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Abstract

Functional connectome organization is altered in schizophrenia (SZ) and bipolar disorder (BD). 

However, it remains unclear whether network reorganization during a task relative to rest is also 

altered in these disorders.

This study examined connectome organization in patients with SZ (N=43) and BD (N=42) versus 

healthy controls (HC; N=39) using fMRI data during a visual object-perception task and at rest. 

Graph analyses were conducted for the whole-brain network using indices selected a priori: three 

reflecting network segregation (clustering coefficient, local efficiency, modularity), two reflecting 

integration (characteristic path length, global efficiency).

Group differences were limited to network segregation and were more evident in SZ (clustering 

coefficient, modularity) than in BD (clustering coefficient) compared to HC. State differences 
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were found across groups for segregation (local efficiency) and integration (characteristic path 

length). There was no group-by-state interaction for any graph index.

In summary, aberrant network organization compared to HC was confirmed, and was more evident 

in SZ than in BD. Yet, reorganization was largely intact in both disorders. These findings help 

to constrain models of dysconnection in SZ and BD, suggesting that the extent of functional 

dysconnectivity in these disorders tends to persist across changes in mental state.

Keywords

dysconnection; graph analysis; integration; resting-state connectivity; segregation; task-based 
connectivity

1 Introduction

Theories of brain dysconnectivity in schizophrenia (SZ) and bipolar disorder (BD) are 

widely held (Friston, Brown, Siemerkus, & Stephan, 2016; Friston & Frith, 1995; Khadka 

et al., 2013; Perry, Roberts, Mitchell, & Breakspear, 2018; Pettersson-Yeo, Allen, Benetti, 

McGuire, & Mechelli, 2011; Stephan, Friston, & Frith, 2009; Van Den Heuvel & Fornito, 

2014). Consistent with these theories, there is good evidence of aberrant functional 

connectivity in SZ and BD (Cao, Dixson, Meyer-Lindenberg, & Tost, 2016; Gong et al., 

2021), including findings showing an aberrant organization of the functional connectome 

(i.e., the entire network of all functional connections in the brain) (Kambeitz et al., 2016; 

Narr & Leaver, 2015; Perry et al., 2018). Yet, functional connectome organization is not 

static across states. In healthy participants, reorganization occurs, for example, during a 

task compared to rest (Bolt, Nomi, Rubinov, & Uddin, 2017). It remains unclear, whether 

functional connectome reorganization is also aberrant in SZ and BD compared to HC. This 

knowledge would inform current theories of dysconnectivity in these disorders.

Using graph theory (Rubinov & Sporns, 2010), functional connectome organization can 

be characterized according to two principles of network organization: segregation and 

integration. Segregation describes the extent to which a network exhibits a functional 

clustering of regions (i.e., nodes) for specialized, modular processing. Integration describes 

the efficiency of information transfer across the whole network. Past research revealed 

abnormalities in both segregation and integration of the functional connectome in SZ and 

BD, primarily using resting-state data (Kambeitz et al., 2016; Lei et al., 2019; Perry et al., 

2018; Wang et al., 2017; Z. Yu et al., 2020). Three indices of segregation have emerged as 

particularly aberrant in these disorders: the clustering coefficient (Cp), local efficiency (Eloc), 

and modularity (Q) (Alexander-Bloch et al., 2012; He et al., 2012; Lynall et al., 2010). Cp 

refers to the ‘clustering’ of nodes and is the average probability that two nodes connected to 

a given node will also be connected to one another. Eloc reflects the capacity for information 

transfer between adjacent nodes when a given node of interest is removed. While Cp and 

Eloc emphasize the topology of adjacent nodes across the network, Q measures ‘clustering’ 

of a large number of nodes and therefore describes how well the network can be partitioned 

into modules (e.g., into different cognitive control networks) (see also Methods: 2.6.3). With 

few exceptions (Hadley et al., 2016; Q. Yu et al., 2011), most graph analyses in SZ show 
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a lower degree of functional network segregation as indicated by a decrease in Cp (He et 

al., 2012; Liu et al., 2008; Lynall et al., 2010; S. Ma, Calhoun, Eichele, Du, & Adali, 2012; 

Xia et al., 2019), Eloc, and Q (Alexander-Bloch et al., 2010, 2012; He et al., 2012; Q. 

Ma et al., 2020). With respect to integration, two indices in particular were examined in 

SZ and BD: the characteristic path length (Lp) and global efficiency (Eglob). Lp describes 

how directly all pairs of nodes in the network are connected. Eglob describes the capacity 

for parallel exchange of information within the whole network. Findings on Lp and Eglob 

for both disorders, though, have been somewhat mixed (Doucet, Bassett, Yao, Glahn, & 

Frangou, 2017; Kambeitz et al., 2016; Wang et al., 2017; Xia et al., 2019). Above findings 

on altered functional connectome organization in SZ and BD are consistent with and further 

support a pathophysiological theory of dysconnectivity in these disorders, but are limited to 

either the resting or task state.

However, functional connectome organization is not static (Calhoun, Kiehl, & Pearlson, 

2008; Cole, Bassett, Power, Braver, & Petersen, 2014; Finc et al., 2020; P. Jiang et al., 2018; 

T. Jiang, He, Zang, & Weng, 2004; Kieliba, Madugula, Filippini, Duff, & Makin, 2019). For 

example, in healthy participants, network segregation and integration are increased during a 

task compared to rest (Bolt et al., 2017), which is particularly evident in the visual domain 

(Breckel et al., 2013; Ulloa & Horwitz, 2018). Interestingly, impaired visual perception 

is prevalent in SZ and BD (Butler, Silverstein, & Dakin, 2008; Javitt & Freedman, 2016; 

Rassovsky, Horan, Lee, Sergi, & Green, 2011). To date, however, no study has examined 

the reorganization of the functional connectome from rest to a visual task in SZ and BD. A 

few studies investigating connectome segregation and integration in a task and at rest were 

limited to an auditory task and did not include BD (S. Ma et al., 2012; Q. Yu, Sui, Kiehl, 

Pearlson, & Calhoun, 2013).

Thus, in this study, we conducted a secondary analysis using a unique fMRI dataset on 

visual processing in SZ and BD. Resting-state data and data from a visual object recognition 

task were acquired in the same session for each of the SZ (N=43), BD (N=42), and HC 

(N=39) participants (Jimenez, Riedel, Lee, Reavis, & Green, 2019; Reavis et al., 2020; 

Reavis, Lee, Wynn, Narr, et al., 2017). Whole-brain functional connectome reorganization 

between task performance and rest was examined using established indices of network 

segregation and integration from graph theory mentioned above. Modularity (Q) in particular 

was explored in more detail using two types of nodes: ‘provincial hubs’, which are important 

for within-module communication (i.e., segregation), and ‘connector hubs’, which are 

important for between-module integration.

Consistent with existing data on brain dysconnectivity in SZ and BD, we hypothesized a 

lower degree of functional network segregation (Cp , Eloc, Q) and largely intact network 

integration (Lp, Eglob) in both disorders. Specific hypotheses regarding the rest-to-task 

reorganization of the functional connectome in SZ and BD compared to HC could not be 

made because of a lack of consistent and comparable prior data (S. Ma et al., 2012; Q. Yu et 

al., 2013). However, we anticipated a number of possible patterns of functional connectome 

reorganization in patients, each of which would extend theories of brain dysconnectivity in 

SZ and BD. First, network reorganization may be similar in magnitude in these disorders 

compared to HC, which would indicate that adjustment to cognitive demands is not aberrant. 

Riedel et al. Page 3

Psychiatry Res Neuroimaging. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This pattern seemed less likely given the robust previous findings of dysorganization of 

the functional connectome in SZ and BD (Narr & Leaver, 2015; Perry et al., 2018), which 

have emerged to some degree in task-related, but most notably in resting-state fMRI studies 

(Kambeitz et al., 2016). If, on the other hand, reorganization is greater in SZ and BD 

than in HC, such that dysorganization proves less pronounced during a task compared to 

rest, this would indicate a compensatory mechanism in adapting to cognitive demands. 

Conversely, if reorganization is lower in SZ and BD than in HC, this would indicate 

impaired reorganization in addition to marked resting-state dysconnectivity. This last pattern 

is most readily inferred from what we currently know about brain dysconnectivity in SZ and 

BD.

2 Methods

The study protocol was reviewed and approved by the Institutional Review Boards of the 

VA Greater Los Angeles Healthcare System (GLA) and the University of California, Los 

Angeles (UCLA).

2.1 Participants

A total of 49 individuals with SZ, 49 individuals with BD, and 52 HC completed both 

task and resting-state fMRI as part of a large, NIMH-sponsored study of visual processing 

in major mental illness. Every individual had the capacity to give informed consent and 

provided written informed consent prior to participation. All patient participants were 

clinically stable outpatients with a DSM-IV diagnosis of SZ or BD (First, Gibbon, Spitzer, 

Williams, & Benjamin, 1997). For detailed selection criteria please refer to the supplement 

(1.1).

Clinical symptoms were characterized for the patient participants using the Brief Psychiatric 

Rating Scale (BPRS) (Ventura, Nuechterlein, Subotnik, & Gilbert, 1995), Clinical 

Assessment Interview for Negative Symptoms (CAINS) (Kring, Gur, Blanchard, Horan, 

& Reise, 2013), Young Mania Rating Scale (YMRS) (Young, Biggs, Ziegler, & Meyer, 

1978), and Hamilton Depression rating scale (HAMD) (Hamilton, 1960). Mean daily doses 

for antipsychotic medication were calculated in chlorpromazine equivalents (Andreasen, 

Pressler, Nopoulos, Miller, & Ho, 2010) for each patient, based on available self-report.

2.2 Visual Perception Task

A visual object-perception task (Reavis, Lee, Wynn, Engel, et al., 2017) was used for 

task-based fMRI (Fig. 1). In the task, participants viewed five images: two different chairs, 

two different cups, and one outdoor scene. Two object-stimulus blocks for each of the five 

images and two blocks containing only a fixation cross were presented in a shuffled order 

in each of the five task runs (i.e., 50 object-stimulus blocks total, 10 fixation-cross blocks 

total). In each object-stimulus block, the image flashed on for 1000 ms and off for 400 ms 

ten times, appearing in slightly different locations each time (i.e., 500 visual stimuli total). 

In about 20% of the presentations, the image was missing a part (e.g., a cup missing a 

handle) (i.e., ~ 100 target stimuli total). Subjects were asked to press a button each time 

they detected a missing part. The percentage of correct responses to these presentations was 
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recorded across all five task runs as a behavioural marker of ongoing vigilance (see Table 1). 

Thus, the task required ongoing vigilance, but was designed to place relatively little demand 

on memory or cognitive control to help reduce differences in performance between patients 

and controls. Performance differences could confound group comparisons of connectome 

reorganization between resting-state and task-based fMRI. Only the first two task runs were 

used for fMRI data processing (see 2.5).

2.3 fMRI acquisition

Scanning was performed on a Siemens Tim Trio 3 T MRI scanner equipped with a 12-

channel head coil (Siemens Medical Solutions, Erlangen, Germany) at the UCLA Staglin 

Center for Cognitive Neuroscience. Five task fMRI runs (200 s each) and one resting-state 

fMRI run (300 s) were acquired using matched and standard parameters (see supplement: 

1.2). After the final task run, a retinotopic mapping scan (about 2.5 min) and a diffusion-

weighted imaging scan (about 9 min) (both of which are not part of this study) were 

acquired before the resting-state scan. Because the acquisition parameters were tailored for 

the examination of visual processing (see 1), the fMRI field of view was not optimized to 

cover the whole brain in all participants (see 2.5 and supplement: 1.4.2).

2.4 Motion assessment

Framewise displacement (FD) (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) was 

calculated to quantify motion between fMRI volumes. A threshold of relative FD > 0.5 mm 

(as suggested by Power et al., 2014) was used to tag outlier volumes for later nuisance 

regression / scrubbing. Additional parameters were used to exclude participants with 

excessive motion and to assess potentially confounding effects of motion (see supplement: 

1.3).

2.5 fMRI data processing

fMRI data processing was performed in FSL version 5.0.9 (Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012), as briefly summarized here. See the supplement (1.4) for details. 

The identical data preprocessing was used for resting-state and task-based fMRI.

First-level analysis was performed in subject-space to avoid both image distortion due to 

normalization, especially in the clinical groups, and changes in the graph indices due to 

resampling and interpolation (Fryer et al., 2019; Gargouri et al., 2018; Magalhães, Marques, 

Soares, Alves, & Sousa, 2015; van de Ven, Rotarska Jagiela, Oertel-Knöchel, & Linden, 

2017).

Nuisance regression of six motion parameters, outlier volumes (FD > 0.5 mm, i.e., 

motion scrubbing), and mean white matter (WM) and cerebrospinal fluid (CSF) signal was 

performed. Global signal regression was not performed. For the task-based fMRI analyses, 

deconvolution of the functional data was also performed during first-level analysis, by 

modelling the response of each voxel to ten object-stimulus blocks (i.e., two blocks for each 

of the five stimuli) in each of the five task runs. Fixation-cross blocks were not explicitly 

modelled.
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We were primarily interested in reorganization from rest to task. As resting-state and task-

based fMRI differ in various ways, we decided to equate the amount of fMRI data from 

which the graph indices were derived in each state, as has been done in previous studies (Q. 

Yu et al., 2013). Thus, the first two of the task-based fMRI runs were selected for the current 

analyses because they were similar in length to the resting state run. Using a larger amount 

of data from the task might have increased reliability of the graph indices for the task 

condition, but would have reduced comparability of the indices with the resting-state fMRI 

run. After scrubbing, there were at least 3.8 min of resting-state fMRI in each participant, 

and an average of about 4.5 min across the sample. There were at least 5 min of task-based 

fMRI, and an average of about 6 min.

The mean Blood Oxygen Level Dependent (BOLD) signal time course for all nodes as 

defined in the Power atlas (Power et al., 2011) was extracted from the residual images for 

both the task-based and resting-state fMRI data (‘res4d.nii.gz’). A narrowed field of view 

and individual brain anatomy contributed to participants having different sets of covered 

nodes (see supplement: 1.4.2). However, when the number of nodes varies, the graph indices 

are difficult to compare between groups (van Wijk, Stam, & Daffertshofer, 2010). Rather 

than excluding a large number of participants from this unique sample due to incomplete 

coverage of a few nodes, we decided to prioritize statistical power by focusing on the set of 

nodes for which there was similar coverage across participants. As a result, 60 of the 264 

Power nodes were excluded from the main analyses. A supplemental analysis in a subset of 

participants with complete coverage of all 264 Power nodes was performed (see supplement: 

1.6.5).

2.6 Graph analysis of functional connectivity

2.6.1 Transformation of correlation matrices—Pearson time-series correlation 

coefficients (r) for all node pairs were calculated to form a 204 × 204 matrix for each 

participant, with the diagonal and connections with negative correlation coefficients set to 

0. We considered alternative ways to transform negative r values (see supplement: 1.5, 2.3). 

All participants had a network density greater than 50% for both rest and task. Connectivity 

matrices were Fisher-z-transformed.

2.6.2 Graph construction—Graph analyses were performed using the R package 

brainGraph, version 2.2.0 (Watson, 2018). For the main analyses, correlation matrices were 

binarized using a range of density (proportional) thresholds (strongest 10% to 50% of edges 

in 2% increments; see supplement 1.6.1). Binarization reduces potential effects of global 

connectivity on the graph indices, as it removes all edge-weight variance. Supplemental 

analyses were also conducted using raw (absolute) thresholding (supplement: 1.6.1).

2.6.3 Assessment of graph indices—Graph analyses were conducted for the whole-

brain network (see supplement: 1.6). Network segregation was assessed using the clustering 

coefficient (Cp), local efficiency (Eloc), and modularity (Q) (Rubinov & Sporns, 2010). 

Cp refers to the ‘clustering’ of nodes into groups of three and is the probability that two 

nodes connected to a given node (i.e., ‘adjacent’ nodes) will also be connected to one 

another, averaged over the whole network. Eloc relates to adjacent nodes and reflects the 
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capacity for information transfer between adjacent nodes when a given node of interest is 

removed. While Cp and Eloc emphasize the topology of adjacent nodes across the network, 

Q measures ‘clustering’ of a large number of nodes into larger groups and reflects the 

connectivity within these groups (i.e., modules) relative to the connectivity between the 

groups. That is, Q describes how well the brain network can be partitioned into modules 

(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008; Newman, 2006). Q was computed using 

the Louvain algorithm (Blondel et al., 2008).

Whole-brain network integration was assessed using characteristic path length (Lp) and 

global efficiency (Eglob). Lp describes how directly all pairs of nodes in the network are 

connected. Lp is defined as the average smallest number of connections (i.e., edges) to link 

all pairs of nodes. Eglob is inversely related to the characteristic path length and describes the 

capacity for parallel exchange of information within the whole network.

Modularity (Q) includes several components. Q is computed by assigning each node to 

a module in a participant’s network so that the ratio of within-module edges to between-

module edges, relative to equivalent null networks, is maximized. The resulting number of 

modules varies between individual graphs. However, Q does not directly reveal differences 

in the number of modules or their composition. Therefore, we further evaluated these 

components in a follow-up analysis using three indices: the total number of modules (Nmod), 

number of ‘provincial hubs’ (Nprov), and number of ‘connector hubs’ (Nconn). Provincial 

hubs are important for within-module communication and are identified by a high within-

module degree z-score (WD) and a low participation coefficient (PC). Connector hubs are 

important for between-module integration and are identified by a low WD and a high PC 

(Cohen & D’Esposito, 2016; Guimera & Nunes, 2005; see supplement: 1.6.2).

Graph indices were calculated at each density threshold, by computing the area under the 

curve (AUC) for each participant at rest and during task using the function auc() of the R 

package MESS version 0.5.5. The AUCs were used as dependent variables (DVs) for further 

analyses (see section 2.7).

In addition to assessing Nmod, Nprov, and Nconn, we computed normalized mutual 

information (NMI) for each participant to explain potential differences in modular structure. 

NMI describes the degree of agreement between the assignment of nodes to modules in our 

Louvain approach and the assignment of nodes to modules/subnetworks as defined in the 

Power Atlas (see supplement: 1.6.3).

2.7 Statistical analyses

All statistical analyses were performed in R version 3.4.3 (R Core Team, 2017), also using 

the R package afex version 0.23–0. For all statistical tests, the level of significance was 

defined at 5% (αoriginal = 0.05). Group differences in demographic, clinical, and behavioral 

characteristics were examined using chi-square (ᵪ2) tests for categorical variables and one-

way analysis of variance (ANOVA) or t-tests for continuous variables. Sex was included as a 

factor of no interest (see supplement: 1.6) for the following analyses.
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For each DV of interest (Cp, Eloc, Q, Lp, Eglob) we performed a mixed-design ANOVA (MD-

ANOVA) with group as the between-subject factor (SZ, BD, HC) and state as the within-

subject factor (rest, task). A strict Bonferroni-type adjustment of αoriginal was conducted for 

the five MD-ANOVAs (αcritical = 0.05/5 = 0.01). To further investigate significant effects of 

modularity we conducted a 3 × 2 MD-ANOVA for each constituent variable (Nmod, Nprov, 

Nconn) with group as the between-subject factor and state as the within-subject factor. A 

Bonferroni-type adjustment of αoriginal was conducted for these follow-up MD-ANOVAs 

(αcritical = 0.05/3 = 0.016). Post-hoc analyses were performed using t-tests and p-values 

were FDR adjusted. A statistical comparison of graph indices in SZ, BD subgroups (BD-I / 

BD-II; BD with or without a history of psychosis), and HC is included in the supplement 

(1.6.4, 2.4.3).

3 Results

A total of 26 participants (6 SZ, 7 BD, 13 HC) were excluded from analyses due to 

excessive motion or incomplete fMRI data (see supplement: 2.1). Data are presented for the 

final sample including 124 participants (43 SZ, 42 BD, 39 HC).

3.1 Demographic, clinical and behavioral data

Table 1 provides participant demographic, clinical, and behavioral information. The 

supplement (1.1) provides further information on the intake of psychiatric medications in 

each group. There were no differences between groups in terms of age, handedness, parental 

education, ethnicity, or race. The groups differed by sex and personal education. There was 

a lower proportion of female participants in SZ than in HC. SZ had fewer years of personal 

education. SZ and BD did not differ in terms of age of onset, number of hospitalizations, 

HAMD total, YMRS total, or mean daily doses of antipsychotic medication. SZ participants 

had higher BPRS and CAINS scores than BD patients. Thirty-seven out of the 42 BD 

patients were out of mood episode as defined by a HAMD score <15 and a YMRS score <12 

(e.g., Pizzagalli, Goetz, Ostacher, Iosifescu, & Perlis, 2008). Even though no participants 

met criteria for a mood episode at the time of assessment, five BD patients showed mild 

symptoms on the HAMD (N = 4; MScore = 17) or YMRS (N = 1; score = 20). There was 

no difference in behavioral performance on the visual perception task between groups. The 

average performance in each group was highly accurate, indicating ongoing vigilance and 

engagement with the task.

3.2 Graph analysis

Table 2 summarizes the statistical results for the main analyses on network segregation 

(upper panel), that is, the clustering coefficient (Cp), local efficiency (Eloc), and modularity 

(Q), and on network integration (lower panel), that is, the characteristic path length (Lp) and 

global efficiency (Eglob). Table 3 summarizes the statistical results for the follow-up analyses 

on three additional indices: the number of modules (Nmod), number of ‘provincial hubs’ 

(Nprov) and number of ‘connector hubs’ (Nconn). Please note, that F-, p-, and η2G-values for 

the ANOVAs are only listed in Table 1 for clarity. There was no significant group-by-state 
interaction for any of the graph indices. Both t- and p-values for post-hoc t-tests are reported 

in this section for significant main effects.
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3.2.1 Graph indices of segregation—Fig. 2 shows the values for Cp, Eloc, and Q 
across density thresholds. Fig. 3 shows the effects of group and state on their AUC.

For Cp, there was a significant main effect of group, with no main effect of state. Cp was 

significantly lower in both SZ [t(118) = −3.55, pFDR-corr = 0.002] and BD [t(118) = −2.16, 

pFDR-corr = 0.049] compared to HC, with SZ not being significantly different from BD 

[t(118) = −1.49, pFDR-corr = 0.138]. For Eloc, there was a significant main effect of state, 

with no main effect of group. Eloc was higher during the task compared to rest [t(118) = 

3.01, pFDR-corr = 0.003]. For Q, there was a significant main effect of group, with no main 

effect of state. Q was significantly higher in SZ compared to BD [t(118) = 2.90, pFDR-corr 

= 0.007] and HC [t(118) = 3.78, pFDR-corr < 0.001], both of which did not differ from each 

other [t(118) = 1.02, pFDR-corr = 0.311].

To disentangle differences in modularity, we performed follow-up analyses on three 

additional indices: Nmod, Nprov, and Nconn. Fig. 4 shows the values for Nmod, Nprov and 

Nconn across density thresholds. Fig. 5 shows a summary of the effects of group and state on 

their AUC.

For Nmod, there was a trend for a main effect of group and a significant main effect of state. 

Nmod was lower in SZ compared to HC [t(118) = −2.65, pFDR-corr = 0.027]. Nmod was higher 

during the task compared to rest [t(118) = 2.55, pFDR-corr = 0.012]. For Nprov, there was a 

significant main effect of group and a trend for a main effect of state. Nprov was higher in 

SZ compared to HC [t(118) = 3.11, pFDR-corr = 0.007] and BD [t(118) = 2.61, pFDR-corr = 

0.016]. Nprov was lower during the task compared to rest [t(118) = −2.42, pFDR-corr = 0.017]. 

For Nconn, there was no significant main effect of group and no significant main effect of 

state.

Besides the differences in the organizational factors Nmod, Nprov and Nconn, there could also 

be group differences in the module assignment of nodes. Additional follow-up analyses did 

not, however, help to explain potential differences in modular structure (see supplement: 

2.4.1).

In summary, the clustering coefficient (Cp) was smaller in both SZ and BD compared to HC, 

while modularity (Q) was higher in SZ compared to BD and HC. Local efficiency (Eloc) did 

not differ between groups, but Eloc was higher during task performance (relative to rest) in 

all groups. Thus, altered network segregation was present for both patient groups, but was 

more evident in SZ than in BD. Reorganization towards higher network segregation during 

a task compared to rest was detected to some degree across all groups and proved to be 

relatively normal in BD and SZ.

3.2.2 Graph indices of integration—Fig. 6 shows the values for Lp and Eglob across 

density thresholds. Fig. 7 shows the effects of group and state on their AUC.

For Lp, there was a trend for a main effect of state, with no main effect of group. Lp was 

lower during the task compared to rest [t(118) = −2.54, pFDR-corr = 0.012]. For Eglob, there 

was a trend for a main effect of group, with no main effect of state. Eglob was significantly 

higher in SZ compared to HC [t(118) = 2.85, pFDR-corr = 0.015], with BD not being 
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significantly different from either HC [t(118) = 1.83, pFDR-corr = 0.105] or SZ [t(118) = 

−1.11, pFDR-corr = 0.268]. However, supplemental analyses raised doubts about the stability 

of group differences in Eglob (see supplement: 2.4.2, 3.1).

In summary, network integration did not appear to be altered in patient groups, but was 

higher during the task state as indicated by a lower characteristic path length (Lp) compared 

to rest.

3.3 Exclusion of possible confounds

There was no significant main effect of group and no significant group-by-state interaction 

on any motion parameter. Head motion was higher during rest compared to task (see 

supplement: 2.2, Fig. S1), but scrubbing was performed to minimize the state differences in 

motion.

There were main effects of group and state on average whole-brain functional connectivity, 

regardless of the type of transformation used for negative correlations. Therefore, substantial 

effects of negative correlations on graph indices in our data were considered unlikely (see 

supplement: 2.3).

The pattern of results for the main graph analyses was similar using raw thresholding (see 

supplement: 2.4.2).

A supplemental analysis of a small subset of participants with complete coverage of 264 

Power nodes revealed mostly similar means and effect sizes for the results reported in 3.2 

and yielded no significant group-by-state interaction (see supplement: 2.4.4).

4 Discussion

The current study found group differences in functional connectome organization that were 

limited to network segregation, were largely state-independent, and were more evident 

in SZ than in BD compared to HC. Taken together, these findings provide support and 

refinement to theories of brain dysconnectivity in SZ and BD. In contrast, reorganization 
of the functional connectome between rest and a visual perception task was found to be 

relatively normal in both disorders. Thus, models of functional dysconnectivity in SZ and 

BD may not need to be modified to account for state-dependent changes in connectomic 

organization, at least based on a visual processing task.

State differences in functional network organization appeared generally consistent across 

clinical and healthy groups. Network segregation was higher in the task state, as reflected 

in higher local efficiency (Eloc) compared to rest. Thus, different functional brain regions 

appear to be more effectively compartmentalized into specialized modules when participants 

are performing a task. Similar to segregation, the degree of integration was higher during 

the task, reflected in a lower characteristic path length (Lp). This would be congruent with 

more direct interactions among nodes during task performance. Hence, the state differences 

found across groups in Eloc and Lp appear to reflect a broad-scale change in the functional 

organization of the brain related to performing a task. Although the clustering coefficient 

(Cp), modularity (Q), and global efficiency (Eglob) did not show a significant difference 
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between task and rest, our results on the state-dependence of the functional connectome 

are in line with previous findings from healthy participants and extend these by adding a 

comparison to patient groups (Bolt et al., 2017; Ulloa & Horwitz, 2018).

Three previous studies that found subtle differences in state-induced modulations to 

functional network segregation and/or integration between SZ and HC (Calhoun et al., 2006; 

S. Ma et al., 2012; Q. Yu et al., 2013) employed different data analytic approaches (e.g. 

ICA-based node definition and graph metrices averaged across a small number of thresholds 

versus using AUCs) and a smaller sample of patients. They also used an auditory task 

whereas this study used a visual task. It will be important to determine the extent to which 

sensory modality or task type affects the reorganization of the functional connectome in SZ 

using the identical data analytic approach. As these studies did not include BD, it remains 

to be determined whether network reorganization of BD would be modulated by sensory 

modality.

Anticipated group differences in functional network organization were found to the same 

extent across states. SZ differed from HC on one index of integration (Eglob). However, 

we are a reluctant to interpret this finding, because supplemental analyses raised doubts 

about its stability (see supplement: 2.4.2, 3.1). Group differences were more evident for 

segregation (i.e., Cp, Q). Cp was reduced in BD and SZ, consistent with previous findings 

(Liu et al., 2008; Lynall et al., 2010; S. Ma et al., 2012; Xia et al., 2019). This result 

indicates that small functional ensembles of brain regions are less internally connected in SZ 

and BD compared to HC. In other words, the partitioning of brain function in SZ and BD 

does not seem to exhibit the same degree of ‘granularity’ as in HC.

In SZ, Q was altered compared to HC. While both Cp and Q are global measures of 

segregation, they emphasize the clustering of nodes at different scales (i.e., topology of 

adjacent nodes in Cp versus ‘clustering’ of a large number of nodes in Q). Q refers to larger 

clusters of nodes (i.e., modules) that also include nodes which are not directly connected 

(i.e., not adjacent) to one another. The findings for Q suggest that individuals with BD, at 

least those who are out of mood episode as in the current study, maintain brain network 

segregation better than individuals with SZ. Because modularity is linked to cognitive 

performance, this view is consistent with observations that cognitive dysfunction in BD is, 

on average, less pronounced than in SZ (Lee et al., 2013; Lewandowski, Cohen, & Ongur, 

2011).

In SZ, Q was found to be higher than in HC. This result is in contrast to three previous 

resting-state fMRI studies that showed lower Q in SZ. Notably, two of these studies 

examined a small sample of patients with childhood-onset SZ (Alexander-Bloch et al., 2010, 

2012). The third study used a unique methodological approach by constructing individual 

functional networks at the voxel level rather than using atlas-based ROIs as nodes (Q. Ma 

et al., 2020). All three studies used a different algorithm to compute Q (Newman method; 

Newman, 2006) than the current study (Louvain method; Blondel et al., 2008). The finding 

of higher Q in SZ was also unexpected in that higher modularity is often considered better 

for neural processing, at least up to a certain level (Gallen & D’Esposito, 2019). However, 

especially for complex tasks, high modularity is often not beneficial (Cohen & D’Esposito, 
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2016; Park & Deem, 2012; Yue et al., 2017). Furthermore, it is possible that an increase in Q 
in psychopathology reflects sub-optimal network segregation rather than an efficient division 

of the brain into distinct modules.

Because Q is a multi-component measure, we performed follow-up analyses to better 

understand the organizational factors that contributed to higher Q in SZ. In SZ, there were 

more provincial hubs and fewer modules across states, resulting in greater within-module 

connectivity compared to HC. The lack of difference in connector hubs indicated that 

connectivity between a lower number of modules in SZ was similar to connectivity between 

a greater number of modules in HC. These findings suggest that brain function in SZ relies 

on larger clusters of regions that are well connected to central anchors within themselves 

(i.e., provincial hubs). By contrast, clusters in HC tended to be smaller but more numerous, 

with sparser connections converging to certain central regions. This pattern of results helps 

to explain why Q was higher in SZ. There were no group differences in the components of 

modularity between BD and HC. As in the main analyses, state differences in the follow-up 

analyses did not differ between groups.

The current study has several limitations. First, even though previous studies have also 

used scan durations of about 5 min (e.g., Lopez, Kandala, Marek, & Barch, 2020; Q. Ma 

et al., 2020; Martino et al., 2016), a resting-state fMRI scan of 5 min is still relatively 

short. On the one hand, higher reliability of functional connections and graph indices can 

be achieved with much longer scans (Birn et al., 2013; Gordon et al., 2017). On the other 

hand, a shorter scan duration reduces the risk of data contamination by confounds such 

as sleep and motion (Haimovici, Tagliazucchi, Balenzuela, & Laufs, 2017; Laumann et 

al., 2017; Meissner, Walbrin, Nordt, Koldewyn, & Weigelt, 2019; Tagliazucchi & Laufs, 

2014; Vergara et al., 2019). Second, brain coverage for fMRI acquisition was not optimal 

given that we had to exclude about 23% of the nodes in the Power atlas. Nonetheless, 

follow-up analyses in a subsample with complete coverage of Power nodes showed mostly 

similar means and effect sizes. Third, we used only one visual task to examine task-evoked 

functional connectivity compared to intrinsic functional connectivity. The investigation of 

varying levels of task difficulty (e.g., Čeko et al., 2015) and different types of tasks (e.g., 

Bolt et al., 2017) could reveal additional rest-to-task relationships in whole-brain functional 

organization in BD and SZ. Fourth, our study included only individuals with chronic SZ 

and individuals with BD who were out of mood episode and were medicated as clinically 

indicated. Therefore, we do not know whether the observed differences and similarities in 

the organization of the functional connectome in SZ, BD, and HC might also be found 

in recent-onset, unmedicated, or actively symptomatic individuals. Nor can we generalize 

findings to BD patients who are in mood episode. Notably, past studies in BD have not 

identified a consistent pattern of functional connectivity changes between mood states 

(Brady, Margolis, Masters, Keshavan, & Öngür, 2017; Brady et al., 2016; Li et al., 2015; 

Syan et al., 2018; Vargas, López-Jaramillo, & Vieta, 2013).

In summary, our results indicate that although network organization is aberrant, capacity 

for state-dependent reorganization is largely intact in SZ and BD during a visual perception 

task. Thus, our findings add additional support to the growing consensus that functional 

dysconnectivity is an important feature of these disorders. At the same time, our findings 
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suggest that theories of dysconnectivity in SZ and BD may not need to be updated to 

account for illness-related alterations in network reorganization as a function of mental 

state, at least with regard to rest versus performing a visual task. Our study highlights the 

value of further examining state-dependent reorganization of functional networks to fully 

characterize network reorganization effects in these populations (e.g., with experimental 

manipulation of task type and difficulty level). Moreover, results need to be replicated with 

samples that include greater demographic and clinical variance. Nevertheless, the present 

findings present a useful starting point for this research by establishing that state-dependent 

reorganization of the functional connectome is relatively normal in SZ and BD for at least 

one common visual processing task.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Visual object-perception task.
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Figure 2. 
Group means and 99% confidence intervals (CI; according to αcritical = 0.01 for MD-

ANOVAs) for each graph index of segregation across density thresholds for rest and task. 

Clustering coefficient (Cp), Local efficiency (Eloc), Modularity (Q).
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Figure 3. 
Estimated marginal means (EMM) and 99% confidence interval (CI; according to αcritical 

= 0.01 for MD-ANOVAs) for the AUC of each graph index of network segregation across 

groups and state. Clustering coefficient (Cp), Local efficiency (Eloc), Modularity (Q).
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Figure 4. 
Group means and 98.4% confidence intervals (CI; according to αcritical = 0.016 for 

explanatory MD-ANOVAs) for each component of modularity across density thresholds 

for rest and task. Number of modules (Nmod), number of ‘provincial hubs’ (Nprov), number 

of ‘connector hubs’ (Nconn).
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Figure 5. 
Estimated marginal means (EMM) and 98.4% confidence interval (CI; according to αcritical 

= 0.016 for explanatory MD-ANOVAs) for the AUC of each component of modularity 

across groups and state. Number of modules (Nmod), number of ‘provincial hubs’ (Nprov), 

number of ‘connector hubs’ (Nconn).
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Figure 6. 
Group means and 99 % confidence intervals (CI; according to αcritical = 0.01 for MD-

ANOVAs) for each graph index of network integration across density thresholds for rest and 

task. Characteristic path length (Lp), Global efficiency (Eglob).
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Figure 7. 
Estimated marginal means (EMM) and 99% confidence interval (CI; according to αcritical 

= 0.01 for MD-ANOVAs) for the AUC of each graph index of network integration across 

groups and state. Characteristic path length (Lp), Global efficiency (Eglob).
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Table 1.

Demographic, clinical and behavioural data.

Characteristic SCZ (N = 43) BD (N = 42) HC (N = 39) Group Comparison

Sex 29M 14F 20M 22F 14M 25F χ2(2) = 8.4, p = 0.02*

Handedness 36R 7L 37R 4L 35R 4L χ2(2) = 1.0, p = 0.60

Ethnicity 25.6 23.8 18.0 χ2(2) = 0.74, p = 0.69

 % Hispanic

Race

 % Caucasian 62.8 69.0 46.1 χ2(6) = 8.1, p = 0.23

 % African American 20.9 11.9 30.8

 % Asian 4.7 2.4 10.3

 % other 11.6 16.7 12.8

Mean (SD) Mean (SD) Mean (SD)

Age 46.09 (11.9) 43.43 (13.0) 46.39 (8.3) F(2,121) = 0.9, p = 0.43

Yr. Personal Education 13.07 (2.14) 14.24 (2.38) 14.23 (1.88) F(2,120) = 4.1, p = 0.02*

Yr. Parental Education 12.85 (2.89) 14.19 (2.62) 13.75 (2.39) F(2,113) = 2.6, p = 0.08

Age of Onset 22.07 (7.34) 20.77 (9.38) t(80) = 0.7, p = 0.49

No. Hospitalizations 6.98 (6.59) 5.28 (7.79) t(77) = 1.1, p = 0.30

CPZ equivalenta 424.56 (342.06) 298.27 (176.80) t(51) = 1.6, p = 0.13

BPRS Total 39.40 (10.36) 33.00 (5.33) t(82) = 3.5, p < 0.001*

CAINS Motivation 1.63 (0.73) 1.00 (0.73) t(83) = 4.0, p < 0.001*

CAINS Expressive 1.21 (0.86) 0.52 (0.71) t(83) = 4.0, p < 0.001*

YMRS Total 4.56 (3.78) 3.17 (4.09) t(83) = 1.6, p = 0.11

HAMD (21-item Total) 6.02 (4.94) 6.31 (4.69) t(83) = −0.3, p = 0.79

Visual Perception Task

 % correct responses 99.07 (0.41) 98.71 (1.67) 99.01 (0.20) F(2,120) = 1.5, p = 0.22

Abbreviations: BD, bipolar disorder; BPRS, Brief Psychiatric Rating Scale; CAINS, Clinical Assessment Interview for Negative Symptoms; CPZ 
equivalent, chlorpromazine equivalent; F, female; HAMD, Hamilton Depression Rating Scale; HC, healthy controls; L, left; M, male; R, right; SZ, 
schizophrenia; SD, standard deviation; YMRS, Young Mania Rating Scale.

*
significant

a
We could confirm that thirty-two participants in the SZ and twenty-one participants in the BD group were prescribed an antipsychotic medication. 

Mean chlorpromazine (CPZ) equivalent doses for each group were computed based on these participants. For more information on the intake of 
psychiatric medications, please refer to the supplement (1.1).
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Table 2.

Main and interaction effects of MD-ANOVAs for graph indices of segregation (top) and integration (bottom).

MAIN GRAPH ANALYSES

SEGREGATION

Graph Index

ANOVA
Post-hoc t-test

(α = 0.05, FDR-corr.)F
p

(αcritical = 0.01) η 2 
G 

Cp

Group 6.35 0.002* 0.070

HC > BD*

HC > SZ*State 4.43 0.037 0.010

Group-by-State 1.9 0.154 0.008

Eloc

Group 2.7 0.070 0.030

Task > Rest*State 9.04 0.003* 0.020

Group-by-State 0.7 0.491 0.002

Q

Group 7.8 < 0.001* 0.090

SZ > HC*

SZ > BD*State 0.3 0.569 0.001

Group-by-State 2.7 0.071 0.010

INTEGRATION

Graph Index

ANOVA
Post-hoc t-test

(α = 0.05, FDR-corr.)F
p

(αcritical = 0.01) η 2 
G 

Lp

Group 1.3 0.277 0.010

Task < Rest*State 6.45 0.012† 0.020

Group-by-State 2.38 0.097 0.010

Eglob

Group 4.2 0.018† 0.040

SZ > HC*State 0.3 0.585 0.001

Group-by-State 2.3 0.104 0.010

Significant * and trend-level † results after Bonferroni type correction of αoriginal are highlighted in grey.

Clustering coefficient (Cp), Local efficiency (Eloc), Modularity (Q), Characteristic path length (Lp), Global efficiency (Eglob). η2G = generalized 

eta-squared.
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Table 3.

Main and interaction effects of follow-up MD-ANOVAs for components of modularity.

FOLLOW-UP ANALYSES FOR COMPONENTS OF MODULARITY

Component of modularity

ANOVA

Direction of differences
F

p
(αcritical = 0.016)

N mod

Group 3.5 0.033†

SZ < HC
Task > RestState 6.5 0.012*

Group-by-State 2.2 0.119

N prov

Group 5.6 0.005*
SZ >HC
SZ > BD

Task < Rest
State 5.9 0.017†

Group-by-State 0.3 0.607

N conn

Group 1.8 0.178

State 2.5 0.114

Group-by-State 0.4 0.689

Significant * and trend-level † results after Bonferroni type correction of αoriginal are highlighted in grey.

Number of modules (Nmod), number of ‘provincial hubs’ (Nprov), number of ‘connector hubs’ (Nconn).
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