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Spatial modelling methods have gained prominence with developments in

high throughput imaging platforms. Multiplex immunofluorescence (mIF)

provides the scope to examine interactions between tumor and immune

compartment at single cell resolution using a panel of antibodies that can be

chosen based on the cancer type or the clinical interest of the study. The

markers can be used to identify the phenotypes and to examine cellular

interactions at global and local scales. Several translational studies rely on

key understanding of the tumor microenvironment (TME) to identify drivers of

immune response in immunotherapy based clinical trials. To improve the

success of ongoing trials, a number of retrospective approaches can be

adopted to understand differences in response, recurrence and progression

by examining the patient’s TME from tissue samples obtained at baseline and at

various time points along the treatment. The multiplex immunofluorescence

(mIF) technique provides insight on patient specific cell populations and their

relative spatial distribution as qualitative measures of a favorable treatment

outcome. Spatial analysis of these images provides an understanding of the

intratumoral heterogeneity and clustering among cell populations in the TME.

A number of mathematical models, which establish clustering as a measure of

deviation from complete spatial randomness, can be applied to themIF images

represented as spatial point patterns. These mathematical models, developed

for landscape ecology and geographic information studies, can be applied to

the TME after careful consideration of the tumor type (cold vs. hot) and the

tumor immune landscape. The spatial modelling of mIF images can show

observable engagement of T cells expressing immune checkpoint molecules

and this can then be correlated with single-cell RNA sequencing data.
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Introduction

Ident i fy ing the spat ia l interact ions in the tumor

microenvironment (TME) that mitigate positive immune response

to treatment are of incomparable importance for improving the

success of clinical trials (1, 2). It is also important to understand

the differences in immune-tumor interactions to make an informed

decision on patient selection and on the inclusion in checkpoint

therapy and trials. The TME also gives a snapshot of the cells in their

natural biological state (3, 4). The spatial relationships obtained from

multiple regions of interest (ROIs) of patient samples can recapitulate

the cellular milieu and the intratumoral heterogeneity (5–7). The

higher density of different immune populations in the TME and

effector T cell interactions are indicators of immune response (8, 9).

While the abundance of cytotoxic T lymphocytes itself is a sufficient

indicator of immune response in a number of cancers, organ level

differences can be observed in immune infiltration in other cancers

(10). Spatially resolving the diverse cellular features that constitute the

complex tumor landscape is important in identifying the cell states

and geographic diversity of cell types and their clinical consequences

(11, 12). Immune infiltration can be quantified using relevant spatial

mathematical functions that provide an unambiguous distinction

between a random distribution and a clustered population (13, 14).

The application of spatial mathematical models in identifying

second-order effects between different features in data is well

studied in ecology (15, 16). These robust models can be applied to

the TME to measure infiltration using different immune cell types

and malignant cells as features or marks. The application of spatial

models such as the Gibbs hardcore process has been shown to

identify loss of heterotypic contact-inhibition of locomotion among

cancer cells, which is a natural part of the spatial birth and death

process (17). The application of ‘pair correlation function’ from the

geospatial toolbox spatstat (18) on the tissue microarrays (TMAs) in

Diffuse Large B-Cell Lymphoma (DLBCL) was able to establish

clustering of a specific oncogenic subpopulation (19). The

applications of spatial modelling can also be extended to infer cell-

cell communication through graph neural networks (20).

Studying the cell phenotypes from multiplex data has helped

achieve a deeper understanding of the TME, with significant

developments being made in single cell resolution of multiple

antigens (21, 22). In turn, this has expanded the scope of spatial

statistics that can be applied to digitized images from lo-plex and hi-

plex platforms, thereby finding applications in different cancers (23,

24). Several spatial studies have deepened our appreciation and

significance of intratumoral heterogeneity and its contribution in

disease progression (25–27). In addition to examining the overall

spatial landscape of tumors, identifying the spatiotemporal

distribution of immune subsets is crucial to deconvolute the

spatial niches within a tissue section (28, 29). Functional and

spatial characterization of cell types through an integrative

approach can also give leads on potential intercellular signals in

the TME (30). There are a number of studies on the TME that use a

combination of spatial modelling approaches (31, 32) to

demonstrate how the malignant cells modulate the disease (33, 34).

A number of sophisticated tools that provide measures of the

cellular heterogeneity and tumor infiltration have been developed to

reveal features of the immune organization in tissues (35–37). The

geospatial toolbox, spatstat (38), provides a range of mathematical

functions that can be applied to examine cell-cell clustering

patterns, while acknowledging its limitations in addressing the

diversity of interactions within a ROI. There are different

modules that allow the visualization of spatial expression data

(39) and the resolving of cell-types at single cell level from pixel

analysis of multiplex images (40). Additionally, tools have been

developed to quantify spatial interactions between cell types for

different imaging platforms (36, 41). Studies on the architecture of

the spatial transcriptome have also revealed features such as the

tertiary lymphoid structures (TLS) (42), which are among the major

origins of tumor infiltrating lymphocytes (TILs) and which drive

antitumor immunity (43). TLS can also be identified using methods

applied to digitized histopathology images (44, 45).

There are evidences in literature to support the importance of

relative organization and interaction among the cells in driving

response (13, 46, 47). The use of mathematical clustering or

inhibition models can reveal the effect of one observation on

another (second-order effects); eg: the influence of the malignant

cells on the distribution of immune cells in the TME. The

distribution of immune cells relative to malignant cells and their

population in tumor rich clusters can indicate which patients

respond to checkpoint therapy. In this review article we discuss a

number of tools and mathematical models that can be applied to the

two-dimensional representation of the mIF images as spatial point

patterns. The functions discussed here provide measures of

clustering and have been developed decades earlier for studying

geospatial data and ecological niches, as mentioned above. The

application of these methods in a context specific manner to the

TME is crucial in deriving insights that can advance clinical care

and patient driven treatment. A number of reviews have discussed

spatial methodologies for studying the TME and for assessing the

intra tumor heterogeneity (25, 48). The application of mathematical

functions to spatial point patterns or proceses requires single cell

resolution from the pathologist annotated or the software

determined nuclear co-expression with other biomarkers. The

robustness of these spatial methods is dependent on the single-

cell resolution of the imaging or microscopy techniques. The

PhenoCycler-Fusion, multiplexed single-cell in situ profiling and

multiplex immunofluorescence approaches can resolve single-cell

expression of proteins. However, identifying two interacting cells

demonstrating cell-cell contact is still a challenge. Spatial processes

have been applied to regions examining elevation and rainfall,

hence this approach can be extended to study the 3D

neighborhood if there is addition information on tissue features.

The composition of the TME in terms of different immune cells and

soluble factors are well studied, however, examining the spatial

neighborhood requires the cell coordinates to be accurately

determined which can be a challenge with soluble factors or

extracellular signals.

Here, we discuss ways to interrogate the mIF data and obtain

local and global features from the tumor-immune relationships

within the TME using different existing methods. We then interpret

the findings from the methods and discuss their correlation with the

observed spatial organization of the different cell phenotypes.
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Methods

Spatial point patterns from mIF images

Any two-dimensional distribution of points that represent

geographical features, species or cells can be used to generate spatial

point patterns which are defined by a boundary or spatial window. Lo-

plex images such as H&Es as well as images obtained from mIF and

PhenoCycler-Fusion can be used to generate the point patterns after

extracting the coordinates and marker information from the

segmentation data, as shown in Figure 1A. The point patterns are

amenable for further spatial analysis using mathematical functions

available in the spatstat toolbox. An overview of the spatial modelling

approaches discussed in this article are shown in Figure 1B.

The point pattern windows can be spatial polygons, a non-

intersecting geometric shape that defines the boundary of the points

(Figure 2A). The InForm software generates a binary pixel mask

from the exported images (i.e, composite and component images);

resulting in a rectangular window enclosing the ROI with a binary

mask as shown in Figure 2A. Alternately, the tissue microarray

(TMA) coordinates from the csv file can be overlaid on the RGB

images (with or without the tissue segmentation mask and

biomarker channels). Using QuPath (49) the pixel classifier can

be trained to generate the geojson annotations i.e. tissue boundaries

of the ROI, which can be imported into an R script to generate the

spatial window. With this approach, regions such as blood vessels,

necrotic areas etc., can be excluded as shown in Figure 2A. For the

circular TMAs, the convexhull function from spatstat is a

B

A

FIGURE 1

Illustration describing the steps from tissue collection to spatial analysis of multiplex immunofluorescence (mIF) images. (A) The biopsied tissue
stained with the panel biomarkers is used to obtain cell segmentation data with marker expression for regions of interest. The co-expression for the
listed phenotypes at single cell level is obtained. The icons used here are from Biorender.com. (B) Spatial modelling methods applied to the Tumor
Micro Environment. -Clustering or Inhibition: This is measured using mathematical functions (Nearest Neighbor-G function or pair correlation
function). -Spatial neighborhood: This is determined for each ROI by computing the spatially varying probability of cell phenotypes for each pixel
grid. -Communities: Clusters of cells identified from hierarchical clustering based on Euclidean distance and the minimum cluster size. -
Dimensionality reduction using graph based approaches that retain the topology of the data.
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straightforward choice. It produces a circular boundary around the

points to generate the spatial window (Figure 2A).

Pair correlation function

The empirical distribution of cell phenotypes in the image can

appear clustered or dispersed, however this cannot be quantifiably

assessed without robust spatial clustering functions. In Figure 2B

(upper panel), the spatial distribution among inhibited, random,

and clustered populations is illustrated with an example. Shown

below are the pair correlation function - g(r) plots for the three

spatial patterns respectively. The pcf function (from spatstat) allows

the user an easier way to examine spatial clustering at different

intervals of radii. The pcf function computes g(r) (i.e. K′(r)/2pr). K′
(r) is a derevative of the Ripley’s K function (18). For a random

distribution i.e. a Poisson simulated from the underlying

distribution, the g(r) values lie close to 1, while an inhibited

population is more dispersed than a random distribution with g

(r) < 1. A clustered population would imply points are closer than in

a random distribution and consequently with most values of g(r) >

1, as shown in Figure 2B. This function can be used to quantitatively

examine clustering within and between different cell populations or

phenotypes at different values of r.

Nearest neighbor G-function

The nearest neighbor G-function (Gest from spatstat.core)

provides a cumulative distribution of points from the same

(Gdot) or different cell phenotypes (Gcross). It examines the

deviation of the empirical data from a theoretical curve which is

generated from a random distribution of the cell phenotypes in the

ROI. The assumption made for the examples discussed here is that

BA

FIGURE 2

An overview of the spatial mathematical functions and point patterns. (A) Spatial point pattern windows. -Spatial polygon – A geometric shape
demarcating the data (adapted from spatstat). -Binary pixel mask- generated by the inForm software from source images (adapted from a TME).
-Window from exported geojson- Spatial window was built using the exported geojson annotations from QuPath using RGB mask image overlaid
with the coordinates. -Convexhull – A convex window available in spatstat that can be used for circular TMAs. (B) (Upper panel) - The ordered,
random and clustered distributions can be estimated at specific radius intervals using the pair correlation function g(r). Shown below are the
corresponding g(r) plots as a function of distance for the each distribution (above). (Lower panel) shows the distribution of a random process in the
TME and the observed distribution of ‘Tregs’ and ‘Tumor’ cells. The red dashed line indicates edge corrected nearest neighbor G- function values for
the observed data and compared with the random distribution (dotted line).
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they represent a homogeneous stationary process. A homogeneous

point pattern has a uniform distribution throughout the ROI. The

random simulation of these points is generated using the ‘intensity’

(number of points per unit area) and edge correction is applied to

the point pattern. In Figure 2B (lower panel), through an illustration

we have shown a comparison between the random simulation of the

‘Tregs’ and ‘Tumor’ with the observed distribution of these cells in

an image. The relative clustering between ‘Tregs and ‘Tumor’ cells

(i.e. Gcross(Tumor/Tregs)) is observed only at higher distances (red

dotted line). The clustering within the ‘Tregs’ (i.e. Gdot(Tregs)) is

significantly higher (red dotted line) than the random distribution

of the population (dotted grey line).

Neighborhoods based on spatially
varying probability

The relrisk function in the spatstat toolbox (relrisk.ppp from

spatstat.core) calculates the spatially varying probability of each

marked point i.e. cell phenotype in the point pattern using a non-

parametric estimate. Essentially, it calculates the probability that a

point at a specific location belongs to a cell phenotype j. This

calculation is extended over every spatial location for each pixel in

the grid and a list of pixel images for each cell type is generated. The

estimation is performed by Nadajara-Watson type kernel

smoothing. The user can also specify numerical weights for the

points of a specific cell-type. This feature may be useful if the cells

are having different expression levels which can be used as weights.

Cell communities based on
hierarchical clustering

The point processes and functions cannot reveal local

intratumoral heterogeneity in terms of cell neighborhoods

composed of different cell populations. The clustering (using pcf

and Gest) between cell-types is computed by examining every cell of

type a with another cell of type b or the same cell-type. The

differences in the immune-tumor interactions at the tumor

boundary vs. the stroma are not taken into consideration through

these pairwise clustering functions. The SPIAT library (35) allows

the users to examine the multiplex images from different platforms

and has a number of functions that can be applied for spatial

analysis of the TME. The function identify_neighborhoods can

group cells into clusters based on Euclidean distance and identify

the relative percentage composition of each phenotype within these

clusters. The hierarchical clustering is based on the user defined

minimum neighborhood size and interaction radius. This method

can lead to identifying dense networks of interacting cells or the

overall immune composition in the tumor or stroma. The input for

SPIAT is a spatial experiment (spe) object which is used routinely

for storing spatial- omics data from different platforms and is an R/

Bioconductor S4 class. The mIF data (xy coordinates, cell Id and

phenotypes etc.) can be stored as an spe object in order to apply

these functions.

Minimum or average pairwise nearest
neighbor distances

The SPIAT toolbox provides functions that calculate the nearest

neighbor distances between the different cell populations using the

negDistMat function. This does not generate a full distance matrix

and instead uses a rectangular similarity matrix from a subset of

samples for the distance-based calculation. For the examples

discussed in this article the minimum and pairwise distances

between cell-types is measured for the cells both within clusters

and the cells that are ‘Free’. This can help understand cell

interaction behavior within different regions of the tumor and

stroma. The minimum nearest neighbor distances (from SPIAT)

are computed using a kd-tree approach to identify approximate

nearest neighbors for each cell-type in the dataset.

Identifying bordering cells for a reference
cell type

The SPIAT toolbox includes a function to identify the cells

bordering a reference cell type (eg: ‘Tumor’ cells). This identifies

clustered groups of the reference cell phenotype and the boundary

cells using alphahull, a derivative from the convexhull approach.

The programming for alphahull is based on the duality between the

Voronoi diagram and Delaunay triangulation. The bordering cells

are identified based on their occurrence if they are found on the

alphahull. The arc or rim of the alphahull separates the cells that are

‘Outside’ from ‘Inside’ the reference cell cluster. The number of cells

on the rim or alphahull constituting the ‘Border’ are significantly

smaller than the cells labelled ‘Outside’ or ‘Inside’. This function is

useful in identifying tumor bordering cells and the relative

composition of immune cells that are ‘Inside’ or ‘Outside’ the TME.

High dimensionality reduction

The segmentation data for mIF images contains spatial xy

coordinates and biomarker information from which the

phenotypes (i.e. features or labels) can be obtained. PCA

(Principal Component analysis) (50) factorizes the data unlike

UMAP (Uniform Manifold Approximation and Projection) which

uses the neighbor graph approach and attempts to find such a graph

in lower dimensions of the data (51). The UMAP builds a graph by

approximating the shape of the data by connecting the simplices.

UMAP based workflows have been applied to imaging mass

cytometry data but can also be used for understanding the

geographical organization of cells and their interactions (52).

Softwares and packages

Scripts and spatial analysis codes for the examples discussed

here were written in RStudio using R version 4.2.0. The spatial

toolbox- spatstat v. 3.0.6 was used for clustering analysis. Phenoptr
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package (v. 0.3.2) was used for consolidating segmentation data.

Community identification and border cell identification scripts

were obtained and modified from the SPIAT (v. 1.0.4) github. A

script in python (version 3) jupyter notebook was written to identify

single cell expression of different biomarkers to determine

phenotypes from the cell segmentation data generated by InForm.

Results

Spatial point patterns and phenotyping
cell populations

The examples discussed in this article are point pattern

representations of mIF images obtained from a malignant pleural

mesothelioma study. A preliminary spatial analysis on this cohort

by Parra et al. (53) has shown conclusive evidence of immune

infiltration in these tumors by assessing 10 regions of interest (ROI)

in each surgically resected case. The cell segmentation data for each

biomarker in the panel (CD3, CD8, CD68, CK, PD-1, PD-L1, KI67

and FOXP3) was used to consolidate the co-expression data at

single-cell level using a python script (Jupyter Notebook). Point

patterns were generated for each of the samples using the phenoptr

package. A rectangular spatial window was generated using the

min- and max- of the cell xy coordinates. Phenotypes (Tumor - CK

+, Cytotoxic - CD3+CD8+, Tregs - CD3+FOXP3+, Macrophages -

CD68+, Other- T cells – CD3+CD8-) were characterized using the

lineage and functional markers. The phenotype ‘Others’ was subset

from the remaining cell populations (Figure 1A). For this article,

five examples were identified from the cohort based on their

distinctive immune-tumor landscapes. The spatial analysis

methods applied to the TMEs discussed in this article are

illustrated in Figure 1B. The spatial windows demarcating the

point pattern boundaries can be generated from different TMAs

and are shown in Figure 2A. Figure 2B (upper panel) shows the

plots corresponding to different clustering patterns. Figure 2B

(lower panel) describes the spatial distribution of ‘Tregs’ and

‘Tumor’ cells in an example TME and the corresponding nearest

neighbor G-function curves for them. As can be seen, the clustering

between ‘Tumor-Tregs’ is poor while clustering between ‘Tregs-

Tregs’ is comparatively stronger.

Spatial distribution of cells by phenotype

The cell coordinates and phenotypes, obtained from the

consolidated segmentation data, were used to generate a spatial

experiment (spe) object containing cell ID, phenotype and xy

positions. The SPIAT toolbox functions were used to plot the

cells by phenotype, as shown in Figure 3A, with spatial positions

indicated on x and y axes. This provides a visualization of the

manner in which the immune cells are distributed vis-à-vis the

tumor cells. From these plots, the differences in the organization of

immune and tumor compartments can be observed. For eg: the

clustering among the ‘Tumor’ cell phenotype in examples 2 and 3

(Figure 3A) appears to be higher than in the other examples (1 and

5). The immune cell phenotypes (Tregs, Other- Tcells and

Macrophages) are more segregated from the tumor rich region in

example 3 than example 5 (Figure 3A). The performance of these

methods correlates with the selection and quality of the ROI. To

compare ‘Tumor’ clustering of the examples 1-3 and 5 with 4, the

regions should be similar i.e. tissue taken either from tumor core vs.

B

C

A

FIGURE 3

Spatial organization of cells by phenotypes and identifying communities. (A) The different cell phenotypes are plotted for five example TMEs: Tumor
(red), Th (black), Cytotoxic(green), Tregs (blue) and Others (grey). (B) Cell communities are identified based on hierarchical clustering and Euclidean
distance. The different colors indicate unique clusters and indicated within the plot are the cluster numbers. (C) Heatmaps for the clusters (above)
indicate the relative percentage composition of different cell phenotypes within each cluster.
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tumor-stroma boundary. The size and region of the tissue taken for

mIF will determine if the inferences from spatial analysis can be

generalized for a patient. To identify the tumor-immune interaction

pattern for a patient, one should select multiple ROIs from different

regions (infiltrating edge, tumor core, normal tissue boundary etc)

and assess potential differences in cell behavior/interaction across

these regions.

These plots provide the background to apply context dependent

spatial mathematical functions and to obtain quantifiable measures

of differences in the TME. These observations may correlate with

the data, while also capturing differences that cannot be obtained

from global distribution of cell populations.

Cell communities in the
intratumoral regions

Using the data exported as spe objects and the SPIAT toolbox

functions, cell communities within each of the TMEs (Figure 3A)

were identified through hierarchical clustering, Euclidean distance

of 25 microns and minimum neighborhood size of 25 cells. These

were termed as ‘Clusters’ and are numbered, as shown, in different

colors (Figure 3B). The algorithm designates those cells that are not

within the interaction radius specified and whose size < 25 cells as

‘Free cells’ (shown in black Figure 3B). This feature was useful in

identifying different communities in the TME, constituting different

intratumoral interacting groups of cells. This is useful in identifying

interactions that could suggest a favorable response to

immunotherapy, as immune cells interact with tumor nests in a

contact dependent manner. The number of cells and composition

within the largest clusters in each example (right to left – Cluster 1,

2, 1, 1 and 2) were distinct. The largest cluster in example 3 showed

maximum immune infiltration (Figure 3C). The heatmaps show

that the ‘Other- T cells’ cells and ‘Macrophages’ are the larger

fraction of the immune cells. In example 4, a large cluster of

immune and tumor cells which are segregated (in Figure 3A), is

found with phenotypes ‘Other- T cells’, ‘Macrophages’ and ‘Tregs’

in comparable numbers. Within example 5, there are multiple

clusters, with the largest having poor immune infiltration and a

relatively small number of ‘Other- T cells’, ‘Macrophages’ and

‘Tregs’. Across all other clusters, the relative percentage

composition of immune cells remains similar. Overall, among all

the examples shown here, the ‘Tregs’ are the lowest population

among the immune-tumor clusters and also among the ‘Free cells’.

Clustering between tumor and immune
cells – global and local

The global clustering among tumor and immune cells can be

determined through the nearest neighbor G-function and the pair

correlation function (PCF). The G-function can estimate the

clustering aggregated over distance for multitype point patterns

(between different cell-types) and within the same population. The

cumulative distribution is compared with an underlying simulated

random point pattern to find measurable indicators of clustering.

For the TMEs shown in Figure 4A, a Poisson process was generated

(rpoispp) for each image using the ‘intensity’ values for each

phenotype. These processes were then combined using the

superimpose function, as shown in Figure 4B. The number of cells

of each phenotype in the ROI is termed ‘intensity’ and is used to

generate the random point pattern distribution. Shown in Figures 4C,

D are the plots derived from two mathematical functions that

measure clustering at a global and a local scale, respectively. The

Nearest neighbor G-function clustering between the ‘Tumor’-

’Tumor’ phenotype (dashed red line in Figure 4C) shows that the

clustering is weak in example 1-2. In the other examples, clustering is

lesser than the random Poisson distribution (dotted green line in

Figure 4C). This implies that the ‘Tumor’ cells are farther apart than

would be seen if they were randomly distributed. However, in

Figure 4D, the pair correlation function, which is a measure of

clustering at definite radius intervals, finds g(r) values > 1 (solid

black line in Figure 4D). This is a quantifiablemeasure of clustering in

comparison to complete spatial randomness (dotted red line in

Figure 4D). The plots for example 2 and 3 are similar, even though

their TMEs (Figure 4A) appear visually distinct. The PCF plots for

example 1 and 4 show the highest clustering among the ‘Tumor’ cells.

Example 4 shows a distinct neighborhood of ‘Cytotoxic’ cells in

Figure 5A. However, the clustering between ‘Cytotoxic’-’Cytotoxic’

cells measured using G- function is highest in example 1, lower in

example 3 and 5 and least in example 4. The answer to this

unexpected outcome lies in the random distribution for example

4, as shown in Figure 5B. The high density of ‘Cytotoxic’ cells leads

to no significant difference between complete spatial randomness

and empirical distribution using G- function Figure 5C.

Interestingly, we observe appreciable differences in the respective

PCF plots for the ‘Cytotoxic’-’Cytotoxic’ cell clustering, as seen in

Figure 5D. The highest clustering is seen in examples 2, 3 and 5,

while the lowest is seen in example 4.

Spatial neighborhoods based on probability

The non-parametric estimates of spatially varying probability

for each phenotype were plotted to find neighborhoods in the

example TMEs (Figure 6A). This method identifies the most

probable phenotype for each grid in the point pattern, viz. for

each mIF image, which can then be plotted. The use of phenotype

‘Others’ is helpful in increasing the accuracy of spatial

neighborhood calculation, as the probability is calculated for

every pixel grid in the image. In Figure 6B, the spatial

neighborhoods for each phenotype are plotted and can be

compared by cell phenotypes shown above (Figure 6A) in the

same color. As ‘Others’ is a dominant phenotype in terms of

abundance, we combined the three known immune cell

phenotypes (Macrophages, Tregs and Other- T cells) into one

category - “Immune cells”. The combined probability for all

‘Immune cells’ is plotted in Figure 6C. Examples 3 and 4 have

distinctively higher immune population in comparison to examples

1, 2 and 5 (Figure 6A). From the spatial neighborhood plots

(Figure 6C) it can be observed that the immune cells are more

segregated in example 4 as compared to in 3.
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B
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FIGURE 5

Clustering patterns within the example TMEs among the Cytotoxic cells. (A) The different TMEs and the cell phenotypes are plotted for the observed
data. (B) A random point process distribution for each phenotype is generated and combined in each plot. (C) Nearest neighbor G- function
clustering plots as a function of distance (r) for the ‘Cytotoxic’ cells in the above examples. The edge corrected values are shown in dashed line (red)
and the random distribution in dotted line (green). (D) Pair correlation function values g(r) as a function of distance (r) for the ‘Cytotoxic’ cells is
shown with the red dotted line indicating a random distribution and the black solid line indicating the observed values.

B

C

D
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FIGURE 4

Clustering patterns within the example TMEs among the ‘Tumor’ cells. (A) The different TMEs and the cell phenotypes are plotted for the observed
data. (B) A random point process distribution for each phenotype is generated and combined in each plot. (C) Nearest neighbor G- function
clustering plots as a function of distance (r) for the ‘Tumor’ cells in the above examples. The edge corrected values are shown in dashed line (red)
and the random distribution in dotted line (green). (D) Pair correlation function values g(r) as a function of distance (r) for the ‘Tumor’ cells is shown
with the red dotted line indicating a random distribution and the black solid line indicating the observed values.

Kumar et al. 10.3389/fimmu.2023.1288802

Frontiers in Immunology frontiersin.org08

https://doi.org/10.3389/fimmu.2023.1288802
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nearest neighbor distances among ‘Free
cells’ and ‘Clusters’

The ‘average pairwise distances’ and the ‘minimum distance’

functions in SPIAT are two measures of the interacting distances

between cells of different phenotypes (eg: ‘Cytotoxic’ and ‘Tumor’

cells) that can be applied to the TMEs. Intratumoral heterogeneity has

been found in most tumors. To illustrate this difference, we have

compared the minimum distance within the largest cluster and the

‘Free cells’ in each TME. The phenotypes – ‘Macrophages’, ‘Tumor’

and ‘Cytotoxic’ – were selected for the distance measurements in

examples with a sizeable population of ‘Free cells’ (Figure 7A). The

minimum distances between ‘Macrophages’ and ‘Cytotoxic’ cells

were appreciably different for example 5 in the largest cluster

(shown in blue in Figure 7B), as compared to the ‘Free cells’

(Figure 7C). The ‘Cytotoxic’-’Tumor’ cell distances were different

between the large cluster and ‘Free cells’ for examples 2 and 5 (both

shown in blue). Differences in the ‘Macrophage’-’Tumor’ cell

distances were the most distinct in the largest cluster of example 1

(shown in orange), which is in agreement with the distribution of

‘Free cells’ in the TME (Figure 7A) that appear dispersed. There is an

appreciable difference in the ‘Macrophage’-’Tumor’ cell distances for

example 1 between the largest cluster and the ‘Free cells’ as well.The

comparisons discussed above are representative and not an

exhaustive comparison for all pairwise cell interactions of all

example TMEs.

Identifying cells bordering tumor regions

In order to identify if any cell types may be regionally associated

with a reference cell type, phenotypes were identified and plotted

(Figure 8A). The cells bordering a reference cell phenotype, eg:

‘Tumor’, were identified using a SPIAT function based on the

alphahull function. For our examples, this translated to identifying

tumor rich clusters and their bordering cells as well as cells lying

outside the reference cell cluster (Figure 8B). Cells inside the reference

cell cluster, i.e. the ‘Tumor’ rich regions, are shown in red. The cells

outside are shown in green, while the bordering cells are shown in

grey. The bordering cells were identified based on an approximation

(alphahull), with cells on the alphahull designated as ‘Border’ cells.

Hence, the ‘Border’ cells are found on the rim or arc i.e. the alphahull

and are consequently a small proportion in comparison to cells

‘Inside’ or ‘Outside’ the tumor rich clusters. The cells outside the

alphahull are designated as ‘Outside’ and shown in green. The relative

proportion of immune cells that are ‘Outside’ can be used to identify

immune infiltration in the tumor region. Fine tuning the cluster size

and alphahull parameters per region can lead to an accurate

representation of the tumor rich clusters, as shown in Figure 8B.

The ‘Others’ phenotype were excluded to understand the immune

cell organization and if they were predominantly on the ‘Border’,

‘Outside’ or ‘Inside’ the tumor rich clusters. In Figure 8B, example 4

shows a clear demarcation between the ‘Inside’ (red) and ‘Outside’

(green) regions. Comparison with Figure 8A shows that the cell

phenotypes corresponding to ‘Inside’ are mostly Tumors, while

immune cells are ‘Outside’, for example 4. Also, in example 3, an

immune rich region can be seen distinct from the tumor regions in

Figure 8A. This separation is observed in the corresponding region in

Figure 8B as well.

High dimensional spatial analysis of
mIF images

High dimensionality reduction based on Uniform Manifold

Approximation and Projection (UMAP) is shown in Figure 8C.

B

C

A

FIGURE 6

Neighborhoods obtained from the spatial probability of each phenotype. (A) Different TMEs and the cell phenotypes are shown for reference.
(B) The spatially varying probability of each phenotype computed and plotted using the same color as the phenotypes for the above TMEs.
(C) Aggregating immune cells to compute spatial neighborhoods for the phenotypes – ‘Others’, ‘Tumor’ and ‘Immune cells’ (shown in grey, red and
blue respectively).
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For each of our examples, cell xy coordinates were used as

features, while phenotypes were used as labels, for UMAP

clustering. Clustering patterns of cell phenotypes represent the

topology of data, which, for the mIF images, is the spatial

distribution of the cells in the TME. The high dimensional

reduction is applied routinely to identify patterns of similar

gene or protein expression from flow cytometry and RNAseq

data. This method can be applied to spatial data from mIF to

determine spatial grouping of different cell phenotypes. In this

case we can appreciate through the UMAP plots for example 3

and 4 that the ‘Tumor’ cell phenotype (pink) clusters are distinct

from the immune cell clusters.

B

C

A

FIGURE 7

Minimum pairwise distances computed for the largest cluster and ‘Free cells’ in each TME. (A) Cell communities shown with unique clusters in colors
and ‘Free cells’ shown in black. (B) The violin plots of the minimum pairwise distances between Macrophages/Cytotoxic, Tumor/Macrophages and
Tumor/Cytotoxic cells for the largest cluster in A. The cluster color is used to outline the violin plot. The cell phenotypes examined per plot is
indicated on the right with a schematic (legend: below figure). (C) The violin plots of the minimum pairwise distances between Macrophages/
Cytotoxic, Tumor/Macrophages and Tumor/Cytotoxic cells for the Free cells in A. The cell phenotypes examined per plot is indicated on the right
with a schematic (legend: below figure).
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Discussion

The emergence of multiplex imaging techniques has enabled

interrogating spatial organization of different cell phenotypes in

the TME and has simultaneously incentivized the development

of computational methods to model this data (21, 54–57). The

spatial analysis of mIF images provides preliminary insights into

the immune-tumor interactions, allowing visualization and

quantification of immune subsets. This is useful to identify the

infiltrating immune cell populations (such as PD-1+ T cells) and

the tumor cells expressing the PD-L1, thus improving prediction

of response to checkpoint therapy (58). In this context, the

spatially varying probabilities function is useful in distinguishing

the TME within the five examples discussed above. The immune

cells in example 4 are largely outside the tumor core as opposed to

example 3 which shows higher immune infiltration. For hot

tumors the Gcross function can be used to measure if the

immune infiltration significantly higher than if the cells were

randomly dispersed (13).

However, the disadvantage of modelling the TME using mIF is

that the patterns of clustering or inhibition are derived from a

subset of the total resident immune populations. Consequently,

the contribution of other immune features, through association, in

driving a clinical outcome are not obtained (59). Also, mIF tissue

regions are smaller, which does not provide sufficient information

about spatial heterogeneity of the cell populations in the tumor-

stroma region. As the cellular locations within mIF ROIs unlike

geographical features are dynamic, therefore the interpretations

from mathematical functions should be generalized after

examining a large number of regions. Hence, it is important

that clustering functions (pcf and Gdot/Gcross) are applied to

multiple patient ROIs to make clinically relevant spatial findings.

The ROI selection and/or use of tissue microarrays as opposed to

whole slide analysis is an important metric upstream of applying

these analysis strategies. In this study, we originally selected 10

ROIs for analysis with the intent of expanding our understanding

of the heterogeneity of the TME (53). Recent work from Sun et al.,

has shown that selection of 5 ROIs is able to reasonably

recapitulate the TME in non-small cell lung cancer whole slide

sections (60). The dependence on tissue availability and

fluorescent probes that deviate from pathology standards are

other technical limitations with mIF. The key consideration for

the application of spatial methods and mathematical functions to

the multiplex images is selecting ROIs representative of the

specific cancer TME and relevant to the hypothesis and scope of

the study.

Extending spatial modelling approaches to high dimensional

platforms with pan immune markers can enable a deeper

understanding of the different myeloid populations in driving the

antitumor immune response. In this article, we have explored the

spatial models relevant to study the immune-tumor landscape from

mIF images. However, spatial modelling approaches applied to data

from high dimensional imaging platforms, such as the

PhenoCycler-Fusion, would give an in depth understanding of the

different players from the immune system in the TME specific to a

cancer type (61–64). This will also improve the above discussed

mathematical functions’ performance and accuracy, which is

reciprocally related to the sparseness and quality of the input data.

B

C

A

FIGURE 8

Visualizing different clustering patterns among the phenotypes. (A) Cell phenotypes identified are plotted for the five example TMEs: Others
(grey), Tumor (red), macrophage (orange), other T cells (black), cytotoxic T cells (green), Tregs (blue). (B) The reference cell type (Tumor)
bordering cells are identified using an approximation with border cells on the alphahull (in grey), cells inside tumor rich regions (in red) and cells
outside the tumor rich regions (in green) plotted. (C) Dimensionality reduction using UMAP with spatial coordinates as features and phenotypes
as labels. .
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