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Abstract
Background: In recent years, deep-learning models have been used to pre-
dict entire three-dimensional dose distributions. However, the usability of dose
predictions to improve plan quality should be further investigated.
Purpose: To develop a deep-learning model to predict high-quality dose dis-
tributions for volumetric modulated arc therapy (VMAT) plans for patients
with gynecologic cancer and to evaluate their usability in driving plan quality
improvements.
Methods: A total of 79 VMAT plans for the female pelvis were used to train
(47 plans), validate (16 plans), and test (16 plans) 3D dense dilated U-Net mod-
els to predict 3D dose distributions. The models received the normalized CT
scan, dose prescription, and target and normal tissue contours as inputs. Three
models were used to predict the dose distributions for plans in the test set. A
radiation oncologist specializing in the treatment of gynecologic cancers scored
the test set predictions using a 5-point scale (5,acceptable as-is;4,prefer minor
edits; 3, minor edits needed; 2, major edits needed; and 1, unacceptable). The
clinical plans for which the dose predictions indicated that improvements could
be made were reoptimized with constraints extracted from the predictions.
Results: The predicted dose distributions in the test set were of compara-
ble quality to the clinical plans. The mean voxel-wise dose difference was
−0.14 ± 0.46 Gy. The percentage dose differences in the predicted target
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metrics of D1% and D98% were −1.05% ± 0.59% and 0.21% ± 0.28%, respec-
tively. The dose differences in the predicted organ at risk mean and maximum
doses were −0.30 ± 1.66 Gy and −0.42 ± 2.07 Gy, respectively. A radiation
oncologist deemed all of the predicted dose distributions clinically acceptable;
12 received a score of 5, and four received a score of 4. Replanning of flagged
plans (five plans) showed that the original plans could be further optimized to
give dose distributions close to the predicted dose distributions.
Conclusions: Deep-learning dose prediction can be used to predict high-
quality and clinically acceptable dose distributions for VMAT female pelvis plans,
which can then be used to identify plans that can be improved with additional
optimization.
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1 INTRODUCTION

External beam radiotherapy is a common treatment
for gynecologic cancers and is often followed by intra-
cavitary brachytherapy. With technological innovations,
external beam treatment techniques for the female
pelvis have advanced from two-dimensional four-field-
box techniques to three-dimensional (3D) conformal
radiotherapy techniques and intensity-modulated radio-
therapy (IMRT) techniques. With IMRT, the radiation
dose can be modulated to achieve superior plans with
conformal target doses and reduced doses to normal
tissue. IMRT plans are created using inverse treatment
planning, in which a planner creates a list of planning
objectives which are used to build the objective function
that is optimized to find acceptable plans.The IMRT plan
quality is highly dependent on the skill of the planner,1

the expectations of the attending radiation oncologist,2

the outcomes of any peer review processes.3 While
scorecards exist to ensure that the target and normal
tissue constraints are met, a skilled planner/oncologist
team has the expertise to know when further normal tis-
sue sparing is achievable based on patient and tumor
characteristics.

Geometric models that correlate patient geometry
with achievable dose-volume histograms (DVHs)4–8 are
advantageous for patient-specific treatment plan quality
assurance.9–11 With the advent of deep learning, more
advanced models that enable the prediction of entire
3D dose distributions have been developed in recent
years.12–33 The potential of deep learning–based dose
prediction to develop patient-specific plan quality assur-
ance tools should be further investigated. In our prior
work, we showed the ability of deep learning–based
dose predictions to automatically identify suboptimal
head and neck plans.2 Here, we have expanded on our
prior work in artificial intelligence–based plan quality
assurance. Specifically, we have investigated the use
of deep-learning dose prediction to drive plan quality
improvements for external beam radiotherapy for the
treatment of gynecologic cancers.To date,3D dose pre-

diction for external-beam radiotherapy of the female
pelvis has not been widely studied.27,32,33

The purpose of this study was to predict high-quality
dose distributions for volumetric modulated arc therapy
(VMAT) plans for patients with gynecologic cancers and
to evaluate the usability of the predicted dose distribu-
tions in improving clinical plan quality. To the best of our
knowledge, this is the first deep-learning dose prediction
study to include a physician review of the dose predic-
tions and to test the achievability of the predicted dose
distributions in cases in which the predictions showed
higher quality distributions (i.e., more sparing of normal
tissue) than the original plans. In this work, we demon-
strate the potential of predicted dose distributions to
both identify suboptimal clinical plans and guide plan
re-optimization to improve clinical plan quality. This is
of particular importance, as it demonstrates that these
tools can be used to identify improvements and drive
change.

2 METHODS

2.1 Patient data and dose prediction
methodology

The dataset consisted of 79 clinically approved VMAT
plans with a single target dose level prescribed to 45 Gy
in 25 fractions treated with two to four arcs (two arcs,
eight plans; three arcs, 70 plans; four arcs, one plan).
Patients were treated between 2019 and 2022 and had
cancers of the cervix (27 patients), uterus (48 patients),
vagina (three patients), and ovaries (one patient). The
collection and use of this data were performed under
protocol PA16-1379 approved by The University of
Texas MD Anderson Cancer Center Institutional Review
Board. The dataset was randomly split (3:1:1) into 47
plans for training, 16 plans for validation, and 16 plans
for testing. To ensure a complete contour set for each
patient for model training, a validated auto-contouring
tool based on convolutional neural networks34 was
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used to generate normal tissue contours for each plan.
Clinical contours were used when available with auto-
contours used for structures excluded from the clinical
contours, most commonly for bony structures.

The data were formatted into 16 model inputs for
each patient, including the computed tomography (CT)
scan, target array, OARs including the body, bladder,
bowel bag, rectum, left and right femoral heads, left
and right kidneys, liver, and spinal cord, and bony struc-
tures including the L4 and L5 vertebral bodies, pelvic
bone, and sacrum. The CT simulation scan was normal-
ized, a common data augmentation approach for dose
prediction,35 by cropping the voxel intensities to a range
of [−1000,1000] and then rescaling to a range of [0,1].
The OARs and bony structures were input as image
masks, and the target array was an image array of the
planning target volume (PTV) with the values of the pre-
scription dose. All model inputs were resampled to the
dose-grid spacing of the clinical plan (2 mm,three plans;
3 mm, 76 plans).

The model architecture was a 3D Dense Dilated U-
Net, which gave us accurate dose prediction results
in our prior work on head and neck cancers.2,19 Sev-
eral custom loss functions were investigated, and model
performance was compared with quantitative and qual-
itative evaluations of predicted dose distributions on
the validation set. The top-performing loss function was
a custom mean squared error and target DVH loss
function shown in Equation (1):

Loss = MSE
(
Dclinical , Dpredicted

)
+ 0.25 [ΔD1% (PTV)

+ΔD95% (PTV) + ΔD98% (PTV)] (1)

where MSE(Dclinical , Dpredicted) is the mean-
squared error over the entire dose distribution and
ΔD1%(PTV), ΔD95%(PTV), and ΔD98%(PTV) are the
absolute errors in the predicted target metrics of
D1%, D95%, and D98%, respectively, calculated using
Equation (2):

ΔDV% (PTV) = |DV% (predicted) − DV% (clinical)| (2)

where V is the volume. Models were trained using an
Nvidia V100 graphical processing unit with 16GB mem-
ory. A patch-based approach, in which patches of size
(64, 64, 64) were randomly generated during training,
was used. The Adam optimizer was used with an initial
learning rate of 0.001. The learning rate was decreased
by half after every 55 epochs of unimproved loss. Mod-
els were trained with a maximum of 1000 epochs using
early stopping.

Three models were trained with the top-performing
loss function and then used to predict the test set of
16 plans. Overlapping patches were generated for each
plan using a stride of 16 along each axis. All patches
were predicted with each model.The plan prediction was

the average of all patches across all three models. The
predicted dose distributions were normalized to achieve
95% target coverage of the corresponding clinical plan
using Equation (3):

Dnormalized = Dpredicted ∗
D95%(clinical)

D95%(predicted)
(3)

2.2 Comparison of predicted and
clinical dose distributions

The predicted dose distributions across the test set were
compared to the clinical dose distributions.To assess the
equivalence of the predicted and clinical mean doses,
we performed a paired two one-sided t-test under an
equivalence bound of 1 Gy. Dose metrics were calcu-
lated for the PTVs and OARs. Target conformity indices,
CI, and homogeneity indices, HI, were calculated for the
predicted and clinical dose distributions. CI was defined
according to Equation (4) as the ratio of the PTV cov-
ered by the reference isodose line, TVRI, and the total
reference isodose volume, VRI:

CI =
TVRI

VRI
(4)

The reference isodose for the CI calculations was the
42.75 Gy isodose—95% of the prescription. The HI was
defined according to Equation (5) as the ratio of D5% and
D95% of the PTV:

HI =
D5%

D95%
(5)

The percentage dose differences in the predicted tar-
get metrics of D1% and D98%, ΔD1%(%) and ΔD98%(%),
were calculated using Equation (6):

ΔDV% (%) =
DV% (predicted) − DV% (clinical)

DV% (clinical)
∗ 100%

(6)
The dose differences in the predicted OAR mean and

maximum doses,ΔDmean and ΔDmax, respectively, were
calculated using Equations (7) and (8):

Δ Dmean = Dmean (predicted) − Dmean (clinical) (7)

Δ Dmax = Dmax (predicted) − Dmax (clinical) (8)

2.3 Physician review of predicted dose
distributions

The predicted dose distributions were imported into the
RayStation (RaySearch Laboratories, Stockholm, Swe-
den) treatment planning system and reviewed by a
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radiation oncologist specializing in gynecologic cancers.
The radiation oncologist scored the predictions using
the following 5-point scale:

5) Acceptable as-is
4) Prefer minor edits, but I would use this plan if

necessary
3) Minor edits needed
2) Major edits needed
1) Unacceptable; fails to meet clinical criteria

2.4 Replanning study

To determine the achievability of the predicted dose
distributions and their utility in guiding plan review and
optimization,a subset of five clinically treated plans from
the test set was selected for a replanning study. These
plans were selected because they had the largest dose
differences between the predicted and clinical dose dis-
tributions with the predicted dose distributions indicating
that superior sparing of normal tissues and/or OARs
could have been achieved in the clinical plans. The clin-
ical plans were manually reoptimized in RayStation by
adding additional plan objectives to the original clini-
cal plan objectives. Point objectives for max DVH and
max dose were added for the OARs for which the pre-
dicted dose indicated further sparing could be achieved.
DVH and dose values were selected to either match
the predicted values or push slightly beyond the pre-
dicted values. To push the clinical plans toward the
predicted target dose fall-off and normal tissue sparing,
normal tissue planning structures were created by sub-
tracting the predicted isodose volumes from the body
contour.Dose fall-off and max dose plan objectives were
applied to the normal tissue planning structures. The
planner was allowed to perform as many optimization
iterations as deemed necessary. If achieving a certain
plan objective resulted in unwanted tradeoffs in target
or OAR doses, the planner modified the plan objec-
tives and weights or added additional plan objectives
for the affected targets or OARs. This re-optimization
workflow was selected to mimic the clinical workflow for
replanning.

3 RESULTS

3.1 Comparison of predicted and
clinical dose distributions

The predicted doses were compared with the clini-
cal doses across the test set. The mean voxel-wise
dose difference was −0.14 ± 0.46 Gy. The results
from our paired two one-sided t-test showed that the
model-predicted and clinical dose distributions of the

test set were equivalent (p < 0.0001). On average, the
predicted dose distributions were more conformal and
homogeneous within the PTV. The mean values of CI
for the predicted and clinical dose distributions were
0.81 ± 0.03 and 0.79 ± 0.05, respectively. The HI for
the predicted dose distributions was 1.02 ± 0.00, and
the mean value of HI for the clinical dose distribu-
tions was 1.03 ± 0.01. The percentage dose differences
in the predicted target metrics of D1% and D98% were
−1.05% ± 0.59% and 0.21% ± 0.28%, respectively. The
dose differences in the predicted OAR mean and maxi-
mum doses were −0.30 ± 1.66 Gy and −0.42 ± 2.07 Gy,
respectively. Figure 1 displays the dose differences in
the predicted mean and max doses for each OAR. The
largest dose differences were observed for the spinal
cord max dose with dose differences ranging from−8.16
to 9.95 Gy. The two cases for which the dose difference
was close to 10 Gy had clinical max doses of approxi-
mately 15 Gy and predicted max doses of approximately
25 Gy.All clinical and predicted spinal cord max doses in
the test set were below 34 and 26 Gy, respectively. The
large ranges in dose differences between the predicted
and clinical doses for the spinal cord may be explained
by the variability in treatment planning practices and the
planner’s persistence to push the spinal cord dose to as
low as possible beyond the tolerance dose of 45 Gy.

The models accurately predicted the clinical dose
distributions across the test set. Figure 2 displays an
example prediction for a patient with endometrial can-
cer from the testing dataset. Panel a is a comparison
of the predicted and clinical dose distributions on an
axial slice of the CT scan. The target is contoured in
blue, the bowel bag in brown, the bladder in yellow, and
the rectum in green. The predicted dose distribution
is conformal and homogeneous within the PTV while
accurately capturing the steep dose fall-off anteriorly
and posteriorly, resulting in similar predicted doses to
the bladder, bowel, and rectum as in the clinical plan.
Panel b is a comparison of the DVH curves for the
same patient; the clinical DVHs are shown as solid
lines and the predicted DVHs are shown as dashed
lines. The DVHs closely match for all structures, with
the predicted dose distribution indicating that slightly
better sparing of the sigmoid colon, bowel bag, and
femoral heads could have been achieved in the clinical
plan.

3.2 Physician review

All predicted dose distributions in the test set received
a score of 4 (four cases) or 5 (12 cases) by the radi-
ation oncologist. Two of the plans that were scored
a 4 had poor target coverage on one slice of the
CT scan, where the nodal target volumes joined. One
of the plans was scored a 4 because there was a



PLAN QUALITY IMPROVEMENTS WITH AI REVIEW 6643

F IGURE 1 The dose differences between the predicted and clinical mean (Dmean) and maximum (Dmax) doses for the organs at risk in the
test set.

F IGURE 2 (a) Comparison of the predicted and clinical dose distributions for an example test set patient with endometrial cancer. The PTV
prescribed to 45 Gy is contoured in blue. The bladder, bowel bag, and rectum are contoured in yellow, brown, and green, respectively. (b)
Comparison of the predicted (dashed) and clinical (solid) dose-volume histograms (DVHs) for the same patient.

105% hot spot in the target near the rectum. Finally,
one of the plans was scored a 4 due to inferior
posterior-dose fall-off. In this case,the skin was receiving
20 Gy, which the physician indicated might result in skin
reactions.

3.3 Replanning study

For five patients in the test set, the clinically treated
plans were replanned to achieve the predicted OAR
and normal tissue sparing. Dose metrics of the clinical
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F IGURE 3 (a) Comparison of the clinical, predicted, and replanned dose distributions for an example test set patient with cervical cancer.
The PTV prescribed to 45 Gy is contoured in blue. The predicted dose distribution indicated that the right kidney (contoured in aqua blue) and
femoral heads (contoured in purple) could be better spared in the clinical plan. The clinical plan was re-optimized to achieve the predicted
sparing gains. (b) Comparison of the clinical (solid), predicted (dashed), and replanned (dashed-dotted) dose-volume histograms (DVHs) for the
same patient. The improved sparing of the right kidney and the femoral heads between the clinical and replanned plans is represented by the
aqua blue-shaded and purple-shaded DVH regions, respectively.

and replans for all patients are reported in Table S1.
Three of the five patients are shown in Figures 3–5.
In each of these figures, Panel a is a comparison of
the clinical, predicted, and replanned dose distributions
and Panel b is a comparison of the clinical, predicted,
and replanned DVHs represented by solid, dashed, and
dashed-dotted lines, respectively. The plan for Patient
#1 with cervical cancer (Figure 3) was selected for the
replanning study because the predicted dose distribu-
tion indicated that improved sparing of the right kidney
(contoured in aqua blue) and femoral heads (contoured
in purple) could be achieved. Replanning demonstrated
that the predicted sparing of OARs was achievable while
the clinical target coverage and homogeneity and spar-
ing of the other normal tissues were maintained. The
improved sparing of the right kidney and the femoral
heads between the clinical and replanned plans is rep-
resented by the aqua blue-shaded and purple-shaded
DVH regions, respectively.

The plan for Patient #2 with endometrial cancer
(Figure 4) was selected for the replanning study
because the predicted dose indicated that further spar-
ing of the sigmoid colon could be achieved in the clinical

plan. As shown in Panel a, the sigmoid colon (contoured
in black) is between the target volumes (contoured
in blue). Our model predicted that superior dose fall-
off between the targets and the sigmoid colon could
have been achieved in the clinical plan. Replanning
demonstrated that the predicted sparing benefits were
achievable.Replanning reduced the sigmoid V40 Gy from
72% to 8%.The improved sigmoid colon dose sparing is
represented by the orange-shaded DVH region in Panel
b.

Patient #3 in the replanning study was selected
because the predicted dose distribution indicated that
better dose fall-off from the target and reduced normal
tissue dose could have been achieved in the clinical
plan. The clinical plan for this patient was observed to
be an outlier and unrepresentative of typical plans in
our clinic which have more conformal dose distributions.
The clinical, predicted, and replanned dose distributions
for this patient,who had cervical cancer,are displayed in
Figure 5. The replanned dose distribution has improved
target conformity; the CI increased from 0.78 to 0.87
with re-optimization of the clinical plan. Moreover, the
replanned dose distribution has a much sharper dose
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F IGURE 4 (a) Comparison of the clinical, predicted, and replanned dose distributions for an example test set patient with endometrial
cancer. The PTV prescribed to 45 Gy is contoured in blue. The predicted dose distribution indicated that the sigmoid colon (contoured in black)
could be better spared in the clinical plan. The clinical plan was re-optimized to achieve the predicted sparing gains. (b) Comparison of the
clinical (solid), predicted (dashed), and replanned (dashed-dotted) dose-volume histograms (DVHs) for the same patient. The improved sparing
of the sigmoid colon between the clinical and replanned plans is represented by the orange-shaded DVH region.

gradient from 40 to 20 Gy than the clinical plan. Aside
from the predicted sparing gains for the femoral heads,
the predicted OAR sparing for this plan was similar to
the clinical plan, highlighting the importance of 3D dose
predictions in capturing further plan improvements for
normal tissues that might not be caught in a DVH predic-
tion. For example, the dose to the abdominal pannus is
significantly lower in the predicted and replanned doses
than the clinical dose. Had the predicted dose distribu-
tion been used for prospective plan quality assessment,
the clinical dose distribution would have been flagged
for risk of patient skin reactions.

4 DISCUSSION

In this study, we developed a dose-prediction model that
predicted high-quality 3D dose distributions for VMAT
plans for the female pelvis, all of which were deemed
to be clinically acceptable by a radiation oncologist spe-
cializing in gynecologic cancers.Through a retrospective
planning study, we showed that the predicted dose dis-
tributions can be used to improve clinical plans. To our
knowledge, this is the first study to include a physi-
cian review of 3D dose distributions generated by a
deep-learning algorithm and to demonstrate the poten-
tial clinical gains of using 3D dose prediction to guide
plan review and optimization.

Although the predicted 3D dose distributions from
our model are not deliverable plans because they do

not include any planning parameters, they were trained
using real treatment plans and give distributions that are
in good agreement with the real plans. Additionally, the
results of the replanning study suggest that our model’s
dose predictions can be physically achieved.In this work,
the predictions were used to guide manual replanning.
However, the predictions could be used in a more sys-
tematic and automatic way. In our previous work, we
showed the ability of dose prediction to automatically
flag suboptimal plans.2 Once suboptimal plans are iden-
tified, replanning could be done automatically through
the auto-creation of planning objectives from predicted
DVH points—similar to other knowledge-based planning
approaches—as well as predicted isodose volumes. In
our manual replanning study, we found that creating
planning structures from the predicted isodose volumes
allowed us to take advantage of the 3D information
and to achieve the predicted dose fall-off, especially for
normal tissues not classified as OARs.

During the physician review of the predicted dose dis-
tributions, the smooth nature of the predicted isodose
lines was noted as being uncharacteristic of clinical
dose distributions. The largest differences between the
clinical and predicted dose maps were in the low-dose
regions. The 15 Gy isodoses varied greatly across the
clinical plans in the training and validation sets.This vari-
ation may be the result of the low doses being of less
focus during planning as there are no clear planning
goals for mid-low dose falloff. Because of the large vari-
ability in the clinical isodoses, our deep learning model
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F IGURE 5 (a) Comparison of the clinical, predicted, and replanned dose distributions for an example test set patient with cervical cancer.
The PTV prescribed to 45 Gy is contoured in blue. The predicted dose distribution indicated that improved sparing of the femoral heads and
normal tissues could be achieved in the clinical plan. The clinical plan was re-optimized to achieve the predicted sparing gains. (b) Comparison
of the clinical (solid), predicted (dashed), and replanned (dashed-dotted) dose-volume histograms (DVHs) for the same patient. The improved
sparing of the femoral heads between the clinical and replanned plans is represented by the purple-shaded DVH region.

was unable to identify patterns related to the planning
inputs and the 15 Gy isodoses, and it likely averaged
the isodoses over the training set.

In the replanning study, we showed that our patient-
specific estimates of optimal 3D dose distributions could
have resulted in improved clinical plans. The plans used
in this study were retrospective clinical plans, mean-
ing that they had passed physician review. Our findings
demonstrate that suboptimal plans do unfortunately
make it through peer review undetected and reach
patients and highlight the potential benefits of incorpo-
rating data-driven approaches to bring plans from high
quality to best possible for a given patient. This tool
could be used as part of the treatment planning pro-
cess to improve plans before physician review, thereby
reducing the number of handoffs between the planner
and physician as well as reducing inter-planner variabil-
ity. A physics reviewer or physician peer reviewer could
also use it as a plan review tool. Furthermore, it has the
potential to be used in an educational environment to
train less-experienced members of a radiation oncology
team to achieve high-quality plans.

5 CONCLUSIONS

In summary, we have demonstrated that deep learn-
ing can predict high-quality dose distributions for VMAT
plans for patients with gynecologic cancers, and that
these dose distributions can be used to demonstrate
achievable improvements in clinical plans.
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