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Crohn disease (CD) burden has increased with globalization/urbanization, and
the rapid rise is attributed to environmental changes rather than genetic drift.
The StudyOf Urban and Rural CD Evolution (SOURCE, n = 380) has considered
diet-omics domains simultaneously to detect complex interactions and iden-
tify potential beneficial and pathogenic factors linked with rural-urban tran-
sition and CD. We characterize exposures, diet, ileal transcriptomics,
metabolomics, and microbiome in newly diagnosed CD patients and controls
in rural and urban China and Israel. We show that time spent by rural residents
in urban environments is linked with changes in gut microbial composition
and metabolomics, which mirror those seen in CD. Ileal transcriptomics
highlights personal metabolic and immune gene expressionmodules, that are
directly linked to potential protective dietary exposures (coffee, manganese,
vitamin D), fecal metabolites, and the microbiome. Bacteria-associated meta-
bolites are primarily linked with host immune modules, whereas diet-linked
metabolites are associated with host epithelial metabolic functions.

Crohn disease (CD) burden has increased with globalization1. This
rapid increase is likely linked to environmental and dietary
changes2, leading to alterations in the human gut microbiome and
the immune and epithelial intestinal mucosa, which in turn are
thought to instigate chronic gut inflammation in CD. Despite

significant medical advances, the majority of CD patients do not
enjoy complete control of disease activity and symptoms using
current therapies3. This partly stems from gaps in knowledge of the
causes of this complex disease which preclude the development of
targeted therapies.
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Efforts to delineate someof the environmental and dietary factors
driving CD in the West have been hampered by near-universal mod-
ernization. However, in China, the transition from a traditional, pre-
dominantly rural society to anurbanand industrializedone is currently
ongoing, paralleling a staggering rise in the incidence of CD, a disease
that was barely known in China two decades ago4. This provides a
unique opportunity for exploring different aspects of CD evolution in
China5 and comparing it to CD in theWest. For example, a metanalysis
that compared environmental and dietary risk factors between Eastern
and Western populations highlighted that higher fat intake, higher
monounsaturated fatty acid (MUFA), n-3 polyunsaturated fatty acid
(PUFA), and n-6 PUFA are associated with CD only in the Eastern
population6.

CD human cohorts and biospecimens are key for understanding
factors contributing to CD7–10 as existing disease models do not fully
recapitulate all human aspects of the disease. Therefore, to provide
insights into the impacts of urbanization and modernization and to
decipherCDpathogenesis in the gut,we structured the StudyOfUrban
and Rural Crohn disease Evolution (SOURCE), a multicenter andmulti-
omics cross-sectional study in Guangdong province in China and in
Israel assessing 380 newlydiagnosedCDpatients and controls living in
rural and urban settings. Prospectively collected data included
demographics, clinical characteristics, dietary exposures based on a
food frequency questionnaire (FFQ), environmental exposures
(childhood factors, dietary and smoking habits, and sanitary condi-
tions), fecal microbiome, ileal transcriptome, and fecal metabolome.
Here we show that this unique cohort design enabled us to reach
biologically significant insights including (1) Rural-to-urban transition
mirrors some changes also seen in CD, (2) Specific dietary exposures
were linked with gut microbial taxa previously enriched in CD, (3) By
applying an unbiased approach to the mucosal ileal transcriptomics
data, we defined gene co-expression modules that were linked to
potential beneficial dietary exposures, fecal metabolites, and the
microbiome.

Results
Rural and urban populations differ in exposures
The SOURCE cohort study was conducted in Guangdong province in
Southern China [Sun Yat-Sen (SYS) First Affiliated Hospital, China] and
in Israel (Sheba Medical Center, Israel) and included 380 participants
(Fig. 1a). In China; 40 newly-diagnosed CD patients and 121 healthy
residents of Guangzhou (urban Ctl), a modernized metropolitan
community with a population of 16 million, and 162 healthy residents
of Shaoguan district (all rural controls), a rural underdeveloped com-
munity 300 kmnorth of Guangzhou. In Israel; 25 newly-diagnosed pre-
treatment CD patients and 32 healthy controls. Demographics, CD
phenotype, biomarkers (CRP and fecal calprotectin), food frequency
questionnaire (FFQ), the environment questionnaire developed by the
International Organization of IBD (IOIBD), microbiome V4 16S
sequencing (stool and mucosal biopsies), microbial metagenomics
shotgun sequencing (MGX), ileal transcriptomics (biopsies), and stool
metabolomics were included (Fig. 1b). Subjects from the Israeli cohort
(n = 57) were all White and mostly lived in urban settings (95.5% CD,
88% Ctl). Subjects from China (n = 323) were all Asians. Total energy
consumption (Kcal/day) did not differ between groups (Table 1). Age
was not different between CD and Ctl in Israel and urban Chinese, but
the overall rural Ctls (n = 162) were older, and this was taken into
consideration in the analyses. As we wanted to evaluate urban expo-
sures, we specifically added a question to the IOIBD that specified the
amount of time spent in an urban environment in the last year (less
than 10%, 10–50%, ≥50%). To refine the data analysis and based on the
environmental questionnaire, we stratified all subjects living in a rural
area (all rural, n = 162) to those spending less than 50% of their time in
the last year in urban areas (designated “rural”, n = 88) and compared
them to those living in a rural area but spending ≥50% of their time in

an urban environment (designated “rural-urban”, n = 74), and to city-
dwellers (“urban”, n = 121), and the newly diagnosed CD patients
(n = 40). Environmental exposures differed between groups (Fig. 1c
and SupplementaryDataset 1). For example, flush toilet availabilitywas
reported in 5% of the rural group, 35% of the rural-urban group, 61% of
urban participants, and 100% of Israelis. Having farm animals was
noted in 60%of rural, 24%of rural-urban, and 3% of urbanparticipants.
Dietary habits also differed substantially; drinking soft drinks at least
weekly was reported in 5% of rural and 27% of urban Chinese subjects,
and 60% of the Israeli controls, and similarly coffee was reported in 1%
of rural, 15% of rural-urban, and 32% urbanChinese, and 77% of Israelis.
Smoking differed by group and gender (higher rates in males), with
negligible percentages of active female smoking in China.

Time spent in urban environments affect microbiome and
metabolites
Among rural Chinese participants, unsupervised Principal Coordinates
Analysis (PCoA) analysis using the unweighted UniFrac metric indi-
cated time spent in the city (i.e., rural vs. rural-urban) was a major
factor driving differences in the healthy rural microbiome (Fig. 2a),
with rural controlspredominantly clusteredonone side of the plot and
rural-urban concentrated on the other side. Indeed, we observed dif-
ferences in UniFrac based beta-diversity (Fig. 2b) and alpha-diversity
(Fig. 2c), with significantly lower diversity in rural-urban individuals vs.
rural controls. Further, a previously defined microbial health index11

was numerically reduced in the rural-urban participants vs. rural con-
trols (Fig. 2d). To validate whether the differences in microbial com-
munities are indeed related to rural/urban exposure, we used a dataset
from an independent cohort5 (BioProject PRJNA349463) that included
subjects from Hunan province in Southern China (Fig. 2e), and based
on it we generated an independent “rural index” on bacterial amplicon
sequence variants (ASVs) that showed significant differential abun-
dance between rural and urban cases from that cohort5. When this
“rural index” was applied to our cohort, it showed significantly lower
read-out in rural-urban participants vs. rural controls, and was also
lower in CD cases vs. urban controls (Fig. 2f). Similar differences in
rural index and health index between rural-urban vs. rural controls
were noted after age-matching these groups (Supplementary
Fig. 1a–e). Finally, MaAsLin multivariate analyses (controlling for age
and gender) identified 41 ASVs higher in rural-urban individuals
(Fig. 2g, h shows those with p <0.005 and FDR ≤0.1, and Supplemen-
tary Dataset 3 shows taxa with p ≤0.05, FDR ≤0.25) compared to rural
controls, including several Bacteroides, R. gnavus, and Fusobacter-
iaceae, that were previously linked with CD7. In contrast, the rural
community showed enrichment in 37 ASVs including Actinomyces and
Bifidobacterium. dbBact-based enrichment analysis of the ASVs higher
in rural participants indicated that such enrichments had previously
been seen in other rural communities (Supplementary Fig. 1).

PCoA based on the fecal metabolites (Fig. 2i) indicated that time
spent in the city (rural vs. rural-urban) was a major factor driving dif-
ferences within the healthy rural participants, which did not differ in
age. MaAsLin multivariate analyses identified 22 metabolites that dif-
fered between rural-urban and rural individuals, 8 that were increased
and 14 thatwere decreased after controlling for age and gender (Fig. 2j
and Supplementary Dataset 3 with p < 0.01, FDR ≤0.25). Overlapping
these metabolites with those that were significantly different between
CD and urban control Chinese (Fig. 2j, k) indicated that 8 of 8 (100%)
metabolites higher in rural-urban individuals were also significantly
increased in CD, including N-acetyltryptophan, N-acetylalanine, and
oleic and palmitoleic acids. In contrast, 12 of the 14 (90%) reduced
metabolites in rural-urban individuals vs. rural individuals were also
significantly reduced in CD, including phenylpyruvate, glutarate, and
aminoadipate. Spearman correlation on the coefficient of these two
independent comparisons showed a significant correlation (r =0.902,
p = 9.6E−9, Fig. 2k). The microbial health and rural index and the high
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correlation coefficient results of the metabolomics dataset indicated
that gut microbiome and metabolome observed in this rural-urban
transitional group mirrored changes seen also in CD.

To capture the complex interactions in the gut among all rural
subjects (n = 162), which showed higher heterogeneity in exposures
including diet, we applied HAllA analysis12. This indicated significant
associations between 16S and diet (n = 162, p <0.005, FDR ≤0.25,
Supplementary Fig. 1g and Supplementary Dataset 3); R. gnavus was
positively linked with fat (monounsaturated fatty acids) and fish and
poultry consumption, while Oxalobacter formigenes was negatively
associatedwith these factors, and specificClostridium taxawere linked
with whole grains servings. We also detected 2675 significant asso-
ciations between microbiome and the fecal metabolome [n = 40,
p <0.005, FDR ≤0.25, 684 significant associations with p <0.0005,
FDR <0.1 (Supplementary Fig. 1g and Supplementary Dataset 3)]; here
R. gnavus was positively associated with docosatetraenoic acid,

histidine, and docosapentaenoic acid (DPA), while azelate, which is
currently used to suppress inflammation in the skin13, was linked with
Oxalobacter formigenes. We identified fewer or no significant correla-
tions betweenmetagenomic shotgun taxonomy, diet, andmetabolites,
likely due to the reduced number of available samples.

Exposures and diet are linked with microbial variations
We next used PCA on the dietary exposures to highlight factors dis-
criminating between samples and to explain the variation in dietary
exposure in the overall cohort in Israel and China and supplemented
this with PERMANOVA aiming to quantify the contribution of different
factors affecting the gut microbial composition within each subgroup
separately (rural, rural-urban, urban and CD inChina, and controls and
CD in Israel), after controlling for age and gender. PCA based on
dietary variables was used to capture dietary patterns between sub-
jects and groups in Israel and China based on data collected within

Fig. 1 | Diet-omics SOURCE cohort demographics, sampling, and dietary and
environmental exposures. The SOURCE cohort included 380 participants. In
China, 40newly-diagnosedCrohndisease (CD) patients and 121healthy residents of
Guangzhou (urban Ctl) and 162 healthy residents of Shaoguan district (all rural
controls), a rural underdeveloped community 300 km north of Guangzhou. In
Israel, 25 newly-diagnosed pre-treatment CD patients and 32 healthy controls.
a Scheme (BioRender) illustrating SOURCEdemographics, sampling, andmetadata

including exposures. b Cohort figure showing Israel and China data types and
availability colored as indicated. Each row represents a subject. c Mosaic plots
showing exposure rates between the different groups in China, and Israel. Full data
in Supplementary Dataset 1. Two-sided *p <0.05, **p <0.01, ***p <0.001, chi-square
tests test. IOIBD Q International Organization of IBD questionnaire, FFQ food fre-
quency questionnaire, MGX metagenomics, TI terminal ileum, Ctl controls.
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each FFQ (see “Methods”). PCA PC1 and PC2 showed a significant
correlation with the amount of protein, fat, carbohydrate, and added
sugar consumption in the Chinese subcohort, with some separation of
the rural controls based on PC1 and separation of urbancontrols based
on PC2 (Fig. 3a). PCA of the Israeli sub-cohortmainly separated CD and
controls on PC2, and factors contributing to this separation included
fiber consumption in the direction of controls, and protein, processed
meat, and added sugar in the CD direction (Fig. 3b). The diet-based
correlation heatmap indicated some trends between different feature
consumption in both sub-cohorts (Supplementary Fig. 2). For exam-
ple, fibers and vegetables showed a high correlationwith each other in
both cohorts, and dietary iron (ferrous) and protein consumption also
showed a high correlation, which was stronger in the Chinese cohort.

PERMANOVA was used to quantify the contribution of different
factors affecting the gut microbial composition after controlling for
age and gender and this was performed separately within each group
in each site (rural, rural-urban, urbanandCD inChina, and controls and
CD in Israel, Fig. 3c shows factors that were significant in at least 2
groups (i.e., independent validation), and the full list of features is in
Supplementary Dataset 4). Significant factors included the amount of
total and saturated fat, fruits, iron (ferrous), dairy, and added sugar
daily consumption, and having farm animals or growing up with sib-
lings. Fat (total and saturated fat, PUFA,MUFA) consumptionwasmore
specifically linked with microbial composition in China. Interestingly,
higher fat intake was previously associated with CD only in an Eastern
population6. Multivariate analyses using MaAsLin2 and controlling for
age, gender, and group (rural, rural-urban, urban) including only the
283 SYS controls (FDR <0.25), we identified 16 ASVs that showed
decreased abundance with higher iron consumption (Fig. 3d, e and
Supplementary Fig. 3), including Lachnospiraceae and Ruminococca-
ceae taxa, and 12 ASVs that were higher with increasing iron con-
sumption, including Actinomyces and Streptococcus taxa. The heatmap
shows these ASVs across samples sorted by the amount of consumed
ironwithin each control sample group inChina, andwe included in the
visualization also the CD group. UsingMaAsLin2 we identified 44 ASVs
that were reduced upon higher total fat consumption using a similar
analysis, including several Oscillospira and Lachnospira taxa, as
opposed to 14 ASVs that increased with higher fat consumption
including two taxa from the Veillonellaceae family (Acidaminococcus
andMegasphaera genus) and Streptococcus. dbBact-based analysis14 of
the ASVs that were lower with increasing iron or fat consumptions
(Fig. 3d, e) indicated a large number of them have been observed in
other experiments to be lower in CD (chi-square p = 3E−6), and that a

large fraction of ASVs that were higher with increasing iron or fat
consumption were observed in other experiments in saliva samples
(chi-square p =0.005), and identification of salivary bacteria in the gut
was previously noted in CD11. Similar analyses with ASVs linked with
protein consumption (linked with iron consumption), showed con-
sistent results (Supplementary Fig. 3).

CD-increased taxa are enriched in mucosal biopsies
An unweighted UniFrac-based PCoA calculated on the 16S microbial
data colored by CD diagnosis indicated disease as a significant factor
(Supplementary Fig. 4a, d). Furthermore, both subcohorts showed
significantly reduced Faith based alpha-diversity and decreased
microbial health index in CD cases compared to controls11 (Supple-
mentary Fig. 4b, c, e, f). To capture CD-associated microbial ASVs and
taxonomy we used Maaslin2 after controlling for gender and age, and
for subject and sample type (stool ileal and rectal biopsies) in the
Israeli cohort, and we included only the urban participants (healthy
and CD) from China, as rural living was a major confounder. Resulting
significant ASVs are shown in the heatmaps (Supplementary Fig. 4g, h
and Supplementary Dataset 5), indicating biopsy samples tended to
includemore of the CD-increased taxa. Shared increased taxa included
Enterobacteriaceae (ASV05780), Actinomyces (ASV08231), and Fuso-
bacteriaceae (ASV15593) (Supplementary Dataset 5). Interestingly,
using both Unweighted unifrac distance and Spearman correlation we
show that the same subject’s stool and biopsy samples were more
similar (i.e., show lower distance) than samples taken from other
subjects. Moreover, biopsies taken from the ileum and rectum, which
are over one meter apart in adults, were significantly more similar to
eachother than the same patient’s stool to either his own ileal or rectal
biopsies (Supplementary Fig. 4i).

Correlations between mucosal transcriptomics, diet, and
metabolites
We further aimed to map and prioritize additional potential beneficial
exposures, besides rural living, including metabolites and dietary tar-
gets that interact with the affected host CD ileal transcriptomics and
the microbiome. We applied weighted gene co-expression network
analysis (WGCNA) on the Israeli ileal transcriptomics datasets. By this,
we aimed to capture genes and enriched pathways across samples, to
not just identify the disease signal, but to break down the signal to
disease-specific enriched pathways and cell types that were linked to
disease, exposure, bacteria, and metabolomics features. Similar gene
modules were applied to the Chinese ileal transcriptomics dataset. We

Table 1 | SOURCE basic demographics and characteristics

SYS sub-cohort (n = 323) 100% Asian ethnicity Sheba sub-cohort (n = 57) 100%White ethnicity

Ctl all rural (n = 162) Ctl urban (n = 121) CD (n = 40) Ctl (n = 32) CD (n = 25)

Age (years) 51 (43, 59)# 27 (25, 31) 27 (20, 30) 28 (23, 45) 30 (24, 41)

Female gender (%) 71 (44%) 73 (60%) 14 (35%) 18 (56%) 9 (36%)

BMI 22 (20, 24) 20 (19, 21) 17 (16, 20)^ 24 (22, 27) 22 (20, 27)

CRP (normal < 5) 0.82 (0.4, 1.9) 0.3 (0.2, 0.7) 16 (4, 44)^ 2 (1, 6) 11 (4.6, 35)*

Calprotectin – – – 57 (35, 227) 1000 (731, 1000)*

CD Location n = 37 n = 24

Ileal (L1) – – 13 (35%) – 15 (63%)

Colom (L2) – – 4 (11%) – 1 (4%)

Ileal + colon (L3) – – 20 (54%) – 8 (33%)

Total energy [Kcal/day, median
(q1, Q3)]

n = 162
1908 (1594,2364)

n = 120
1800 (1450,2310)

n = 40
1980 (1670,2420)

n = 27
1800 (1380,2230)

n = 20
2250 (1600,2760)

Detailed cohort characteristics (exposures and FFQ) can be found in Supplementary Dataset 1.
*p <0.05CDvs.Ctl in Israel; ^p < 0.05CDvs. Ctl in urban China; #p < 0.05 Rural vs. Urban.Most analyseswere donewithin the rural population afterwe stratified subjects living in a rural area to those
spending <50% of their time in the last year in urban areas (“rural”, n = 88) and compared them to those living in a rural area but spending ≥50% of their time in an urban environment (“rural-urban”,
n = 74), and were adjusting for age in the indicated analyses.
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identified nine modules that were linked with CD diagnosis in Israel or
China (p ≤0.05, each module assigned a random color as indicated in
Fig. 4a, and the complete gene lists are in Supplementary Dataset 6).
Functional enrichments of these modules and selected highlighted
genes are shown in Fig. 4a, b. Specifically, four modules showed
reduced expression in CD (heatmap colored by r, and the p value is
indicated) and were related to: (1) lipid metabolism (yellow); (2)

mitochondrial functions including translation and structure (green);
(3) respiration (red); and (4) DNA damage and repair (pink). Five
modules showed increased expression in CD and were related to: (1)
the immune and extracellular matrix (ECM, brown module), including
CXCL cytokines, OSM, TREM1, and MMPs; (2) myeloid signal (black
module), which included TLRs, and CARD9; (3) tuft cells and eosino-
phils (salmon module), which included CCR3, CLC, ALOX15 and TFFs;
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(4) innate epithelial immune functions (tan), including DUOX2 and
CEACAMs; and (5) cell cycle and mitosis and T and B cells (purple),
which included CCNB1, CCNE1, and CDK1. Importantly, all modules
were similarly altered in the Israeli and the Chinese CD cohorts, except
for the DNA damage and repair (pink) and the cell cycle and mitosis
and T and B cells modules (purple), which were only significantly
altered in the Chinese subcohort but were changed in the same
direction in the Israeli group.

We then linked these CD modules with clinical factors, bio-
markers, and dietary, bacteria, and fecal metabolomics features
(Fig. 4c, d). No significant associations were detected between the CD-
linkedmodules and gender, age, BMI, or smoking in the Israeli cohort,
but we identified strong associations with CRP and calprotectin
(Fig. 4a). Furthermore, we additionally observed a negative correlation
with our previously published microbial health index11 which was
specific to transcriptomics modules enriched for the immune system
and in particular the brown (immune and ECM) and salmon (tuft cells
and eosinophils)modules (p ≤0.01) in the Israeli cohort. In theChinese
transcriptomics modules, BMI and gender showed no significant
associations but age, smoking, ileal inflammation, andCRPwere linked
with the indicated modules (Fig. 4a). Significant correlations (FDR ≤
0.25) with dietary factors in the Israeli cohort (Fig. 4c) indicated for
example that starch, iodine, and selenium consumption showed
similar directionality as seen with the disease, but starch was linked
with the yellow epithelial metabolic functions (APOA1 and GASTA1),
and iodine and selenium were linked with the brown immune module
(including OSM and CXCL8/9). Other examples, like Manganese and
vitamin D consumption, were positively correlated with control epi-
thelial lipid processing and mitochondrial functions, while coffee was
anti-correlated with the immune modules linked with CD. Significant
correlations (FDR ≤0.25) with dietary factors in the Chinese tran-
scriptomics cohort were fewer and included vegetable and fruit con-
sumption that were linked with control signals, and processed food,
which was linked with the CD brown (immune and ECM)module, with
trends showing correlation (p ≤0.05) between vitamin D consumption
and control signals, and fat consumption linked with the CD signals.

Fecal metabolites in the Israeli cohort showed a robust signal
identifying 234 significant metabolites (p <0.05, FDR ≤0.25) corre-
lated with host transcriptomics modules (Fig. 4d and Supplementary
Fig. 5a, b), of which the majority correlated with control-associated
signals as indicated (Fig. 4e). Metabolites classified with lipid fatty acid
classification were linked with the control-associated yellow modules,
while metabolites that were classified as amino acids were linked with
tan and brown CD-associated immune modules. Similar associations
betweenmetabolites and transcriptomicsmodules were also reflected
within only the CD group (Supplementary Fig. 5b, 97.5% showed the
same direction, with binomial test p < 2.2e−16). Specific potential
beneficial associations included those relating to the dopaminergic

system, aligning with previous studies in IBD preclinical models
showing the beneficial effects of this pathway15,16. Specifically, pheny-
lethanolamine was associated with the control epithelial yellow lipid
metabolism module, and anti-correlated with the disease-associated
black (myeloid) module, which included also S100A8 calprotectin and
TLR2/8, and L-dopa was associated with control epithelial yellow lipid
metabolism module, and anti-correlated with the disease-associated
salmon (tuft cells and eosinophils) module. Of the 92 metabolites that
were shared between the Israeli and the Chinese datasets (see “Meth-
ods”), 39 showed correlations within the TI SYS and Sheba tran-
scriptomics gene modules. Remarkably 32 of the 39 (82%) showed
similar directionally with CD and control signals in both cohorts,
providing independent validation of the association seen in the Israeli
cohort despite the Chinese cohort having substantially different
genetics and exposures (Fig. 4f and Supplementary Fig. 5c, Supple-
mentary Dataset 6, binomial p = 7.1E−5, see “Methods”). These 32
metabolites included tryptophan, acetyl-tryptophan, and docosate-
traenoic acid positively linked with modules higher in CD, while adi-
pate, azelate, and indole 3 methyl acetate were positively linked with
control modules, and opposite from CD.

We then applied HAllA analysis12 to capture significant associa-
tions of metabolites that were linked with each ileal transcriptomics
module to dietary and microbial datasets in the Sheba cohort, as this
subset had a more detailed FFQ (Supplementary Fig. 2). This showed
that diet-linked fecal metabolites were associated with host epithelial
metabolic functions, while microbial-linked metabolites were asso-
ciated with the host immune response (Fisher’s test p <0.00001 for
FFQ vs. 16S and MGX, Fig. 5a and Supplementary Dataset 8). Sanky
plots highlighted significant positive associations between the pink
transcriptomics module-associated metabolites, and dietary expo-
sures (Fig. 5b), indicating interactions between fat and sugar con-
sumption and fecal histamine, sucrose, and lactose. Significant
positive associations between the black myeloid, brown immune and
ECM, and salmon eosinophils enriched transcriptomics modules,
metabolites, and metagenomics datasets (Fig. 5c, d) highlighted CD-
associated metabolites (light pink). For example, methionine, which
was recently shown to be crucial for myeloid cells17, was linked with
Veillonella dispar taxa and the blackmyeloid enriched transcriptomics
modules. Metabolites linked with the brown immune and ECM enri-
ched module included tyramine, which was previously shown to be
secreted by E. coli in vitro18. Several mitochondria-associated meta-
bolites were linked with CD-microbial signals: malonate, a mitochon-
drial respiratory-chain inhibitor, was linked with H. parainfluenza and
Veillonella pravula; 3-Hydroxymethyl glutaric acid was linked with
Veillonella pravula, and ureidopropionate was linked with R. gnavus.
We further connected these transcriptomics-associated modules with
the metagenomics-assigned pathways and enzymes classes (ECs)
(Supplementary Figs. 6 and 7 and Supplementary Dataset 8).

Fig. 2 | Gut microbial and metabolites are affected by time spent by rural
residents in urban environments in China. a Unweighted UniFrac PCoA plot of
182 rural Chinese 16S microbiome fecal samples, colored by “rural” (n = 88) and
“rural-urban” (n = 74) that spends more than half of their time in urban environ-
ments. Histograms show the distribution per group on PC1/2. Unweighted unifrac
distances (b, beta diversity, permanova p =0.002), Faith’s phylogenetic alpha
diversity (c, Mann–Whitney p =0.004), and our previously defined health index
(d, Mann–Whitney p =0.09) between rural (n = 88) and rural-urban (n = 74).
eHeatmap showing ASVswith significant differential abundance between rural and
urban samples (dsFDR <0.1), using an independent cohort (BioProject
PRJNA349463) from Hunan province in Southern China. Each row represents ASV
and each column is a different sample. ASVs are ordered by the effect size. Those
taxa were used to generate a “rural index” applied to our cohort. f Violin plot of
rural index between rural and rural-urban (Mann–Whitney p =0.0001) and Crohn
Disease (CD, n = 40) and urban (right, n = 121, Mann–Whitney p =0.0007).
g Volcano plots of significantly different (FDR ≤0.1) taxa between rural (n = 88) and

rural-urban (n = 74), using a maaslin2 controlling for age and gender (full list in
Supplementary Dataset 3).h Boxplot showing the relative abundance of significant
taxa from (g). i Canberra distance PCoA plot of 40 rural and rural-urban Chinese
fecalmetabolites samples colored bygroup, showing significant separation onPC2.
j Boxplot showing the relative abundance of 22 significantly different (FDR≤0.25,
*indicates FDR ≤0.1) metabolites between rural and rural-urban samples, using a
maaslin2 analysis controlling for age and gender (left, n = 40). We indicated the
relative abundance in the CD and urban control groups (n = 79) (Supplementary
Dataset 3). k Scatter plots ofmaaslin2 analysis coefficients, indicating that 20 of the
22metabolites shown in (j) were also similarly significantly different in CDvs. urban
controlswith similar directionality (red: 8metabolites higher in rural-urbanandCD,
blue: 10 higher in rural and urban controls, gray; 2 higher only in rural vs rural-
urban). Two-sided *p <0.05, **p <0.01, ***p <0.001. Boxplot center line and limit;
median, upper and lower quartiles; whiskers, 1.5x interquartile range. The Violon
plot center line represents the median and the kernel density estimation is in blue.
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Metabolites associated with the control signal and the green (mito-
chondria) module (Supplementary Fig. 7b, c) were associated with
thiamin (vitamin B1), which serves as a cofactor for mitochondrial
enzymes, folate, coenzyme A, which transports fatty acids in the
cytosol to themitochondria and a precursor of the Krebs tricarboxylic
acid (TCA) cycle, and flavin, which is involved in electron transfer
processes. Metabolites associated with the tan (epithelial innate
defense) module (including DUOX2 & CEACAM5/6, Supplementary
Fig. 7d, e) contained several Docosatetraenoic (ω-6), Doc-
osapentaenoic, and Eicosatrienoic polyunsaturated fatty acids (PUFA),
which are interlinked with NAD+ diphosphatase, adenylate cyclase,
and Enoyl-CoA hydratase, which is essential in lipid beta-oxidation.

Finally, we examined overall associations between the different
datasets beyond individual features using sparse Partial Least Squares
(sPLS) regression19 (see “Methods”) to maximize the shared variation
between pairs of omics while accounting for the sparsity of the data in

the Sheba cohort. We identified a significantly high degree of shared
variation between most omic pairs (Fig. 5e, f and Supplementary
Dataset 8), and in particular between the host transcriptomics and
metabolomics (0.867, p <0.01), species composition and metabo-
lomics (spearman correlation 0.848, p <0.01, permutation-based
analysis), and species composition and various bacterial functional
profiles (0.569–0.743). A high degree of shared variation was also
found between FFQ data and both functional metagenomics (0.764,
p <0.05) and host transcriptomics (0.65, p <0.08). To integrate the
different omics while accounting for the shared variation and their
associationwith CD,we appliedDIABLO20. This analysis demonstrated
high shared explained variance between the different omics, ranging
from 13%–53% (metabolomics 24%, metagenomics 13%, tran-
scriptomics 53%, and food frequency questioners 22%) and showed
an overall separation of CD from controls based on each omic
(Fig. 5g). Moreover, focusing on the features most highly correlated

Fig. 3 | Exposures and diet are linked with microbial variations. a PCA figure
based on food frequency questionnaire (FFQ) data and showing variations of the
different groups in China (28 FFQ features, sample n = 308). Colors indicate the
specific groups. Histograms show the distribution of samples and groups on PC1
and PC2. (right). FFQ components were correlated to the PCAs PC1 (x axis) and PC2
(y axis) values (left). Spearman’s rho values are shown as the head of the arrow for
the top 10 FFQ components with the highest PC1 or PC2 rho values. b Same as (a)
for the Israeli cohort (62 FFQ feature, sample n = 47). c PERMANOVA analysis of 16S
microbial variance explained by FFQ and questionnaire data, using each group and
sub-cohort separately (n is shown in brackets). x indicates two-sided p ≤0.1, *
indicates two-sided p ≤0.05. Only variables that were significant in at least two
groups are shown here (full list in Supplementary Dataset 4). d Venn plots showing
the overlap between the taxa decreased in fat and iron, and the taxa increased with

fat and iron fromSupplementary Fig. 3a.d dbBact termassociations for the fat/iron
associated ASVs. e Number of ASVs observed (in dbBact experiments) to be asso-
ciated with saliva or lower abundance in Crohn Disease (CD, right and left sub-
panels respectively). Red circles show the set of ASVs positively correlatedwith iron
and/or fat consumption, andgreen circles showtheASVsnegatively correlatedwith
iron and/or fat. Gray circles show the total number of dbBact ASVs associated with
the term, with overlaps showing the subset of ASVs from each group that is asso-
ciated with the term. 47/48 of negatively correlated ASVs have been associated at
least once with decreased frequency in CD, compared to 10/19 in the positively
correlated ASVs (Two-sided p = 3E−6, chi-square test). Similarly, 9/48 negatively
associated ASVs compared to 10/19 positively associated ASVs have been observed
in dbBact saliva samples (Two-sided p =0.005, chi-square test). MUFA mono-
unsaturated fatty acid, PUFA polyunsaturated fatty acid.

Article https://doi.org/10.1038/s41467-024-48106-6

Nature Communications |         (2024) 15:3764 7



with disease state (top 10 loadings from each omic across compo-
nents 1 and 2), we cataloged 67 features across omics that were
associated with CD (Fig. 5h and Supplementary Dataset 8). Notably,
these features include R. gnavus and E. Ramosums, which clustered
with the brown (immune and ECM) module that included CXCL
cytokines, OSM, TREM1, and MMPs, and the back (myeloid) module,
which included TLRs, and CARD9, transcriptomics modules in the
right CD space, which is consistent with the results in Fig. 5c, and on
the opposite side from features like fibers, vegetables, and A. putre-
dinis, which clustered at the controls space on the left (an interactive
map of all prioritized features in Fig. 5h can be found as Supple-
mentary Dataset 9).

Discussion
Understanding the staggering rise in CD incidence in increasingly
industrialized communities is still challenging. In this study, we
exploited a consortium uniquely set to interrogate profiles in urban
and rural communities in a developing country (China), with its heavily
modernized cities juxtaposed to still underdeveloped rural commu-
nities and compared those with a Westernized Israeli population. This
design enabled a smoother comparison between rural-urban signals
and the CD signal in China. We showed that gut microbial and meta-
bolomics changes observed in the rural-urban transitional group mir-
rored those seen in CD. Other advantages include the use of newly
diagnosed and treatment naïve CD patients and controls, the analysis

Fig. 4 | Specific dietary factors and metabolites show correlations with Crohn
disease (CD) ileal mucosal transcriptomics signals. WGCNA co-expression
modules based on the Israel ileal (n = 41) and applied to the China transcriptomics
(n = 40). Modules that were correlated with Crohn disease (CD) (p ≤0.05) in either
Israel or China are shown. a 4 modules showed reduced and 5 were induced in CD.
For each module, representative genes and enriched cells/pathways are marked.
Heatmap represents the correlation between each module and different features;
numbers represent the correlation p value, and color the coefficient for each
comparison. b ToppFun functional annotation enrichment of genes within each
module. FDR is shown as the circle size; manually selected annotations origin
database ismarkedon the y-axis (full list in SupplementaryDataset 6). cHeatmapof
the correlations between each module and dietary factors, with numbers repre-
senting the correlation p value and color for the coefficient. Only factors with
p ≤0.05 (two-sided) in at least one module are shown, and correlations with
Benjamini–Hochberg FDR ≤0.25 are marked with a black square. dHeatmap of the
correlation between each module and stool metabolites, colored by correlation

coefficient. Only metabolites with Benjamini–Hochberg FDR ≤0.25 in at least one
module are shown, and those significant correlations (two-sided p <0.05 and
FDR ≤0.1, or p <0.1 and FDR ≤0.25) are marked with black and gray dots respec-
tively. e Bar graph showing the number ofmetabolites significantly correlated with
each of the modules, separated by CD- or control-associated correlations defined
by the direction of the metabolite-module correlation and the direction of the
module compared to disease. The colors represent the metabolites class based on
HumanMetabolome Database (HMDB). fHeatmapof the correlation between each
module and the 32 stool metabolites (of 91 common metabolites in the SYS and
Shebadatasets) that showed significant correlation in the samedirectionwithCD in
Israel and China, colored by correlation coefficient (detailed heatmap in Supple-
mentary Fig. 5c, full list in Supplementary Dataset 7). Metabolite’s direction is
defined as the direction of the strongest correlation between all the modules.
MUFA monounsaturated fatty acid, PUFA polyunsaturated fatty acid, ECM extra-
cellular matrix.
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ofpairedpersonal dietary exposure andomicswithineach subject, and
the ability to independently validate the signal between the Chinese
and Israeli sub-cohorts. Characterizing the different omics layers and
dietary exposures directly in each subject enabled us to capture
interactions between diet, host, microbiome, and metabolites and
develop integrated analyses of CD pathogenesis on the health-disease

axis. This diet and omics dataset which includes subjects living outside
of North America can be used as a valuable resource for the larger
community to generate hypotheses linked to different exposures. It
supplements other CD omics studies from North America, including
our previous transcriptomics and microbiome analyses in the RISK
study7,8,21,22, which did not include diet and metabolomics and Human
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Microbiome Project 2 (HMP2) IBD that included more limited dietary
exposures23,24. In addition to the suggested signal seen in the rural-
urban transitional group in China, our analyses further map and
prioritize potential beneficial dietary targets and metabolites that
interact and negatively correlate with the CD host ileal transcriptomics
and/or the microbiome and may be used to redirect patients to heal-
thier states.

We applied an unbiased approach [weighted gene co-expression
network analysis (WGCNA)25] to themucosal ileal transcriptomics data
to define different gene co-expression modules with enriched func-
tional pathways. Using this approach enabled the separation of the
disease signal into different and more specific enriched functional
modules. The identification of these per-subject signals of the tran-
scriptome module with specific metadata features including diet,
metabolomics datasets, and gutmicrobiome. Interestingly, diet-linked
fecal metabolites were associated with host ileal epithelial metabolic
functions, while the microbe-linked metabolites and the summarized
microbial health index were associated with ileal transcriptomics
modules enriched for immune genes and functions. Analysis of the
associations between transcriptomics and diet indicated, for example,
that higher consumption of manganese, vitamin D, and coffee is
negatively correlated with signatures seen in the disease, and posi-
tively correlated with a healthier microbial composition. Numerous
epidemiological, laboratory, and clinical studies have already demon-
strated the protective role of vitamin D in the development and course
of CD26, and its supplementation is part of the therapeutic recom-
mendation. The roles of manganese and coffee are less established,
although previous data already alluded toward the potential benefit of
coffee in different models27,28 and manganese29,30 was shown to be an
important factor for proper maintenance of the intestinal barrier and
provides protection against DSS-induced colon injury. In contrast,
consumption of sugar and saturated fat was positively correlated with
the transcriptomic signature seen in CD. Analysis of the associations
between transcriptomics and metabolomics highlighted 234 metabo-
lites that showpotential beneficial effects to drive theCD signal toward
a healthier state, of which a subset was also validated in the SYS
dataset. One promising example is azelate, which is currently used to
suppress inflammation in the skin, likely through the activation of
PPARgamma, which is also relevant in the gut13. Other potentially
beneficial metabolites are related to the dopaminergic system (phe-
nylethanolamine & L-dopa), aligning with previous studies in IBD
preclinical models showing the beneficial effects of this pathway.
Interestingly, a prominent inhibition of mitochondrial functions was
already defined in IBD31–34, and here we highlight associations between
metabolites that are known to suppress mitochondrial respiration and
functions such as malonate and 3-Hydroxymethyl glutaric acid with
several CD-associated bacteria including Veillonella pravula,R. gnavus,
and H. parainfluenza, supporting a link between mitochondrial

inhibition and microbial signals. A complementary multi-omics
approach supported these findings; sPLS regression identified a sig-
nificantly highdegree of shared variation betweenmostomic pairs and
between the host transcriptomics and metabolomics (0.867, p <0.01)
and FFQ data (0.65, p < 0.08), and integration of different omics while
accounting for the shared variation and their association with CD
highlighted features including R. gnavus and E. Ramosums, which
clustered with the immune and ECM and the myeloid transcriptomics
modules, and opposed features like fibers, vegetables, and A. putre-
dinis, which clustered at the controls space.

Epidemiological studies have highlighted that increased con-
sumption of certain Western dietary components, such as processed
meat, saturated fats, and starchy desserts, is linked with an increased
risk of CD35. Here, we analyzed a heterogeneous Asianpopulation from
rural and urban China and a second cohort from Israel composed of a
Westernized White population. We demonstrated that exposure and
diet, including total fat and iron consumption, are significantly linked
withmicrobial variations.We found that taxa thatwere decreasedwith
increasing iron or fat consumption were enriched for taxa previously
shown to be decreased in CD, and those taxa that were higher with
increasing fat and ironwere enriched for bacteria usually seen in saliva
samples, also previously linked with CD7,11. Another interesting obser-
vation involved individuals who live in rural areas but spent a sig-
nificant fraction of their time (above 50%) in urban area (“rural-urban”
participants). Compared to rural participants, rural-urban cases had
higher flush toilet availability, lower exposure to farm animals, and
increased exposure to soft drinks and coffee in the rural-urban group.
Faith-based Alpha-diversity was lower in rural-urban vs. rural controls,
and in CD vs. urban cases. Our previously defined microbial health
index11 was also significantly reduced in the rural-urban individuals vs.
rural controls, and an independent rural indexwas lower in rural-urban
vs. rural controls and was lower also in CD vs. urban controls. MaAsLin
multivariate analyses identified a higher abundance of several Bacter-
oides, R. gnavus, and Fusobacteriaceae taxa, which were previously
linked with CD, in rural-urban compared to rural cases. Metabolomics
analyses also indicated that significant changes seen in this rural-urban
group significantly overlapped with changes also captured in CD.
Thesefindings indicate that rather than the conventional dichotomous
classification often employed to interrogate rural versus urban resi-
dents’ biology, the time spent by remote rural residents in urban
environment is a significant driver of microbial profiles potentially
linked with exposure and diet, indicating a continuum rather than an
on/off effect of the exposome. The similarities observed in the meta-
bolites and gut microbiome in rural-urban transition and in CD, may
suggest the contribution of these factors to the pathogenesis of this
complex and multifactorial disease.

Our study has several strengths. We heavily relied on analyzing
human cohorts and biospecimens to capture pathogenesis and

Fig. 5 | Host epithelial-linkedmetabolites were associated with diet while host
immune-linked metabolites were correlated with the microbiome. The corre-
lations between metabolites associated with each ileal transcriptomics module in
the Israeli subcohort (n = 41) were tested against FFQ and microbiome data sepa-
rately using HAllA (Hierarchical All-against-All Association Testing) with p <0.05,
FDR ≤0.25. a Bar plot of the number of significant correlations between metabo-
lites associated with the differentmodules and food frequency questionnaire (FFQ,
n = 33), 16S taxonomy (n = 36), and metagenomics (MGX) taxonomy (n = 37). Full
lists in Supplementary Dataset 8. b Sankey figure shows significant correlations
betweenpinkmodule-associatedmetabolites andFFQ.On the right are scatterplots
of 3 example metabolites and FFQ components. c Sankey figure of up to top
50 significant correlations for control-associated metabolites (blue) and disease-
associated metabolites (red), for metabolites associated with black (left), brown
(middle), and salmon (right) modules, and MGX taxonomy. Only positive correla-
tions are shown. d Scatter plots of example metabolites and MGX species corre-
lations. e, f Pairwise sparse Partial Least Squares (sPLS) regression between fecal

metabolomics, host transcriptomics WGCNA modules, FFQ, MGX taxonomic, and
functional profiles (pathway and ECs). Spearman correlation between the first sPLS
components the defined two omics (e) and p values calculated based on shuffled
data (f) are shown. Pairs with two-sided p <0.1 are marked with an asterisk.
gOrdination DIABLO analysis according to omics (shape) and disease state (Crohn
—red; healthy—blue). Each sample is described by 4 omics, FFQ components,
metabolomics, metagenomics, and host transcriptomics PC1. Sample centroids are
plotted in bold solid dots and connected by a line to all omics measurements.
h Correlation circle plot for the DIABLO analysis, where each point represents a
molecular feature. The point position is defined according to its correlation with
the first and second components. Only MGX taxonomy is included as the MGX EC
and pathway profiles were highly correlated with the taxonomy profiles. An inter-
active version of this plot can be found in the Supplementary Information in Sup-
plementary Dataset 8 and 9. CD Crohn disease, ECM extracellular matrix, MGX
metagenomics, TI terminal ileum, ECs enzymes classes.
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diet-host-microbial interactions since there are no availableCDmurine
models that fully recapitulate human aspects of the disease. We
included several omics domains and detailed dietary and environ-
mental exposure and performed correlations after identifying specific
ileal gene expression modules that are not only related to CD but also
are enriched for specific pathways and cell types. The results obtained
can be translated into the manipulation of top-incriminated dietary
and environmental triggers or by novel agents designed to specifically
target interactions at critical junctures. Moreover, we included paired
metabolomics datasets on a subset of samples. The metabolome is a
central downstream output, mediator, and effector comprised of
derivatives of the microbiome, host, environment, and diet; factors
that are all linkedwith CD. Sincemetabolites are chemical compounds,
they can conveniently be applied and tested as potential interventions,
and we mapped and prioritized these with potential beneficial signals
that are linked with a healthier state, and were able to validate a group
that was also present in the Chinese dataset independently. Finally, we
included a unique population in China of a rural underdeveloped
community 300 km north of Guangzhou, and stratified these rural
residents by the time they spent in urban environments. This high-
lighted changes that mirror gut microbiome and metabolite changes
seen in CD.

Limitations of our work include performing multi-omics analyses
on a relatively small cohort covering two geographically very different
sites and the more limited metabolomics and transcriptomics data,
whichwas only available for a subset of cohorts. It is possible that with
an enlarged cohort in the indicated ethnicities, we could have identi-
fied other weaker signals that we were not able to detect with the
current cohort size. However, using the current cohort, we were able
to find important and substantial results using rigorous analyses. The
dietary information in our study was obtained using FFQs, which are
frequently used to monitor dietary habits but have limitations. While
more accurate participant dietary information could potentially lead
to the detection of additional signals that did not reach statistical
significance in our analysis, we were still able to detect diet-associated
changes with significant host-omics effects. In addition, as each group
in our cohort originates from a single location, it may affect the gen-
eralizability of the results to other locations. There is a general tradeoff
between achieving higher sensitivity by taking a more homogenous
population, and better generalizability by including a more hetero-
genous population.We opted for a design comprised of two countries,
and when possible, used them as independent validation, as well as
using the rural index derived from another independent study, hence
increasing the generalizability of some of our main results. Another
cohort-related limitation is that since CD is rare in rural areas, our
cohorts did not include analyses from this subgroup and CD patients
were from urban areas. We used throughout FDR cutoff of 0.25, but
we supplemented the results, when possible, with independently
validated, we indicated the features that had FDR cutoff of 0.1, and
p and FDR values are given in the suppl. datasets. It is possible that
with an enlarged cohort in the indicated ethnicities, we could have
identified other weaker signals that we were not able to detect with
the current cohort size. However, using the current cohort, we were
able to find important and substantial results using rigorous ana-
lyses. We did not include single-cell transcriptomics, but there are
advantages to using whole mucosal gut biopsies, which are used for
diagnosis and follow-up in the clinical setting. Enteric infection
burden was not directly tested, but CRP levels that indirectly indicate
potential infections were not different between rural and rural-urban
(Supplementary Dataset 1). Additionally, due to limitations asso-
ciated with the COVID-19 outbreak, samples from China and Israel
were processed locally within each country of origin, but both
cohorts were analyzed using a similar pipeline and as in the case of
the metabolomics association with the transcriptomics modules
were used as an independent validation.

In summary, this SOURCE multi-omics cohort included datasets
and samples from diverse populations from both East (China) and
West (Israel) and enabled thorough exploration of diet-omics domains
simultaneously to facilitate the detection of complex interactions in
the gut. Our human-based data has identified interesting associations
and can direct toward potential beneficial metabolites and dietary
modifications that can be further tested in future interventional stu-
dies in models and/or human studies.

Methods
Study population
The study was approved by ethics committees in both Sheba Hospital
in Israel (No. 5484) and the First-affiliated hospital of Sun Yat-Sen (SYS)
University in China (No.[2021]GH1457; No.[2019]GH0367; No.[2017]
073), and the research complies with all relevant ethical regulations.
This study was conducted in Guangdong province in Southern China
and Israel (Jan 2019 to April 2021). Several populations were analyzed
(Fig. 1). In China, newly diagnosed and treatment-naïve CD patients
were included, along with healthy urban residents of Guangzhou, a
modernized metropolitan community with a population of 16 million,
and healthy residents of Shaoguan district, a rural underdeveloped
community 300 km north of Guangzhou. Participants were asked
about the amount of time they spent in an urban environment in the
last year (“How long have you stayed in a city in the last year?”) with
answers including less than 10%, 10–50%, and above 50%. Newly
diagnosed CD patients and healthy controls from Israel were included
as another layer of a Westernized control cohort. CD diagnoses of all
patients were harmonized and based on clinical history, physical
examination, laboratory work, radiological findings, and endoscopic
and histological features as previously established in the European
Crohn’s and Colitis Organization consensus statement36. Written
informed consent was obtained from all participants.

Data collection and biospecimens
Data regarding enrolled subjects were recorded in a structured man-
ner that included demographic, clinical, laboratory, endoscopic, and
pathological features for the indicated group and participants (Fig. 1).
Laboratory tests included C-reactive protein (CRP). Endoscopic eva-
luations included gut segmental involvement. Stool specimens were
collected into a collection tube at least 3weeks following any antibiotic
treatment. Stool samples were aliquoted and frozen immediately in
−80 °C. Ileal biopsies were gathered during diagnostic colonoscopy
and stored in RNAlater and frozen at −80 °C. Due to COVID-19 out-
break limitations, samples were processed locally within each country
of origin. Samples from both cohorts were analyzed using a similar
bioinformatic pipeline; direct comparisons between groups were
performed within each country of origin.

Environmental and dietary questionnaires
Patients from both cohorts underwent environmental and dietary
exposure surveys. Gender was determined based on self-report. For
environmental exposure, we used the questionnaire developed by the
International Organization of IBD (IOIBD), with some modifications.
The questionnaire consists of 87 questions covering 25 different topics
proposed to be environmental risk factors for CD. Although it was not
formally validatedby the IOIBD, this questionnaire has beenpreviously
used in epidemiological studies investigating triggers of IBD37,38,
including one conducted in South-East Asia and China39. IOIBD ques-
tions relate to five main different areas: (1) Childhood factors up to
20 years including breastfeeding, appendectomy, tonsillectomy,
eczema, vaccinations (tuberculosis, pertussis, measles, rubella, diph-
theria, tetanus, polio), childhood infections (measles, pertussis,
rubella, chickenpox,mumps, scarlet fever) andpet ownership; (2) food
habits including daily, weekly or less frequent consumption of fruit,
vegetables, egg, cereal, bread, coffee, tea, juice, sugar, and fast food;
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(3) smoking habits (current smoker, non-smoker, ex-smoker); (4)
sanitary conditions such as the availability of in-house water tap, hot
water tap or flush toilet; and (5) others factors including daily physical
activity, the oral contraceptive pill and stressful events before diag-
nosis. We also included in the IOIBD questionnaire items about anti-
biotic use before and after the age of 15 years, use of toothpaste, and
the presence of amalgam teeth filling during childhood or later in life.
In addition, we added a specific question specifying the amount of
time spent in an urban environment in the last year with answers
including less than 10%, 10–50%, and above 50%. Although the IOIBD
questionnaire explores the role of diet before the diagnosis of IBD, we
added an additional comprehensive FFQ (Food frequency ques-
tionnaire), conducted by a trained dietician. This tool included over
600 food items, with an FFQ list that prioritized the foods/beverages
accounting for at least 80% of the total energy intake and the between-
person variance in previously collected dietary intake data from the
adult Israeli population40,41. Personnel from both Sheba and SYS were
similarly trained in the dietary interview method and the equivalent
FFQ was used after translation to Chinese and adaptation to the Chi-
nese diet. In Israel, a computerized FFQ version was used that auto-
matically computes the average daily nutrient content of an individual
patient’s diet including macro and micronutrients, and food item
servings. In China, the datawere extractedmanually and the portion of
a specific food, and micro and micronutrient consumption were
summarized. Data regarding exposures and diet are summarized in
Supplementary Dataset 1. The Sheba FFQ output included 62 features,
while the SYS one included 28 features.

Principal component analysis (PCA) was performed to summarize
variation in Israel and China FFQ data, separately, using R prcomp
function with data scaled and centered. FFQ components were cor-
related to PC1 and PC2 values using Spearman’s correlation, and the
top 10 FFQ features by maximal Spearman’s rho correlation to PC1 or
PC2, with p ≤0.05, are shown to highlight the main components
affecting variance in dietary intake. Spearman’s correlation was cal-
culated between all FFQ component pairs, separately for Israel, China
rural, and China urban and CD. Correlation heatmaps were generated
showing Spearman’s rho values, clustered using R hclust function with
Euclidian distances.

Fecal DNA extraction and 16S amplicon sequencing
At the Sheba site (Israel), fecal42–44 and biopsy7–10 DNA extraction, and
PCR amplification of the variable region 4 (V4) of the 16S rRNA gene
using Illumina adapted universal primers 515F/806R was conducted
using the direct PCR protocol [Extract-N-Amp Plant PCR kit (Sigma-
Aldrich, Inc.)]42–44. At the SYS site (China), fecal DNA samples were
extracted using the OMEGA Soil DNA Kit (Omega Bio-Tek, Norcross,
GA, USA) following the manufacturer’s instructions. PCRs of the vari-
able region4 (V4) of the 16S rRNAwere conducted and ampliconswere
pooled in equimolar concentrations into a composite sample that was
size selected (300–500bp) using agarose gel to reduce non-specific
products from host DNA. Sequencing was performed on the Illumina
MiSeq platform at Sheba or the NovaSeq platform at Shanghai Perso-
nal Biotechnology Co., Ltd (Shanghai, China). Samples from both
cohorts were analyzed independently using a similar bioinformatic
pipeline. Reads were processed in a data curation pipeline imple-
mented in QIIME 2 version 2021.445,46. Reads were demultiplexed
according to sample-specific barcodes. Quality control was performed
by truncating reads after three consecutive Phred scores lower than
20. Reads with ambiguous base calls or shorter than 150 bp after
quality truncation were discarded. Amplicon sequence variants (ASVs)
detection was performed using Deblur47, and duplicate samples from
different runs were joined, resulting in 323 samples with a median of
55,844 reads/sample (IQR 50,435–62,947) for China, and 158 samples
with a median of 23,595 reads/sample (IQR 13,549–36,505) for Israel.
ASVs present in less than 1% of the samples were removed.

Additionally, candidate contaminant ASVs were filtered using dbBact14

by removing ASVs with the f-score mean for (“water”, “soil”, “mus
musculus”) higher than “homo sapiens”, resulting in 1668/3642 ASVs
for China and 1290/2838 ASVs for Israel after filtering. ASV taxonomic
classification was assigned using a naive Bayes fitted classifier, trained
on the August 2013 Greengenes database. Taxonomy assigned by 16S
is indicated by the specific ASV number, and the sequence associated
with each ASV number is indicated in Supplementary Dataset 2 and in
the relevant supplementary datasets. All samples were rarefied to 33k
reads for α and β diversity analysis for China samples, and 4k reads for
Israel samples, to avoid read number effects. Faith’s phylogenetic
diversity48 was used as a measure of within sample α diversity, and
Unweighted UniFrac was used as a measure of between sample β-
diversity49, using a phylogenetic tree generated by SATé-enabled
phylogenetic placement (SEPP)50. The resulting distance matrix was
used to perform a Principal Coordinates Analysis (PCoA). Heatmaps
were generated using Calour version 2018.10.1 with default
parameters51.

PERMANOVA: quantifications of variance were calculated using
PERMANOVAwith the adonis function in the Rpackage Vegan52, on the
rarefied Unweighted UniFrac distance values. The total variance
explainedby each variablewas calculatedwhile accounting for age and
gender in the model (except for when looking at the contribution of
age and gender, when only age or gender can be controlled for).
PERMANOVAwas calculated independently for each group (China CD,
urban, rural-urban and rural, and Israel CD and control) and for each
questionnaire and FFQ component. Multivariate Association with
Linear Models (MaAsLin2) was used with R package version 1.8.0, to
test for specific differentially abundant ASVs between: rural and rural-
urban samples controlling for age and gender, China CD and urban
controls controlling for age and gender, and Israel CD and controls,
using both stool and biopsy samples, controlling for age, gender,
sample type (stool or biopsy) and patient ID as the random variable.
MaAsLin2 was also used to identify ASVs correlated with dietary con-
sumption of fat, iron, and protein separately, within all China controls,
controlling for age, gender and group (urban, rural-urban or urban). A
false discovery rate (FDR) cutoff of 0.25 was used for all MaAsLin2
analysis53, and FDR cutoff of 0.1 is indicated.

Rural and Health indices: per-sample health index was calculated
as previously described11. Briefly, a set of ASVs that were significantly
increased or decreased across multiple human diseases compared to
controls was identified. Using these ASVs bacteria, for each sample the
log of the ratio of health-associated bacteria (98) to disease-associated
bacteria (32), following rank transforming the samples, was calculated
and defined as the health index (with higher values indicating a better
health-associated microbiome). A similar approach was used to define
a “rural index” for each sample, as follows: Using an independent
dataset of rural and urban Chinese samples5, we identified 76 and 42
ASVs significantly higher/lower in the rural community respectively
(using a rank-mean test with dsFDR<0.154, implemented in Calour51).
The rural indexwas then calculated for each SOURCE sample as the log
of the ratio of the rank-transformed frequencies of the ASVs from the
rural and urban ASVs. Age matching between sample groups was
performed by binning ages into 10 year bins, and equalizing the
number of samples in each age bin between the two sample groups by
randomly dropping samples.

dbBact term enrichment analysis: significantly enriched dbBact14

ontology terms between two ASV sets (e.g., higher/lower in rural
community or positively/negatively correlated with dietary factor)
were identified using the dbBact-calour plugin. Briefly, dbBact con-
tains annotations linking ASVs to ontology-based terms, based on
manual analysis of over 1000 amplicon experiments. For the current
experiment analysis, for each term, a dbBact annotation-based score is
calculated for each ASV, and the distribution of the score across the
two ASV groups is compared to random permutations (of ASV group
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labels), using a permutation-based rank-mean testwith dsFDRmultiple
hypothesis correction. For the term-specific Venn diagrams, the
number of ASVs associated with the term in at least one dbBact
experiment is shown for each ASV group, with the central (gray) circle
showing the total number of ASVs in dbBact associated with the term.
The study was conducted and is currently reported according to the
STORMS guidelines55 (information in Supplementary Dataset 1).

Shotgun metagenomics sequencing
For samples from the Sheba site, DNA was purified using the Power-
MagSoil DNA isolation kit (MoBio) optimized for the Tecan automated
platform. DNA was diluted to 1.5 ng, and Illumina libraries were pre-
pared using Nextera DNA library preparation kit, Ref# 15028211; by
Tecan Freedom Evo 200 robot device. Nextera DNA Unique Dual
Indexes Sets A–D from IDT were used for library preparation. Library
concentration wasmeasured using the iQuantTMdsDNAHS Assay Kit,
ABP biosciences (Cat# AP-N011), and library size was quantified by
automated electrophoresis nucleic acid QC -Tape-Station system.
Libraries were sequenced by a NextSeq 500 device with IlluminaNS
500/550 High Output V2 75 cycle kit, Cat# FC-404-2005. SYS samples
site, the extracted DNA was processed to construct metagenome
shotgun sequencing libraries with insert sizes of 400bp by using
Illumina TruSeq NanoDNA LT Library Preparation Kit. Each librarywas
sequenced by the Illumina HiSeq X-ten platform (Illumina, USA) with
PE150 strategy at Personal Biotechnology Co., Ltd. (Shanghai, China).
Samples from both cohorts were analyzed independently using a
similar pipeline (https://github.com/biobakery). Reads were first
decontaminated and trimmed using KneadData v0.12.0, then samples
under 7M reads PE (or 3.5M SE) were excluded. The average number of
reads after the quality control process was 52,508,783.72
(±11,833,357.89) PE and 8,773,250.37 (±2,135,013.94) SE for the Chinese
and Israeli cohorts respectively. Taxonomic profiles were generated
using MetPhaln v4.0.056, from which the functional profiles were
generated using HUMAnN v3.657. Default parameters were used for all
modules, besides defining concatanating PE reads using the -cat-final-
output parameter in KneadData. Taxonomic and functional features
were filtered out if they didn’t have abundance greater than0.01% in at
least 10% of the samples.

Fecal metabolomics profiling and data preprocessing
For the Sheba samples (n = 37), extraction solution (ES: 75% methanol
and 25% water and six internal standards) was mixed with fecal smear,
sonicated for 10min, centrifuged at 14,000× g for 10min at 4 °C, and
stored at −80 °C until submission for LC-MS metabolomics analysis.
LC-MS analysis was conducted as described58. Briefly, Dionex Ultimate
ultra-high-performance liquid chromatography (UPLC) system cou-
pled to Orbitrap Q-Exactive Mass Spectrometer (Thermo Fisher Sci-
entific) was used. The resolution was set to 35,000 at a 200 mass/
charge ratio (m/z) with electrospray ionization and polarity switching
mode to enable both positive and negative ions across amass range of
67–1000m/z. The UPLC setup consisted of ZIC-pHILIC column
(SeQuant; 150mm×2.1mm, 5μm; Merck). Stool extracts were injec-
ted, and the compounds were separated with mobile phase gradient,
starting at 20% aqueous (20mM ammonium carbonate adjusted to pH
9.2 with 0.1% of 25% ammonium hydroxide) and 80% organic (acet-
onitrile) and terminated with 20% acetonitrile. Flow rate and column
temperature were maintained at 0.2ml/min and 45 °C, respectively,
for a total run timeof 27min. Allmetabolites were detected usingmass
accuracy below 5 ppm. Thermo Xcalibur 4.1 was used for data acqui-
sition. Peak areas of metabolites were determined usingMZmine2.5359

by using the exact mass of the singly charged ions (m/z) and the
retention time of metabolites was predetermined on the pHILIC col-
umn by analyzing an in-house mass spectrometry metabolite library
that was built by running commercially available standards. Thermo
TraceFinderTM 4.1 softwarewas used for validation, by comparing the

peak areas of the internal standards determined by both software. A
total of 405 of 545 of the predefined metabolites library passed the
threshold of peak intensity and were included in the analyses.

For the SYS samples, a targeted metabolomic analysis using a
Q300 kit (Metabo-Profile, Shanghai, China) was performed. Lyophi-
lized samples (~5mg)weremixedwith 25μl ofwater and homogenized
with zirconium oxide beads for 3min. One hundred twenty μl of
methanol containing internal standard was added and then homo-
genized for another 3min, centrifuged at 18,000× g for 20min, and
20μl of supernatant was transferred to a 96-well plate. The plate was
sealed and incubated at 30 °C for 60min, after which 330μl of ice-cold
50%methanol solution was added to dilute the sample. Then the plate
was stored at−20 °C for 20min, followedby4000× g centrifugation at
4 °C for 30min. One hundred thirty-five μl of supernatant was trans-
ferred to a new 96-well plate with 10μl internal standards in each well.
A liquid chromatography coupled to tandem mass spectrometry
(UPLC-MS/MS) system (ACQUITY UPLC-Xevo TQ-S, Waters Corp.,
Milford, MA, USA) was used to quantitate all targeted metabolites. To
diminish analytical bias within the entire analytical process, the sam-
ples were analyzed in duplicates that were randomly analyzed. The
quality control (QC) samples, internal standard calibrators, and blank
samples were analyzed across the entire sample set. The raw data files
generated by UPLC-MS/MS were processed using the MassLynx soft-
ware (v4.1, Waters, Milford, MA, USA) to perform peak integration,
calibration, and quantitation for each metabolite. A total of 185 of 305
metabolites passed the threshold of peak intensity and were included
in the analyses.

Ninety-two metabolites overlapped between the 185 SYS dataset
and the 405 in the Sheba cohort, and these were used to test corre-
lations as independent validation. Overall, the normalized metabolite
levels (each metabolite value was divided by the sum of total meta-
bolites value per sample) were used for all downstream analyses in
both Sheba and SYS cohorts.

Principal coordinates analysis (PCoA) was performed on the
metabolomics data using Canberra distances as a measure of between
sample β-diversity. Multivariate Association with Linear Models (MaA-
sLin2) was used with R package version 1.8.0, to test for specific dif-
ferentially abundant metabolites between China rural and rural-urban
samples controlling for age and gender, and for China CD and urban
controls controlling for age and gender, using FDR cutoff of 0.25.

RNA extraction and RNA-seq analysis
At the Sheba site, RNA and DNAwere isolated from terminal ileum (TI)
biopsies obtained during diagnostic colonoscopy using the Qiagen
AllPrep RNA/DNAMini Kit. PolyA-RNA selection, fragmentation, cDNA
synthesis, adapter ligation, TruSeq RNA sample library preparation
(Illumina, San Diego, CA), and paired-end 75 bp sequencing were per-
formed. Median reads depth was ~ 39M (31–46M IQR) in Sheba. Sam-
ples were sequenced at the NIH -supported Cincinnati Children’s
Hospital Research Foundation Digestive Health Center. At the SYS site,
mRNA was purified from total RNA using poly-T oligo-attached mag-
netic beads. The strand-specific cDNA sequencing libraries were gen-
erated using NEBNext® UltraTM Directional RNA Library Prep Kit for
Illumina® (NEB, USA), and index codes were added. Samples were
purified (AMPure XP system) and clustering of the index-coded sam-
ples was performed on a cBot Cluster Generation System using HiSeq
4000 PE Cluster Kit (Illumina, NEB, USA). After cluster generation, the
stranded, poly-A selected libraries were sequenced on an Illumina
NovaSeq 6000 platform by Novogene Bioinformation Technology.
One hundred fifty bp paired-end reads were generated to a median
depth of 42.3M (39.9–46.6M IQR) reads for China samples, and 38.2M
(32–38.2M IQR) reads for Israel samples. Reads were quantified by
kallisto60 version 42.5 using Gencode v24 as the reference genome.
Kallisto output files were summarized to gene level using R package
tximport version 1.22.061. Protein coding genes with Transcripts per
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Million (TPM) values above 1 in at least 20%of the sampleswere used in
downstream analysis.

Transcriptomics WGCNA and correlations with diet and
metabolomics
Weighted gene co-expression network analysis (WGCNA) to identify
modules of co-expressed genes25,62 was implemented utilizing R
WGCNApackage version 1.72-1, using the Sheba cohort as described63,64.
The analysis was performed on TI transcriptomics data. WGCNA was
implemented for the identification of co-expressed gene clusters; we
used pairwise correlations between gene expression profiles and the
signed hybrid version ofWGCNA. Similarities of gene co-expression are
converted to adjacency values (power adjacency function), with a β
parameter of 12. Average linkage hierarchical clustering on TOM-based
dissimilarities is implemented to detect modules of strongly correlated
genes across samples. For each module, the first principal component,
referred to as the eigengene, was considered to be the module repre-
sentative. A module summarized the expression levels of all the genes
in a given module. Included parameters were cluster sensitivity para-
meter (deepSplit) of 2 to identify balanced gene modules, a minimum
number of genes in a module (minModuleSize) was set to 30 genes,
maxBlockSize was set to 20,000 to include all genes in one block. The
same modules of co-expressed genes were applied to the SYS tran-
scriptomics dataset. We focused on modules significantly associated
with disease, with p ≤0.05 in at least one of the two cohorts. Nine out of
14 modules were associated with disease. Module eigengenes were
additionally correlated (Student’s asymptotic p value) to dietary factors,
and to fecal metabolites. Metabolomics data was log-scaled and
cleaned, with zeroes replaced by a fifth of the lowest value per meta-
bolite, and values with over 4 standard deviations from the mean were
trimmed to 4 standard deviations from the mean, to avoid extreme
values driving correlations. Benjamini–Hochberg FDR correction was
applied separately to diet and metabolomics results. Correlations with
FDR ≤0.25 were considered significant. This module eigengenes cor-
relation analysis was performed independently for the Sheba and SYS
datasets. ToppGene65 and ToppCluster software were used to perform
Gene Set Enrichment Analyses (GSEA) of the protein-coding genes
within the modules in the WGCNA TI analysis.

For each of the Sheba TI transcriptomics WGCNA disease-
associated modules, we defined modules associated with metabo-
lites as fecal metabolites with significant correlation (FDR ≤0.25) to
that module eigengene. An exact binomial test was used to test the
consistency of metabolites’ correlation to TI WGCNA modules,
between all samples and CD samples only in the Sheba cohort. For the
416 significant module-metabolites correlation calculated using all
samples, a correlation was considered consistent if it changed in the
same direction in CD samples, looking at Spearman’s rho. 406 out of
416 correlations were consistent. The probability of success was cal-
culated as pall*pcd + (1 − pall)*(1− pcd), with pall representing the per-
centageof positive correlations in all samples, andpcd representing the
percentage of positive correlations in CD samples, to account for the
unbalanced positive to negative correlations ratio. HAllA (Hierarchical
All-against-All significance testing) version 0.8.20 was used to identify
potential correlations between these modules associated metabolites
and Israeli FFQ components, stool 16S ASVs, and stool metagenomics
(MGX species, pathways, and ECs). HAllA was used with Spearman
correlation and FDR cutoff of 0.25.

Multi-omic analysis
We applied sparse Partial Least Squares (sPLS) regression between
pairs of omics19 including -metagenomics (species, pathways, and ECs),
stool metabolomic, and host TI transcriptomics (using disease-related
WGCNA modules’ PC1 values). This method aims to maximize the
shared variation between a pair of omics while accounting for the
sparsity in the data. As ameasure of the identified shared variation, we

calculated the Spearman correlation between the first components of
eachomic. Significancewas evaluated by generating 100permutations
of the feature table, and counting the number of permutations that
yielded a higher correlation value than the one calculated for the ori-
ginal data. DIABLO20 (Data Integration Analysis for Biomarker dis-
covery using Latent variable approaches for Omics studies) was used
to simultaneously maximize the shared variation between each omics
and differentiate between the health conditions. To uncover the rela-
tionship between the omics features and the disease state, we focused
on the 10 loadings with the highest correlation to the first and second
components. Both sPLS regression and DIABLO were calculated using
the MixOmics package66. According to the recommendations in the
MixOmics package, the number of components was chosen by a
minimal balanced error rate using the centroid distance method. In
addition, HAllA version 0.8.20 was used to identify potential correla-
tions between China rural and rural-urban metabolites, FFQ compo-
nents, and stool 16S ASVs, using Spearman correlation and FDR
cutoff of 0.25.

Statistical analysis
Statistics used for transcriptomics, microbiome, and metabolomics
were performed in R, and details are under these specific sections.
Overall, Pearson’s chi-square test or Fisher’s exact test was used for
categorical variables, Spearman’s rank correlation was used for con-
tinuous variables, and the Mann–Whitney U test for categorical vari-
ables, with Benjamini–Hochberg Procedure for FDR correction using
0.1 or 0.25 as indicated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source datasets are provided. RNASeq Israel and China datasets gen-
erated in this study have been deposited in the GEO database under
accession code: GSE199906 and GSE233900, respectively. The 16S
amplicon sequencing dataset generated in this study has been
deposited in BioProject under accession code: PRJNA978342, Micro-
bial shotgun sequencing generated in this study has been deposited
BioProject under accession code: PRJNA1056458. Fecal metabolomics
datasets: processeddata of thepredefined library used in this study are
provided in Supplementary Dataset 7. Raw datasets generated in this
study have been deposited in Metabolomics Workbench67 under
accession code: ST003161 (https://doi.org/10.21228/M8KX6R). Any
additional information is available upon request to the corresponding
author (yael.haberman@cchmc.org).

Code availability
The code is available at https://github.com/ShebaMicrobiomeCenter/
SOURCE68.
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