenotype, the spatially varying probability or the
ratios of the probabilities, using kernel smoothing. The output of this
function was used to plot the contour of the spatially segregated
neighborhoods for each phenotype.

Identifying cell clusters in the local neighborhood
We identified cell clusters in each image using Euclidean distance

and a hierarchical clustering method. A minimum cluster size of 10
cells and distance ≤ 20 mm was the requirement for clustering. The
distance-based hierarchical clustering yielded the neighborhood
information in a matrix. The cells that did not form clusters were
labeled "Free_cell". The relative percentages of cells in each phe-
notype within a cluster were used to generate the heat map. We used
the SPIAT library (SPIAT version 1.0.4) to identify cell clusters and
made additions to the SPIAT functions as required for our analysis
using R version 4.2.0.

NanoString gene expression profiling
DNA and RNA were coextracted from FFPE specimens received

from the SWOGbank (Supplementary Table S1) and subjected toWES
and gene expression. TheRNA froma total of 38 FFPE samples (nivo¼
23 and nivoþipi¼ 15) passed the quality control (QC) and was run on
the nCounter platform using the PanCancer Immune Profiling Panel
(730 immune-related and 40 housekeeping genes) per the manufac-
turer’s instructions. Briefly, sampleswere hybridized overnight at 65�C
to probes; excess probes were washed using the automated prep station
and then imaged on the digital analyzer. All runs included a Human
Reference RNA control for batch correction. Data were processed and
normalized with NanoString’s nSolver analysis software (23). All
samples passed the post-run QC metrics, and no batch effects were
evident in the runs. In addition, gene expression profiles were decon-
voluted by TIMER and nSolver advanced analysis tools to infer
immune cells correlated to clinical outcomes.

WES data analysis
WES analysis was conducted using the CIDC WES pipeline on

tumor DNA from 50 tumors (nivo ¼ 28 and nivoþipi ¼ 22; Supple-
mentary Table S1) that passed the QC. DNA from paired peripheral
blood mononuclear samples was used as germ line control. WES
implements Gene Analysis Toolkit (24) best practices and identifies
somatic variants using Sentieon TNScope and Haplotyper algo-
rithms (25), respectively. Somatic variants are annotated using the
Variant Effect Predictor software (26). The pipeline uses an ensemble
of three callers, CNVkit (27), Sequenza (28), and Facets (29), to
characterize tumor copy-number variation (CNV), and the CNV
segments called by at least two callers were used to generate a high-
confident consensus set. Sequenza and FACETS were used to estimate
tumor purity and also PyClone-VI was utilized to infer clonal status of
mutations (30). PyClone v 0.13.1 (31) was used to perform mutation
clonality analysis. It is a Bayesian clustering method that enables
mutations to be grouped into putative clonal clusters by integrating
copy number, tumor purity (obtained from Sequenza), and variant
allele frequency data.

Olink serum soluble analyte assay
We performed circulating serum analyte measurements using

proximity extension assay (Olink) in 561 serum samples collected
longitudinally from 160 patients (Supplementary Table S1). A series of
92 proteins, such as cytokines and soluble immune checkpoints
included in the “immuno-oncology” panel, wasmeasured as described
previously (32). Protein levels were normalized using internal positive
and negative controls and quantified as log2 protein expressions
(NPX), which were subsequently used as input for downstream
analysis.

Correlative analysis and statistical methods
To evaluate whether the baseline biomarkers are prognostically

associated with survival, we dichotomized biomarker data by the
median and performed univariate survival analysis with the log-
rank test. OS and PFS were evaluated. The Cox proportional hazards
regression model was used for multivariate survival analysis (R
package Survival, https://CRAN.R-project.org/package¼survival;
ref. 33). We included TMB (≥10 or <10 mutations per Mb), PD-L1
(≥5 or <5%), and other statistically significant biomarkers identified
from univariate analysis in Cox models. Thresholds for TMB and PD-
L1 were determined from previous clinical studies (18). To assess
whether continuous biomarker datawere associatedwith response and
other clinical variables, we used nonparametric tests: Spearman rank
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correlation for continuous clinical variables, Mann–Whitney U test for
categorical clinical variables with two groups, and Kruskal–Wallis test
for categorical variables with more than two groups. In parallel, we also
dichotomized biomarker data and used the x2 test for a robust assess-
ment with responders. The Benjamini-Hochberg method (34) was used
for multiple testing adjustment of P values. The analysis was performed
on all samples and on samples in two treatment arms separately.

To explore the association of each baseline protein level with clinical
outcomes from the Olink data, we used logistic regression models
for best objective response and Cox proportional hazards models
for PFS and OS (R package Survival, https://CRAN.R-project.org/
package¼survival, RRID: SCR_021137; ref. 33). In separate regression
models, univariate analyses included only the protein expression
values, while the multiple variable analyses adjusted for additional
covariates (i.e., treatment, age, sex, race, smoking). Then, to investigate
the longitudinal changes in serum protein associated with treatment,
we usedmixed linear models (R package Dream and lme4; refs. 35, 36)
and the timepoints baseline, cycle 2 week 3, cycle 4 week 7, and cycle
5week 9 to quantify the effect of these variables and additional relevant
clinical parameters. These were analyzed with the treatment arms
nivoþipi and nivo. In ourmodels, eachproteinNPXwas considered an
independent variable. In contrast, phase, timepoints, and treatments
were considered dependent variables and other covariates as random
effects. This approach allowed us to quantify the variance across
proteins and approximate degrees of freedom of the hypothesis test
for each protein, thereby minimizing false-positive results. We used
F-tests for multiple coefficient comparisons and moderate t tests for
single coefficient comparisons.

To identify the differences between responders and nonresponders
at each timepoint and longitudinally, we used time as a dependent
variable. We jointly modeled survival with cytokine expression [R
packages lme4, rstanarm: Bayesian applied regression modeling via
Stan (RRID:SCR_024605), bayestestR, bayesplot: Plotting for Bayesian
Models (https://mc-stan.org/bayesplot/, RRID: SCR_024588); refs.
36, 37] to investigate the association of longitudinal protein levels
with survival outcomes. Themodel usedCox proportional hazards and
liner mixed regression and assessed the association of dynamic
biomarker changes with survival outcomes. In the random intercept,
the independent variable was the number of months from baseline to
biomarker collection, set as a natural spline with three knots (at most
three changing timepoints between baseline and progression/death).
The dependent variable was the Olink analyte NPX value. In the
survival analysis component, the independent variable includes the
treatment arms. The convergence of the Markov chain Monte Carlo
samples was assessed using several diagnostics: potential scale reduc-
tion factor, autocorrelation and trace plots, adequate sample size, and
Monte Carlo standard error (32, 38–40). Finally, we used the FDR as
the preferred method to correct for multiple hypothesis testing.
The thresholds for significance in the mixed linear models for differ-
ential expression tests were a log2 fold change of at least 0.5 and an
FDR < 0.05. The joint model’s threshold for significance was at least
1 unit increase in log2 NPX expression and FDR < 0.05.

For integrative analysis, we applied recursive partitioning tree
analysis (RPART; rpart library in R, https://cran.r-project.org/web/
packages/rpart/vignettes/longintro.pdf)andrandomforest (refs.41,42;
RF, randomForest and randomForestSRC libraries in R) on Olink
(N ¼ 159) and mIF (N ¼ 82) data. We fitted RPART tree using
responder status as the dependent variable, 92 baseline level Olink
proteins and 17 mIF markers as predictors. We also created decision
tree survival prediction model. Separate RPART trees were fitted for
mIF markers from different compartments along with Olink proteins.

Theminimumnumber of observations in a node for a split was set to be
15; 10-fold cross-validation was carried out and results used for tree-
pruning. For RF, we used 81 samples with both Olink and mIF data.
Bootstrap the data to create bootstrap samples; grow a survival tree for
each bootstrap sample with split criteria based on the log-rank
statistics; continue the recursive partition; and calculate importance
of each predictor by averaging over the forest.

Data availability
In conjunction with the clinical study principal investigator/chair,

the NCI-sponsored network and CIDC, deidentified data will be made
publicly available by request under the dbGaP PHS accession number:
phs003412.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs003412.v1.p1).Questions and requests for addi-
tional data can be directed to the corresponding authors.

Results
Clinical characteristics

There were 31 responders (19.4%), including complete responses,
partial responses, and unconfirmed partial/complete response; 63
patients with stable disease (39.4%); and 61 patients (38.1%) with
progressive disease (i.e., increasing disease and symptomatic deteri-
oration). Overall, 31 patients (19.4%) were alive at the end of the study,
and the median OS was 10.02 months (range: 0.3–40.3). One hundred
and forty-eight patients (92.5%) had disease progression, with a
median PFS of 3.4 months (range: 0.3–36.6; Supplementary Table S1).

An active immune infiltration is associated with benefit from ICI
treatment

We first analyzed the mIF and gene expression profiling data from
baseline tissue samples taken before ICI treatment to identify immune
features associated with clinical benefit. mIF data revealed higher
densities of various immune cells in the stroma compartment com-
pared with the tumor compartment across the whole cohort (nivoþipi
and nivo arms), with no significant differences between the nivoþipi
and nivo arms (Supplementary Table S4). The overall immune cell
densities were higher in the responders across both arms, although
the difference did not reach statistical significance. In the whole
cohort, higher median densities of PD-1þ cytotoxic T cells (CTL;
CD3þCD8þPD-1þ) in the stroma (>4.1 cells/mm2, P ¼ 0.042),
presence of GZBþ CTLs in the tumor compartment (>0 cells/mm2,
P ¼ 0.011), and higher median densities of memory T cells
(CD3þCD45ROþ; >23.4 cells/mm2, P ¼ 0.041) and PD-1þ T cells
(CD3þPD-1þ; >16.0 cells/mm2, P¼ 0.023) in the total compartment
(tumor plus stroma) were associated with longer PFS (Supplementary
Table S5). Similarly, transcriptomic analysis demonstrated that
patients having tumors with a higher expression of genes associated
withmyeloid infiltration, immune recruitment, and inflammation had
superior clinical outcomes in the whole cohort (Table 1; Supple-
mentary Table S6). The associations between higher expression
of CD163, BLNK, IRF1, and FCGR2A with better OS (P < 0.05) and
higher expression of MAPK11 with worse OS remained significant
in subsequent multivariate analyses after adjustments for known
predictive biomarkers, including TMB and PD-L1.

In the nivo arm, higher densities of memory T cells
(CD3þCD45ROþ) in the total compartment (median> 24.6 cells/mm2,
P ¼ 0.028) and memory/regulatory T cells (Treg; CD3þCD8-
CD45ROþFOXP3þ) in the total compartment (median> 4.6 cells/mm2,
P < 0.001) and the stroma compartment (median > 12.0 cells/mm2,
P ¼ 0.049) were associated with longer PFS (Table 2; Fig. 1A and B).
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Higher densities ofmemory/Tregs (CD3þCD8�CD45ROþFOXP3þ)
in the total compartment (median > 4.6 cells/mm2, P ¼ 0.026) were
associatedwithbetterOS (Table2;Fig. 1C). In thenivoþipi arm, higher
densities of PD-1þ T cells (CD3þPD-1þ) in the total compartment
(median > 16.0 cells/mm2, P ¼ 0.0347) and the presence of GZMþ
CTLs (CD3þCD8þGZBþ) in the tumor compartment (>0 cells/mm2,
P¼ 0.0154) were associated with longer PFS (Table 2; Fig. 1D and E).
Conversely, higher densities of Tregs (CD3þCD8�FOXP3þ) in the
total compartment (median > 12.4 cells/mm2, P ¼ 0.0418) were
associated with worse OS (Table 2; Fig. 1F). In the nivoþipi arm,
deconvolution of transcriptomic profiling data by TIMER and nSolver
demonstrated significantly higher total immune cells (CD45þ), a
higher exhausted CD8þ T-cell score, and a higher neutrophil score
in responders versus nonresponders (P < 0.05, Fig. 1G–I), further
supporting that overall higher immune infiltration is associated with
superior clinical benefit from ICI treatment.

High infiltration of CTLs is associatedwith exceptional response
to ICIs

Next, we specifically investigated exceptional responders, defined as
patients who had no progression for at least 18 months and were still
alive by 24 months, versus early progressors, who survived more than
1 month but had progressive disease and died within 6 months after
initiating ICI treatment. By these definitions, there were 11 exceptional
responders and 44 early progressors across the total trial cohort
(Fig. 2A). There were more exceptional responders in the nivoþipi
arm than in the nivo arm (7 of 73 vs. 4 of 87, P ¼ 0.35). Among these
patients, 8 exceptional responders and 21 early progressors had tissues
available formIF, and 6 exceptional responders and 8 early progressors
had tissues available for gene expression analysis.

By mIF, we observed higher densities of CTLs (CD3þCD8þ) and
memory CTLs (CD3þCD8þCD45ROþ) in the total compartment in
exceptional responders than in early progressors (CTLs: median,
152.1 vs. 27.3 cells/mm2; P ¼ 0.032; memory CTLs: median, 31.2 vs.
2.1 cells/mm2; P ¼ 0.040; Supplementary Table S7). Representative
images from an exceptional responder are shown in Fig. 2B and C.
Moreover, in the tumor compartment, we observed higher densities of
GZBþCTLs (CD3þCD8þGZBþ) in the exceptional responders than
the early progressors (median, 3.6 vs. 0 cells/mm2, P¼ 0.027; Fig. 2D).
Representative images from an early progressor showing a lower
density of immune infiltration are shown in Fig. 2E and F.

Furthermore, distinctive spatial neighborhoods and cell organiza-
tion in tumor microenvironment (TME) were observed in exceptional
responders (n ¼ 6) relative to early progressors (n ¼ 6; Fig. 2G–J;
Supplementary Figs. S2 and S3). Shown in Fig. 2G and Supplementary
Figs. 2A and 3A is the distribution of different cell subsets relative to
each other, with higher immune infiltration and higher CTL densities
in the TME of exceptional responders versus early progressors. We
then used spatially varying probabilities of different cell phenotypes to
determine the segregation among immune subsets andmalignant cells,
and a contour plot to represent the neighborhoods within the TMEs.
These analyses revealed a higher spatial segregation of immune cell
subsets relative tomalignant cells in the early progressors as compared
with the exceptional responders (Fig. 2H; Supplementary Figs. S2B
and S3B) in line with above observation that higher densities of CTLs
in the tumor region positively associated with survival. Through
distance-based hierarchical clustering, we identified local cell clusters
within the TME and observed distinct compositions in exceptional
responders versus early progressors. The clusters (cells ≥ 10 within
interacting distance 20 mm) in exceptional responders often consisted
of CTLs and other T-cell populations in the proximity to tumor cells
(Fig. 2I and J; Supplementary Figs. S2C, S2D, S3C, and S3D). Finally,
infiltration of neutrophils inferred from gene expression profiling data
was significantly higher in exceptional responders than early progres-
sors (P ¼ 0.029; Supplementary Fig. S4).

Table 1. Associations of genes with outcomes by arm using
NanoString.

Arm Gene Outcome HR CI P

nivo FADD OS 3.63 1.32–9.93 0.002
CLEC4C OS 3.06 1.16–8.09 0.009
DNAJC14 OS 2.96 1.13–7.79 0.010
CREB5 PFS 4.04 1.41–11.56 <0.001
FADD PFS 2.79 1.08–7.19 0.007
IL19 PFS 2.65 1.04–6.75 0.009
PIN1 PFS 0.36 0.15–0.90 0.005

nivoþipi CCL22 OS 4.26 1.16–15.66 0.006
CD163 OS 0.21 0.06–0.71 0.007
CXCL10 OS 0.22 0.06–0.74 0.009
CXCL11 OS 0.22 0.06–0.74 0.009
IFI27 OS 0.22 0.07–0.76 0.010
ITGB3 OS 0.17 0.05–0.62 0.002
MAPK11 OS 4.48 1.20–16.68 0.004
MAPK8 OS 0.19 0.06–0.67 0.004
C1R PFS 0.22 0.07–0.75 0.010
C1S PFS 0.21 0.06–0.71 0.007
CD163 PFS 0.18 0.05–0.64 0.002
ETS1 PFS 0.19 0.06–0.67 0.004
FCGR2A PFS 0.20 0.06–0.69 0.004
IL15RA PFS 0.22 0.07–0.75 0.010
IL32 PFS 0.19 0.06–0.67 0.004
ITGB3 PFS 0.17 0.05–0.60 0.001
MAPK8 PFS 0.20 0.06–0.71 0.006
PRKCD PFS 0.19 0.05–0.66 0.004
STAT2 PFS 0.22 0.06–0.74 0.009

Abbreviations: CI, confidence interval; nivo, nivolumab; nivoþipi, nivolumab
plus ipilimumab; OS, overall survival; PFS, progression-free survival.

Table 2. Associations between cell phenotypes by compartment and by treatment arm.

Arm Compartment Cell phenotype Outcome HR CI P

nivoþipi Tumor CD3þCD8þGZBþ PFS 0.38 0.18–0.81 0.015
Total CD3þCD8-FOXP3þ OS 2.33 0.99–5.51 0.042

CD3þPD-1þ PFS 0.45 0.21–0.97 0.035
nivo Stroma CD3þCD45ROþFOXP3þ PFS 0.58 0.32–1.05 0.049

Total CD3þCD45ROþ PFS 0.55 0.31–1.00 0.028
CD3þCD45ROþFOXP3þ OS 0.52 0.28–0.96 0.026
CD3þCD45ROþFOXP3þ PFS 0.42 0.23–0.78 <0.001

Abbreviations: GZB, granzyme B; nivo, nivolumab; nivoþipi, nivolumab plus ipilimumab; PFS, progression-free survival; Total, tumor plus stroma.
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Close proximity of T cells and malignant cells is associated with
benefit from ICIs

Given the recognized importance of distance between different cells
and the clustering of CTLs and tumor cells observed in exceptional

responders, we expanded our analysis to understand the spatial
relationship between the cell types associated with clinical outcome
described above with other cells within the TME (43, 44). In the
whole cohort, shorter distances from malignant cells (CKþ) as well as

Figure 1.

Kaplan–Meier survival curves of cellular densities and immune signatures. In the nivo arm, Kaplan–Meier survival curves show high cellular densities (>the median
value used as cutoff) of memory T cells (CD3þCD45ROþ; A) in the total compartment and CD45ROþ Tregs (CD3þCD45ROþFOXP3þ; B) in the stroma
compartment were associated with better PFS. C, CD45ROþ Tregs (CD3þCD45ROþFOXP3þ) in the total compartment were associated with better OS.
Representativemultispectral images show lowandhigh cell phenotypedensities forA–C. In the nivoþipi arm, theKaplan–Meier survival curves show that high cellular
densities of PD-1þ T cells (CD3þPD-1þ; D) in the total compartment and GZBþ CTLs (CD3þCD8þGZBþ; E) in the total compartment were associated with better
PFS. Conversely, Tregs (CD3þCD8�FOXP3þ;F) in the total compartmentwere associatedwith poorOS. Representativemultispectral images show lowandhigh cell
phenotype densities for D–F. Cell scoring derived from gene expression profiling using nSolver shows higher scores for CD45þ immune cells (G), CD8þ T cells
(H), and neutrophils (I) in responders compared with nonresponders in the nivoþipi arm.
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PD-L1þmalignant cells (CKþPD-L1þ) to CTLs (CD3þCD8þ; medi-
an, 139 and 148 mm) were associated with better PFS (P ¼ 0.045 and
P ¼ 0.027, respectively); shorter distances from malignant cells
(CKþ) to GZBþ CTLs (CD3þCD8þGZBþ) were associated with
significantly longer PFS (P ¼ 0.035) and a trend toward longer OS
(P¼ 0.054; Fig. 3A–E). In the nivoþipi arm, shorter distances of CTLs
(CD3þCD8þ) as well as GZBþ CTLs (CD3þCD8þGZBþ) from
malignant cells (CKþ; P ¼ 0.045 and, P ¼ 0.026, respectively) and
shorter distances between CTLs (CD3þCD8þ) from PD-L1þ malig-
nant cells (CKþPD-L1þ; P ¼ 0.033) were associated with longer
PFS (Fig. 3F–H). In addition, shorter distances of GZBþ CTLs
(CD3þCD8þGZBþ; median, 245 mm) from malignant cells (CKþ)
were associated with longer OS (P ¼ 0.045; Fig. 3I). Taken together,
these results suggest that the immune cells’ density and spatial distri-
bution may impact response to ICI therapy.

High CNV burden is associated with cold immune infiltration
We next performed WES (n ¼ 50) with the intent of identifying the

genomic basis underlying the immune features associated with benefit
fromnivoþipi versus nivo in thesemetastatic squamous cell carcinomas.
A total of 30,081 nonsilent mutations were detected with transversions,
particularly C>A, as the predominant substitutes, which was expected
because most patients were smokers (Supplementary Fig. S5A). The
commonly mutated cancer genes included TP53, LRP1B, CDKN2A,
AR1D1A, and PIK3CA (Supplementary Fig. S5B). High CNV burden
was associated with a colder tumor immune microenvironment, as
evidenced by lower infiltration levels of overall CD3þ T cells from mIF
and lower levels of various immune signatures derived from gene
expression profiling (Supplementary Fig. S6A and S6B). Importantly,
CNVburdenwas not associatedwith estimated tumorpurity, suggesting
the correlation between high CNV burden and cold tumor immune
microenvironment was not due to relative high tumor cell density
leading todilutionof immunecells. Taken together, these results indicate
that chromosomal instability may be an underlying genomic feature
associated with immune evasion in metastatic SqNSCLC. Among the
commonly mutated cancer genes, mutations in LRP1B, a recently
recognized potential regulator of the inflammatory response, was asso-
ciated with less infiltration of GZBþ CTLs (CD3þCD8þGZBþ; Sup-
plementary Fig. S7A; refs. 45, 46). Interestingly, LRP1B mutations
were enriched in nonresponders but not in responders (18/19 vs.
2/11, P ¼ 0.049). Furthermore, patients with LRP1B mutations had
significantly (P ¼ 0.008) shorter PFS (Supplementary Fig. S7B) and
numerically shorter OS in the overall cohort (Supplementary Fig. S7C).
LRP1B-mutant tumors were not associated with short PFS in the
nivoþipi arm (Supplementary Fig. S7D) but were in the nivo arm
(P ¼ 0.033; Supplementary Fig. S7E).

Dynamic changes in peripheral blood cytokines are associated
with benefit from ICIs

Blood-based biomarkers are attractive because they are non-
invasive, dynamic, and less impacted by intratumor heterogeneity
than tissue-based markers (47). We performed Olink proximity
extension assay using the immuno-oncology panel assaying a series
of 92 proteins in 561 serum samples collected longitudinally from
160 patients. Using mixed models to account for demographic
and relevant clinical covariates with multiple testing adjustments,
several serum chemokines (CXCL9, CXCL10, CXCL13, CCL19) and
activated T-cell markers (PD-1, IFNg , IL12, IL10) were found
durably increased from baseline with either nivo or nivoþipi
(Fig. 4A and B), indicating the ICIs’ immune regulating effect.
Multiple markers of immune activation and priming (ICOS-L,

LAMP3/DC-LAMP, IL4, IL13, NRC1, CD5) were found increased
at baseline or early during treatment in responders, regardless of
treatment type (P < 0.05; Fig. 4C andD), in line with associations of
these important immune processes with clinical response to ICI.
Conversely, macrophage-derived and hyperinflammation markers,
such as IL6, IL8, CXCL13, CSF-1, TNFSF14/LIGHT, and CCL23, as
well as likely stromal or tumor-derived markers, such as VEGFA,
HGF, and HO-1, were significantly upregulated in nonresponders
at baseline or after ICI preceding radiologic progression, with
some differences based on treatment received for CXCL13 and
CSF-1 (P < 0.05; Fig. 4C and D). Joint modeling of survival with
Olink analytes showed an increased risk of death (HR > 1) with
higher longitudinal serum levels of CXCL13, MMP12, CSF-1, and
IL8, which was confirmed with independent Kaplan–Meier analyses
based on median protein levels at baseline (Fig. 4E). Similar results
were generally observed in the subset of patients with extreme
outcomes (exceptional responders and early progressors), where
LAMP3/DC-LAMP was higher while CXCL13, CCL23, and
TNFSF14 were lower in exceptional responders at baseline com-
pared with nonresponders (Fig. 4F; P < 0.05). Together with the
above-described data, and considering only baseline markers, these
results suggest that an activated T-cell signature (cytotoxic effector
T cells and DC-LAMP) was important for responsiveness to treat-
ment with either nivo or nivoþipi, while a hyperinflammatory
milieu (IL6, IL8, CXCL13, CCL23, TNFSF14/LIGHT, CSF-1,
MMP12) had an adverse impact on response and OS.

Integrative analysis of immune features across different
platforms

The antitumor immunity and response to ICIs is often deter-
mined at different molecular levels. The multiomics profiling in
this study provided a unique opportunity for integrative analysis
to understand the molecular and immune features associated
with ICI benefit. We first performed recursive partitioning on
Olink, mIF, NanoString, and WES data for classification of
responders (Supplementary Fig. S8A and S8B). We identified
that proteins from Olink provide good prediction on response.
However, mIF markers did not contribute significantly in the
decision tree, which might be due to relatively small sample size
for mIF (n ¼ 159 for Olink and n ¼ 82 for mIF). We next created
a decision tree survival prediction model and observed that
Cytotoxic.T.cells.antigen.experienced (CD3þCD8þPD-1þ) together
with IL6, LAG3 and MICA.B separate patients into sub-populations
with different survival. Furthermore, we applied random forest
classifier, which identified Cytotoxic.T.cells.antigen.experienced
(CD3þCD8þPD-1þ) and IL6 as important variables. NanoString
and WES did not contribute to the association between omics
markers and outcomes likely due to insufficient samples with data
from these platforms.

Discussion
Identifying novel biomarkers for ICI response is challenging

because the molecular determination of TME and host immune
response is complex and heterogeneous across different patients. A
large sample size to control interpatient heterogeneity andmulti-omics
to identify the determinates at different molecular levels are ideal but
challenging. Therefore, maximizing the use of clinical, pathologic,
molecular data and learning from each patient, particularly from
clinical trials and careful analysis is key to pave the way to advance
our understanding and ultimately the efficacy of ICI.
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Figure 2.

Immune infiltration in exceptional responders and early progression across the arms. A, The upper level of the event chart shows the exceptional responders, and
the lower level shows the early progression/death group. The solid red circles represent deaths in theOS analysis, the open red circles indicateOS-censored patients,
the solid blue triangles indicate progression in the PFS analysis, the open blue open triangles indicate PFS-censored patients, and the violet X indicates the time to
the first response. (Continued on the following page.)
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In this study, we performed mIF, gene expression profiling, WES,
and OLINK on the previous samples from S1400I and identified
known and novel molecular features associated with nivo versus
nivoþipi combination. Responders demonstrated higher densities of
multiple immune cell types defined by mIF. Analysis of CTL popula-
tions revealed that GZBþ CTLs (CD3þCD8þGZBþ) located in the
tumor compartment were associated with better PFS. This was cor-
roborated by analyzing the spatial organization of cell phenotypes,
whereas higher immune cell population in the tumor region was seen
in the TME of exceptional responders than that of early progressors.
On the other hand, higher densities of Tregs (CD3þCD8�FOXP3þ)
in the total compartment correlated with worse OS in the nivoþipi
arm. This highlights the emerging dichotomy regarding the impact
of ICI therapies on Treg subsets and function (48), as these combina-
tions may not modulate some Treg subsets and dominance of CTLs is
needed to overcome local immune suppression. Conversely, higher
densities of memory T cells (CD3þCD45ROþ) and Treg/memory T
cells (CD3þCD8�CD45ROþFOXP3þ) were associated with better
PFS in the nivo arm. As PD-1 targeting has been shown to result in
the reactivation of T cells already present within the tumor immune
microenvironment, the presence of Treg/memory T cells at baseline
may be an essential biomarker to delineate the need for inclusion of
ipilimumab as opposed to a nivolumab alone approach. Estimating
the immune subsets using TIMER and nSolver software demonstrat-
ed that a higher immune presence was associated with improved
outcome. These results emphasize that an active immune response
within the TME is required for a favorable clinical outcome in this
setting, which is supported by multiple findings identifying mechan-
isms of response to ICI-based therapeutic strategies across various
cancer types (49–51).

The TME is composed of various immune cells and stroma cells
entangled with cancer cells. In addition to the densities of different
cells, the spatial distribution and proximity among various cell types
are also essential features with important impact on the functional
status of the tumor immune microenvironment (52, 53). mIF data
from this study provided an opportunity to assess the spatial rela-
tionship of different cellular components within the tumor immune
microenvironment and their association with clinical outcomes from
ICI treatment. Using the spatial point metrics through the nearest
neighbor analysis, we observed that tumors with higher densities of
GZBþ CTLs close to malignant cells were associated with better PFS
and OS in the nivoþipi arm, suggesting that cell-to-cell distribution
and especially CTLs play an important role in response to ICIs as
shown by others studies in NSCLC (54). The organization of cells into
clusters based on distance also demonstrated that the CTLs and
malignant cells cluster more frequently in exceptional responders
than early progressors suggesting a preformed antitumor response
that is aided by the ICI.

We used WES to identify genomic features underlying particular
immune features and found that a higher CNV burden was associated
with a lower level of immune cell infiltration overall. Similarly, CNV

burden was negatively associated with immune scores derived from
immune gene expression profiling. These findings are in line with
previous findings in different cancer types suggesting that chromo-
somal instability may be a common genomic alteration underlying
immune evasion across human malignancies (53, 55–58). Interesting-
ly, we also found that patients with LRP1B-mutant tumors had a
reduced survival compared with patients without LRP1B mutations.
LRP1B has been identified as a putative tumor suppressor and is
frequently inactivated in NSCLCs (45). Recently, LRP1Bmutation was
reported to be associated with better prognosis in melanoma and
NSCLC after anti-PD-1 therapy (46). However, in our cohort, we
observed thatLRP1Bmutationwas associatedwith aworseOS andPFS
in both the nivo arm and nivoþipi combination therapy arms. It is still
unclear whether the difference was due to different histology (pre-
dominantly adenocarcinoma in the previous study vs. exclusively
squamous cell carcinoma in the current study) or different ICI
(anti-PD-1 vs. anti-PD-1 with/without anti-CTLA-4) or low sample
size. Of note, the impact of LRPB1 mutations on cancer biology and
response to ICIs has not been clearly defined in different cancers. For
example, a study on renal clear-cell carcinoma reported worse prog-
nosis and suppressive antitumor immunity when LRPB1 was over-
expressed (59), and another found that LRPB1 mutations were asso-
ciated with inferior clinical outcomes after ICI treatment in patients
with hepatocellular carcinoma (60).

Although tissue-based assays remain the gold standard for molec-
ular profiling for oncology practice, liquid biopsy, particularly periph-
eral blood–based assays, have gained more attention for molecular
profiling and disease monitoring across various cancers because they
are noninvasive, “real-time,” and less affected by intratumor hetero-
geneity (61, 62). In the era of immune-oncology, the Olink soluble
protein detection platform has emerged as a promising tool to assess
and monitor host immune response. Using Olink, we identified a high
level of protumorigenic factors, such as VEGFA and CCL23, and
inflammatory markers, such as IL6, IL8, and MMP12, that were
associated with inferior survival in this cohort of patients. These
findings suggest that general inflammation is detrimental in the
context of cancer and ICI therapy. In contrast, proteins involved in
T-cell and natural killer cell activation, such as LAMP3/DC-LAMP,
IFNg/IL4/IL13, and NRC-1, were associated with improved outcomes
after ICI therapy. It was unexpected that a high level of CXCL13 was
associated with poor response to ICI therapy and shorter survival,
given the recent studies reporting this chemokine working together
with DC-LAMP and playing essential roles in the establishment of
tertiary lymphoid structures in NSCLC (63). It is possible that the
relatively high levels of circulating CXCL13 in the serum do not reflect
relatively rare CD4þT cell–derived tumor tissue–specific expression of
CXCL13, and this emphasizes the limitations of soluble analytes as a
surrogate for local tumor events. Some analytes, such asCXCL9/10 and
soluble PD-1, were dynamically increased with treatment and mar-
ginally associated with outcomes in exceptional responders, in line
with previous reports (64). Of particular interest, other markers

(Continued.) Representative multispectral images of panels 1 (B) and 2 (C) show high levels of inflammatory cells in a sample from an exceptional responder patient.
D, Box plot shows GZBþ CTLs (CD3þCD8þGZBþ) in patients with exceptional response compared with patients with early progression/death. Representative
multispectral images of panels 1 (E) and 2 (F) show reduced immune infiltration in a progression/death patient sample. G, The spatial organization of immune and
malignant cell phenotypes for the two mIF panels is shown with an example each from exceptional responders and early progressors. The colors for the different
subpopulations are indicated under the panel phenotype legend (on the left). H, For the above images, segregation of different cell phenotypes based on their
spatially varying probabilities is shown as a contour plot. The colors of different neighborhoods are same as the panel phenotypes (above). I, For the above images,
Euclidean distance–based clusters of cells (10 or more) within 20 mm are identified. The clusters are represented by numbers and distinct colors. J, The relative
percentage composition of cell types within each cluster (above) is indicated in the heat map. The corresponding cluster colors are indicated below the heat map for
reference. The color scale representing percentage composition (0–100) is shown on the left.
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showed the strongest association with objective response during ICI
treatment, for example, lower CSF-1 or IL6 or higher IL13 at cycle 2.
This is reminiscent of findings from melanoma studies in which the
on-treatment biopsy was more informative for long-term benefit from

ICIs than the baseline biopsy, as the actual changes after treatment
reflect the host immune system’s response to ICIs more accurate-
ly (65, 66). Although soluble analytes are not ideal predictive biomar-
kers to select an optimal initial treatment regimen, if validated, these

Figure 3.

Kaplan–Meier survival curves of nearest neighbor distance from both arms. A, Upper and lower image showing proximity map overlay, where cyan dots represent
malignant cells (CKþ) and red dots represent T cells (CD3þ). White lines display distances from all malignant cells (CKþ) to neighboring T cells (CD3þ). Kaplan–
Meier survival curves show that distances (≤the median value used as cutoff) from malignant cells (CKþ) to CTLs (CD3þCD8þ; B) and GZBþ CTLs
(CD3þCD8þGZBþ; C), and malignant cells expressing PD-L1 (CKþPD-L1) to CTLs (CD3þCD8þ; D) were associated with better PFS when combining both
treatment arms. E, Kaplan–Meier OS curve for distances from malignant (CKþ) to GZBþ CTLs (CD3þCD8þGZBþ) in both arms. In the nivoþipi arm, Kaplan–Meier
survival curves show that close distances (≤the median value used as cutoff) from malignant cells (CKþ) to CTLs (CD3þCD8þ; F) and GZBþ CTLs
(CD3þCD8þGZBþ; G), and PD-L1þ malignant cells (CKþPD-L1þ) to CTLs (CD3þCD8þ; H) were associated with better PFS. I, Close distances from malignant
cells (CKþ) to GZBþ CTLs (CD3þCD8þGZBþ) was associated with OS.
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Figure 4.

Olink serum soluble analyte assessment. A, Heat map of dynamic changes in protein expression. The x-axis shows the protein names, while the y-axis shows the
comparisons between timepoints and progression. The color represents the logFC. Green represents increase from baselinewhile pink represents decrease. The size
of the circle indicates the statistical significance expressed as –log10(FDR). B, Boxplots andmedian rend lines showing the expression over time by cohort for CXCL9
andCXCL13.C,Heatmap for differential protein expression between responders andnonresponders. The x-axis shows the protein names,while the y-axis showseach
timepoint. The symbol in the heat map represents the statistical significance: circles for FDR < 0.05 or adjusted P values, squares for P < 0.05, and triangles for
nonsignificant or P > 0.05. The color represents the change relative to upregulation in responders (blue) or nonresponders (red). D, Boxplots corresponding to
significant markers in C over time, stratified by treatment arm for the indicated proteins. Comparisons for individual baseline, cycle 2, and cycle 4 timepoints are
shown forP<0.05 andFDR<0.05with (�) and (��), respectively.E,Heatmap showing the concordance indirectionally of differentially expressed proteins significant
between exceptional responders and all responders. The direction of the protein changes was identical between both groups of responders, but only CXCL13 and
CCL23 reached statistical significance (FDR, darker colors) for exceptional responders due the decreased numbers. Nominal significance is shown as transparent
colors, indicating proteins with P < 0.05. F, Volcano plot showing the proteins significantly associated with OS when jointly modeling cytokine expression over time.
The proteins labeled in blue are associatedwith increased HR or decreased survival. Kaplan–Meier OS curves for CSF-1, IL8, CXCL13, andMMP12 stratified on the basis
of their expression from the average expression (higher values from the mean as blue, lower values from the mean as red).
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markers will be extremely helpful in switching ineffective therapy to
effective alternatives to save time and potential toxicity, which is
critically important for patients with stage IV lung cancers, for whom
time and quality of life are essential attributes. In addition, these on-
treatment markers are also valuable in distinguishing pseudoprogres-
sion from real progression—another critical clinical dilemma that the
oncologists face in the era of immuno-oncology.

As a post hoc profiling of samples from a completed clinical trial, our
study has several inherent limitations, including inadequate tumor
specimen availability, which precluded us from generating compre-
hensive data integration from all platforms; imbalanced distribution of
samples from the nivo versus nivoþipi arms or responders versus
nonresponders; inadequate tissues for multiomic analysis and cross-
platform integrative analyses; and lack of detailed information regard-
ing the time and anatomic sites of tumor specimens, which limited
our ability to perform in-depth, organ-specific analysis. In spite of
these challenges, integration of peripheral cytokine profiling and
cellular profiling within the TME confirmed our single platform
findings highlighting the negative associationwith hyperinflammation
with reduced PFS and the presence of PD-1þ CTLs in the TME with
increased survival. Finally, while we presented several candidates
in this study, we recognize the need for additional validation and
replication of our findings. Specifically, several circulating serum
proteins, such as IL6, IL8, CSF-1,MMP12, and CXCL13 are promising
candidates for future prospective or post hoc confirmatory studies due
to their ease of collection and quantification from blood. In addition,
investigation of tissue composition using spatial profiling technologies
to better understand the complex interplay between tumor tissue and
immune infiltrating cells may shed light on the mechanisms of
immune-tumor cell–cell interactions and identify key biomarkers that
can identify patients who will have the most benefit from ICIs. As a
proof-of-principle study, using the S1400I trial as an example, we
showcased that multi-omics, multi-institutional analyses of patient
samples are feasible and can provide valuable insights for future trial
development, which is one of the major goals of the CIMAC-CIDC
Network.
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