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METI: deep profiling of tumor ecosystems by
integrating cell morphology and spatial
transcriptomics
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Recent advances in spatial transcriptomics (ST) techniques provide valuable
insights into cellular interactions within the tumor microenvironment (TME).
However, most analytical tools lack consideration of histological features and
rely onmatched single-cell RNA sequencingdata, limiting their effectiveness in
TME studies. To address this, we introduce the Morphology-Enhanced Spatial
TranscriptomeAnalysis Integrator (METI), an end-to-end framework thatmaps
cancer cells and TME components, stratifies cell types and states, and analyzes
cell co-localization. By integrating spatial transcriptomics, cell morphology,
and curated gene signatures, METI enhances our understanding of the mole-
cular landscape and cellular interactions within the tissue. We evaluate the
performance of METI on ST data generated from various tumor tissues,
including gastric, lung, and bladder cancers, as well as premalignant tissues.
We also conduct a quantitative comparison of METI with existing clustering
and cell deconvolution tools, demonstrating METI’s robust and consistent
performance.

Spatial transcriptomics (ST) measures gene expression while pre-
serving the spatial information that is not available in conventional
single-cell RNA sequencing (scRNA-seq)1. The spatial location sheds
light on TME’s cellular composition and organization, facilitating

investigations into spatial gene expression patterns and cellular
interactions at different tumor regions2–4. Commonly used ST plat-
forms can be broadly categorized into two types: next-generation
sequencing (NGS)-based, such as Visium5, GeoMx6, Slide-Seq7, and
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hybridization-based approaches such as MERFISH8, seqFISH9, and
CosMx10. NGS-based ST methods cover the entire transcriptome
but not at single-cell resolution, while in situ hybridization-based
methods offer superior spatial resolution but are limited to a small
portion of the genome, restricting their potential in discovery-based
studies.

Many ST platforms allow a high-resolution scan of the Hematox-
ylin and Eosin stained (H&E) image of the same tissue section, which is
valuable in downstream analysis. Various cell types, distinguished by
their unique cell morphologies, can be identified through close
examination of theH&E imagewithout the need for cell deconvolution
analysis using gene expression. Additionally, potential technical and
analytical artifacts can be addressedmore effectively by incorporating
histological features into ST data analysis. Several state-of-the-art
methods have been developed to integrate spatial gene expression
and images for various tasks. For example, MUSE11 characterizes tissue
composition through the combined analysis of morphologies and
transcriptional states in ST data using a deep learning approach;
BayesSpace12 employs a fully Bayesian statistical approach to leverage
spatial neighborhood information for the enhancement of resolution
in ST data and to conduct clustering analysis. SpaGCN13 utilizes a graph
convolutional network (GCN) to integrate gene expression and his-
tology to identify spatial domains; TESLA14 uses a convolutional neural
network to integrate gene expression and histology to map tumor
core, edge, and different cell types at image pixel level. Robust Cell
Type Decomposition (RCTD)15 utilizes cell type profiles derived from
single-cell RNA sequencing data(scRNA-seq) to decompose cell types
and adjusts for variations between sequencing technologies.
CytoSPACE16 is designed to align individual cells from a scRNA-seq
atlas with spatial expression profiles. Despite the outstanding perfor-
mance of these methods, they share several limitations. Firstly, they
are general analytic tools that work on data generated from any tissue
type and are not specifically tailored for studying cancer cells and the
tumor microenvironment (TME). Without the ability to incorporate
domain knowledge of cancer genomics, these methods may overlook
crucial features specific to cancer cells and other key components in
the TME. For instance, scRNA-seqmay fail to capture certain cell types
and states within tissue environments, and a significant cell typemight
not align with any cluster identified by clustering algorithms. Addi-
tionally, certain methods depend on the availability of scRNA-seq data
and cell annotations, limiting the flexibility and utility of these
approaches in various research contexts. These aforementioned lim-
itations restrict our characterization of the key components and
complex interactions in the TME.

In this study,wepresent an analytic framework that systematically
analyzes cancer cells and cells of theTMEby incorporating spatial gene
expression, tissue histology, and prior knowledge of cancer and TME
cells. Our methodology starts with the identification of key cellular
components and their states within the TME, including various
immune cells and their transcriptional states, tumor stromal compo-
nents such as cancer-associated fibroblasts (CAFs), and the epithelial
compartment. Morphology-Enhanced Spatial Transcriptome Analysis
Integrator (METI) also offers complementary information on cell
morphology for various cell types from theH&E images. The combined
results from gene expression and histological features provide a
comprehensive understanding of the spatial cellular composition and
organization within the tissue. The evaluation of METI shows robust
and consistent performance across ST datasets generated from
diverse cancer types, including gastric cancer, lung cancer, and blad-
der cancer (Supplementary Table 1).

Results
Overview of METI’s workflow
METI analyzes the TME in a systematic, step-by-step manner, focusing
on the progression from normal to premalignant cells and then to

malignant cells, while also examining the lymphocytes within each
tissue section. METI takes standard ST data as input, including a spot-
by-gene matrix for gene expression data, an H&E image of the corre-
sponding tissue section, and X, Y coordinates that map the location of
each spot onto the image. The goal ofMETI is the precise identification
of various cell types and their respective states within the TME. Each
module in METI is tailored to address a particular cell type, enabling
focused analysis leveraging domain-specific knowledge (Fig. 1). In the
first module, METI identifies normal and premalignant cells, such as
goblet cells in the stomach17–19. Inmodule 2,METI identifies tumor cell-
enriched regions and characterizes their cell states heterogeneity.
Module 3 focuses on spatial mapping of T cells including CD4+ and
CD8+ T cells, and various T cell states such as regulator T cells (Treg)
and exhausted T cells (Tex). In addition to T cells,METI identifies other
immune cells including neutrophils, B cells, plasma cells, and macro-
phages in module 4. In the last module, METI focuses on a compre-
hensive analysis of CAFs, a subset of activated stromal cells that play a
crucial role in cancer progression and therapy resistance20–22. This
module maps CAFs and their subtypes, including myCAFs, iCAFs, and
apCAFs23–27. The outputs generated by METI are comprehensive,
including specific cell-type segmentation results, gene expression
data, and integrated segmentation-gene expression results that offer a
holistic view of the tissue sample, as well as 3D-density plots for the
spatial visualization of cell density. We have demonstrated that METI
achieves more accurate cell type identification compared to existing
methods. Additionally, it remains robust in instances where one
modality may be of low quality, as high-quality data from the other
modality can compensate, ensuring the reliability and effectiveness of
our analysis.

Mapping normal and premalignant cells
The first module of METI focuses on dissecting the normal and pre-
malignant cells within the epithelial cell compartment. Here, we used
goblet cells as an example because they display a distinctive mor-
phological appearance in H&E-stained images. Goblet cells are shaped
like wine goblets, with pale, almost white vesicles at the top and oval
nuclei at the base. Goblet cells are commonly found in the respiratory,
digestive, and reproductive tracts, including the small intestine, colon,
and bronchi. They play a critical role in maintaining homeostasis in
these tissues. In the context of disease, the abnormal presence of
goblet cells in the gut is a key characteristic of a precancerous condi-
tion known as intestinal metaplasia17,19,28–30.

To showcase the capabilities of METI’s module 1, we applied it to
identify goblet cells in a human stomach adenocarcinoma (STAD)
sample, labeled as G1, annotated by our gastrointestinal pathologists
(Fig. 2a). METI first combines canonical goblet cell markers reported in
previous publications31–35 into a meta gene signature, including
MS4A10, MGAM, CYP4F2, XPNPEP2, SLC5A9, SLC13A2, SLC28A1, MEP1A,
ABCG2, and ACE2 (Supplementary Table 2). This meta gene visually
represents the overall expression levels of the goblet cell molecular
signature across the whole section. As shown in Fig. 2b, thismeta gene
was then used to annotate goblet cell-enriched regions using a
machine learning model, TESLA14. Notably, cell type annotation in
TESLA mainly relies on gene expression, which may lead to false
negative annotation due to the regional variation and high level of
noise for somemarker genes. For instance, as shown in Fig. 2c, TESLA
fails to identify goblet cells in region 4. Further examination shows that
this false negative in detection was due to the overall low unique
molecular identifier (UMI) counts captured in region 4, as illustrated in
Fig. 2d. To address the limitations caused by low-quality gene
expression data, METI simultaneously performed goblet cell identifi-
cation on the H&E image. METI employed a K-mean-based segmenta-
tion method to detect different morphological components, such as
background, nuclei, fiber, gland, and necrosis. Next, by filtering on the
color, shape, and size of these components (seeMethods),METI is able
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to accurately detect individual goblet cells characterized by their
morphology signature, i.e., their round hollow centers (Fig. 2e). This
morphological analysis by METI enabled the identification of goblet
cells in region 4 (Fig. 2f), an area overlooked by transcriptomic data
alone. Conversely, goblet cells in regions 1 and 3 were not detected
through image analysis because the tissue was fragmented, exhibiting
discontinuous and fragile shapes. By integrating the gene expression
and image analysis results,METI successfully identified all four regions
enriched with goblet cells, as shown in Fig. 2g. This integrative
approach for goblet cell detection overcomes the limitations posed by
low UMI counts and provides a more accurate characterization of
goblet cells within the analyzed samples. A detailed examination of
goblet cell detection, utilizing both gene expression data and imaging,
reveals that accurate detection can only be achieved through the
integration of these two modalities. Such detection cannot be
achieved by popular spatial clustering methods alone and the neces-
sity of combining both modalities for comprehensive analysis is
depicted in the Supplementary Information.

Identification of cancer cell domains and heterogeneity
The majority of solid tumors originate from epithelial cells, known as
carcinomas, including gastric, lung, bladder, breast, prostate, and
colon cancers, while some other solid tumors start in other types of
tissues including sarcoma and melanoma. Regardless of their cell of
origin, understanding the molecular features and cellular hetero-
geneity of malignant cells is crucial for unraveling the mechanisms
underlying tumor growth, invasion, metastasis, and therapeutic
response. Therefore, METI’s secondmodule focuses on the analysis of
malignant cells. This module starts by identifying cancer cells using
cancer cell markers that are curated by the authors such as cytoker-
atins (CK), EPCAM, and trefoil factors. As depicted in Fig. 2h, METI
effectively identifies all tumor regions in STAD sample G2, in strong
agreement with annotations made by our experienced pathologists.
Next, METI incorporates additional markers to characterize cancer cell
states and heterogeneity, including markers of cell proliferation such
as MKI67 to map proliferative cancer cells, stemness-related markers
such as SOX9 to identify stem-like cancer cells in STAD, and

Fig. 1 |WorkflowofMETI.METI takes 10xVisiumSpatial Transcriptomics (ST)data,
with a spot-by-genematrix for gene expression data, Hematoxylin and Eosin (H&E)
images, and XY coordinates that map the location of each spot onto the image as
input. With METI algorithm, METI offers cell type identification, nuclei segmenta-
tion and the functionality of generating 3D cell density plots in five distinct mod-
ules. Module 1 is dedicated to mapping normal and premalignant cells through the

integration of gene expression (GE) data and H&E images. Module 2 focuses on
identifying cancer cell domains and characterizing their heterogeneity. Module 3 is
dedicated to T cell mapping and phenotyping. Module 4 involves in-depth analysis
of other immune cells. Lastly, Module 5 pertains to the analysis of Cancer-
Associated Fibroblasts (CAFs).
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Fig. 2 | Mapping premalignant cells and cancer cell domain. a Pathology anno-
tation depicting goblet cell enriched regions in STAD G1. b Goblet meta gene
expression plot at pixel-level. c Spot annotation indicating regions of high goblet
cell gene expression on the H&E image. d Total UMI counts for individual spots.
e Identification of four distinct goblet-enriched regions on the left side, accom-
panied by zoomed-in views of goblet regions of the H&E image and segmentation
outcomes for regions 2 and 4. f Spot annotationusing segmentation results.gMETI

combined result by integrating gene expression and segmentation. h Pathology
annotation highlighting tumor cell-enriched spots of STADG2 (left), pixel depiction
of EPCAM highly expressed regions (middle), and EPCAM+ region annotation on the
H&E image (right). i Pixel-level gene expression plots for tumor subtypes, MKI67,
MSLN, SOX9, and CLDN18. jOverlay of regions expressing tumor-related genes and
SOX9-positive regions.kNuclei segmentation (left) and 3D cell density plots (right).

Article https://doi.org/10.1038/s41467-024-51708-9

Nature Communications |         (2024) 15:7312 4

www.nature.com/naturecommunications


therapeutic targets like CLDN18 and MSLN to further characterize
tumor subtypes36–39. These aforementioned marker genes exhibit dis-
tinct expression patterns within the tumor region of sample G2, as
illustrated in Fig. 2i. They can be utilized to characterize different
states of cancer cell states. For example, as shown in Fig. 2j, METI is not
only able to identify the SOX9+ tumor region but also can illustrate the
co-localization or exclusivity of different cancer cell states in Supple-
mentary Fig. S1. This module offers a flexible and customizable
approach, allowing users to input their genes of interest for tumor
state identification. Additionally, users can employ genes associated
with critical pathways such as KRAS, EGFR, and factors like hypoxia to
conduct a comprehensive exploration of cancer cell states and spatial
heterogeneity across diverse cancer types.

Quantifying the distribution and density of cells spatially within
biological tissues is crucial for diverse applications, particularly in the
field of pathology and oncology. While gene expression provides a
molecular lens, the associated H&E images can be leveraged to mea-
sure spatial cell distribution anddensity. Following aparallel process in
module 1, METI next conducted tumor cell nuclei segmentation, and
then generated 3D tumor cell density plots (Fig. 2k), visually depicting
the spatial distribution anddensity of cancer cells. This function serves
to convey the spatial distribution, density, and pattern of cell types of
interest.

T cell mapping and phenotyping
Module 3 in METI is dedicated to characterizing T cells and their var-
ious states within the TME. Initially, we utilize specific T cell markers,
including CD3D and CD3E, to map T cell-enriched regions. Within the
identified T cell regions, we further discern the different states of
T cells. By adding specific cell lineage markers such as CD4, CD8A, and
CD8B40, we can further distinguish CD4+ T cells, CD8+ T cells, and their
various states including CD4+ Tregs (e.g., FOXP3, IL2RA) and CD8+ Tex
cells by incorporating known immune checkpoint genes (e.g., PD-1,
TIM-3, and LAG-3, CTLA-4, TIGIT) and Tex related transcription factors
(e.g., TOX)40. Furthermore, this module provides function of over-
laying two or more different T cell states within defined cancer cell
regions directly on the same tissue section, allowing us to visualize
their spatial relationships. Given that the level and spatial distribution
of infiltrated T cells are critical factors influencing tumor immune
phenotypes and immunotherapy responses,METI’s 3Dmodule creates
cell density plots for the entire image, serving to visually depict the
spatial distribution of T cells within the TME.

To showcase the capability of this module, we applied METI to
analyze a STAD sample G3 and a lung adenocarcinoma (LUAD) sample
L1. The pathology annotations for both samples are presented in
Supplementary Fig. S2. METI identified regions characterized by ele-
vated T cell gene expression levels, as illustrated in Fig. 3a. Next, to
delineate regions enriched in CD8+ T cells, we restrict our analysis to T
cell-enriched regions only. The regions enriched in CD8+ T cells are
shown in Fig. 3b, and different states including CD4+ Tregs and CD8+

Tex cells are shown in Fig. 3c, d. Mapping distinct T cell states aids in
elucidating their spatial landscape and relationships within the ana-
lyzed STAD and LUAD samples, as well as cellular interactions, fos-
tering the generation of insightful hypotheses.

As the relative locations of CD4+ Tregs and CD8+ Tex cells to
cancer cells impact tumor immune phenotypes41,42 and immunother-
apy responses, we have overlaid regions with cancer cells with those
enrichedwith CD4+ Tregs and CD8+ Tex cells, respectively, as depicted
in Fig. 3e, f. Based on the overlay results, we observe distinct enrich-
ment patterns in CD4+ Tregs and CD8+ Tex cells across different
samples. Specifically, in sample G3, CD4+ Tregs are slightly less abun-
dant than CD8+ Tex cells. Conversely, in the sample L1, CD8+ Tex cells
are less abundant than CD4+ Tregs (Fig. 3e, f). This highlights the
variability in T cell states among different tumor types. To better
illustrate the spatial cell distribution of the whole image, METI

provides 3D cell density plots (Fig. 3g) based on the nuclei density
segmented from the H&E image. For the STAD sample, a region in the
upper left displays higher cell density, whereas the LUAD sample
shows relatively homogeneous cell density throughout. Furthermore,
we conducted an overlay of CD4+ Treg and CD8+ Tex signals to study
their spatial co-localization patterns (Fig. 3h). Notably, CD4+ Tregs and
CD8+ Tex cells tend to co-localize at the bottom left of the LUAD
sample, while the rightmost part of the LUAD sample solely comprises
CD4+ Treg cells, indicating the heterogeneity in spatial distribution and
cellular composition of T cells. This co-localization analysis provides a
better understanding of the coexistence and potential interplay
between these two T cell states.Moreover, METI can assist researchers
in studying various types of T cells, such as naïve T cells, memory
T cells, follicular helper T cells, and their transcriptional states. Users
can customize it to plot specific T cell types and states of interest. This
flexibility allows researchers to explore T cell state composition and
distribution within TME.

In-depth analysis of other immune cells
METI’s module 4 is capable of detecting immune cell types other
than T cells, including neutrophils, macrophages, B cells, and plasma
cells, which are critical components in the TME. METI utilizes vali-
dated gene signatures to identify specific immune cell types/
states40,43–45. We have applied this module to two bladder cancer
samples B1 and B2 for neutrophil detection. The two H&E images are
shown in Fig. 4a, c. The neutrophil-enriched regions in these two
sections were verified by our experienced pathologists as ground
truth for evaluation (Supplementary Fig. S3). As shown in Fig. 4b, d,
METI identified regions exhibiting elevated gene expression levels of
neutrophil marker genes in both sections. Subsequently, METI con-
ducted corresponding annotation for neutrophil-enriched regions
directly on H&E image, isolating regions expressing the neutrophil
marker genes and providing amagnified view, as illustrated in Fig. 4e.
Upon zooming in on these annotated regions, neutrophils, which
exhibit characteristic multi-lobed nuclei, were easily distinguished in
the image analysis. In Fig. 4f, four regions where neutrophils have
been pathology-verified were circled out and subsequently seg-
mented for neutrophil detection. The results correlated well with the
annotation using gene expression. We also provided 3D cell density
as shown in Fig. 4g to illustrate the spatial cell distribution in the
vicinity of neutrophils within the TME.

Additionally, we demonstrate the capability of this module by
mapping B cells and plasma cells in an STAD sample (Fig. 4h, i). The 3D
cell density plot (Fig. 4j) aligns well with the lymphoid aggregates in
sample STAD G4 annotated by our pathologists (Supplementary
Fig. S2a). Similarly,macrophages can be correctlymapped in the LUAD
sample based on pathology annotation (Fig. 4k and Supplementary
Fig. S2b). Within the regions showing high macrophage marker gene
expression, a randomly selected region was segmented, revealing a
cluster of macrophages (Fig. 4l). In addition to the aforementioned
immune cell types, this module maintains flexibility by allowing users
to investigate other specific immune cell populations of interest using
their curated gene signatures.

Analysis of cancer-associated fibroblasts (CAFs)
In Module 5, METI is designed to analyze stromal cell components
including CAFs and various CAFs subtypes within the TME. CAFs are
known for their exceptional heterogeneity, both phenotypically and
functionally46–48. They are categorized as activated fibroblasts, repre-
senting an essential component of the TME with both tumor-
promoting and tumor-restraining activities49–51. CAFs are phenotypi-
cally and functionally heterogeneous. Different subtypes of CAFs such
as myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs), and
antigen-presenting CAFs (apCAFs) have been identified and
described23–27.
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We applied module 5 to the gastric sample G2 which was anno-
tated to contain abundant tumor stroma by our pathologists (Fig. 5a).
METI first segmented CAFs and generated a fibroblast cell density plot
as illustrated in Fig. 5b. Next, we found that the fibroblasts enriched

region annotated by METI have diminished UMI counts, aligning with
the notion that cancer cells tend to have higher UMI counts compared
to other cell types (Fig. 5c). METI next effectively mapped CAFs within
the sample using the CAF metagene (Fig. 5d) and annotated CAFs

Fig. 3 | T cellmappingandphenotyping. aPixel-level visualizationofT cellmarker
gene expression in STAD G3 and LUAD L1 (left), accompanied by annotation indi-
cating regions of T cell marker gene expression on the H&E image. b Pixel-level
representation of CD8+ T cell marker gene expression (left), along with annotation
of CD8+ T cell marker gene-expressing regions on the H&E image (right). c Pixel-
level representation of CD4+ Treg marker gene expression. d Pixel-level depiction

of CD8+ Texmarker gene expression. eOverlaydisplaying the intersection of tumor
+ region and CD4+ Treg-positive region. f Overlay illustrating the overlap between
tumor+ region and CD8+ Tex-positive region. g 3D cell density plots for STAD G3
and LUAD G1. hOverlay demonstrating the spatial relationship between CD4+ Treg
and CD8+ Tex-positive regions.
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directly onH&E image, whichwas highly consistent with the pathology
annotation. Within the annotated CAF regions, METI further delves
into the characterization of CAF subtypes, including myCAFs, iCAFs,
and apCAFs (Fig. 5e–g)23–27. To characterize the spatial co-localization
ofCAF subtypes,weoverlayed the threeCAFpopulationswith the total
CAF-positive regions (Fig. 5h). This approach allows us to better

understand the spatial heterogeneity of CAFswithin theTME. Likewise,
METI can co-map CAFs, cancer cells, and any other immune cell sub-
sets of interest to provide additional insights into cellular interactions
among them. This module remains adaptable, enabling users to
explore other subregions related to CAFs based on their specific
interests.
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Fig. 4 | In-depth analysis of other immune cells. a H&E image of bladder cancer
sample B1.bPixel-level visualization of neutrophilmarker gene expression inBLCA-
B1. c H&E image of bladder cancer sample BLCA-B2. d Pixel-level visualization of
neutrophil marker gene expression in BLCA-B2. e Annotation indicating regions of
high neutrophil gene expression on the H&E image for BLCA-B1 and BLCA-B2;
Zoom-in display of three neutrophil-enriched regions of BLCA-B1 and BLCA-B2, and
four yellow-circled regions where neutrophils present visually. f Zoomed-in view of
four yellow-circled region in (e) and corresponding segmentation results. g 3D cell
density plots for BLCA-B1 and BLCA-B2. h Pixel-level visualization of B cell marker

gene expression in STAD G4 (left), accompanied by annotation indicating regions
of B cellmarker gene expressionon theH&E image (right). i Pixel-level visualization
of plasma cell marker gene expression in STAD G4 (left), accompanied by anno-
tation indicating regions of plasma cell marker gene expression on the H&E image
(right). j 3D cell density plots for STADG4.k Pixel-level visualizationofmacrophage
marker gene expression in STAD G4 (left), accompanied by annotation indicating
regions of plasma macrophage marker gene expression on the H&E image (right).
l Zoomed-in view of macrophage regions of the H&E image and segmentation.

Fig. 5 | Analysis of cancer associated fibroblasts. a Pathology annotation of
fibroblast-enriched spots in STAD G2. b Fibroblasts segmentation result (left),
accompanied by 3D fibroblast density plots (right). c Total UMI counts for indivi-
dual spots. d Pixel-level meta gene expression plot for CAF (left), with annotations
highlighting regions of elevated CAF gene expression on the corresponding H&E
image (right). e Pixel-level meta gene expression plot specifically for myCAF (left),
accompanied by annotations indicating regions of elevated myCAF gene

expression on the H&E image (right). f Pixel-level meta gene expression plot for
iCAF (left), with annotations denoting regions of elevated iCAF gene expression on
the H&E image (right).g Pixel-levelmeta gene expression plot for apCAF (left), with
annotations indicating regions of elevated apCAF gene expression on the H&E
image (right). h Overlay showcasing regions of high gene expression for myCAF,
iCAF, apCAF, and general CAF.
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Quantitative comparison with existing tools
We initiated our analysis by comparing METI’s performance against
two spatial clustering methods, SpaGCN13 and BayesSpace12, specifi-
cally in the context of goblet cell annotation within a human STAD
dataset. The pathologist’s annotations, serving as a benchmark, indi-
cated the locationsof goblet cells on theH&E image at the spot level, as
depicted in Supplementary Fig. S4a, b. METI showcased high accuracy
(ACC=0.778) in identifying these spots, as demonstrated in Supple-
mentary Fig. S4c.

To conduct a fair comparison with the unsupervised nature of
SpaGCN and BayesSpace, where cluster identities are initially
unknown, we established a criterion: a cluster is considered a goblet
cluster if over 10% of its spots are true goblet cells. This approach
allowedus to categorize clusters into goblet andnon-goblet groups for
a binary comparison and to calculate the accuracy for bothBayesSpace
and SpaGCN. The clustering results for BayesSpace are illustrated in
Supplementary Fig. S4d. BayesSpace achieved its highest accuracy of
0.704 at n = 15 clusters, which is lower than METI. Further analysis
using river plots in Supplementary Fig. S4e, revealed that BayesSpace
struggled to isolate a single cluster exclusively composed of goblet
cells, regardless of the cluster number chosen. SpaGCN encountered
similar difficulties, as shown in Supplementary Fig. S4f, with its highest
accuracy of 0.734 at n = 5 clusters. These findings emphasize METI’s
advantage in cell type annotation over existing clustering methods.
While bothMETI and the spatial clusteringmethods are reference-free,
METI is capable of providing accurate cell type annotations by incor-
porating domain knowledge into its framework. In contrast, the spatial
clustering methods primarily capture the overall tissue structure
rather than cell type enrichment.

Furthermore, we utilized gastric single-cell RNA sequencing data
as a reference to evaluate the performance of METI, RCTD, and Cyto-
Space in identifying goblet cells, CD4+ T cells, and CD8+ T cells within
two distinct human gastric cancer spatial transcriptomics (ST) data-
sets, as detailed in Supplementary Fig. S5. For the first dataset, RCTD
displayed limited accuracy of 0.525 in Supplementary Fig. S5a, notably
struggling to accurately determine the location of goblet cells. In
contrast, CytoSpace exhibited a significantly higher accuracy of 0.751
in Supplementary Fig. S5b, aligning closely with the findings presented
by METI in Supplementary Fig. S5c.

Due to the lack of pathologist annotations in the second dataset,
hence the accuracy cannot be quantified, we focused on comparing
the capabilities of RCTD and CytoSpace in identifying CD4+ T cells and
CD8+ T cells. RCTD has a limited ability to accurately identify CD4+

T cells and CD8+ T cells (Supplementary Fig. S5d, g), while CytoSpace
outperforms RCTD (Supplementary Fig. S5e, h). Consequently, to
further validate these findings, we analyzed the expression of marker
genes for a visual assessment of the results, as depicted in Supple-
mentary Fig. S5f, i, which further supports the presence of these cell
types in the locations identified by METI and CytoSpace.

METI’s robustness with low-quality images
We illustrate METI’s robustness with low-quality images using another
human STAD dataset. As depicted in Supplementary Fig. S6a, blurri-
ness from loss of camera focus obscures cell boundaries, making it
difficult for our pathologists to provide detailed annotation of lym-
phocytes due to rough boundaries between different regions, as noted
in Supplementary Fig. S6b. In this dataset, we applied METI for B cell
annotation. B cells, along with other lymphocytes, are distinguishable
in H&E images by their small, dark-purple nuclei. Therefore, the initial
step with METI is to identify lymphocytes on the H&E images. As illu-
strated in Supplementary Fig. S6c, the blurriness of the image led to
numerous false positive detections of lymphocytes, which are sparsely
distributed, particularly around the tissue border. Moreover, the H&E
staining does not adequately differentiate B cells from other lympho-
cytes due to their similarmorphological features. The subsequent step

in the METI is to identify B cells using specific gene markers, including
MS4A1 and CD19. Supplementary Fig. S6d showcases the B cell dis-
tribution identified by METI through gene expression only. Given that
B cells are a specific subtype of lymphocytes, METI further refines the
detection by overlaying B cell data with the lymphocyte regions
identified from image analysis, as displayed in Supplementary Fig. S6e.
The results are then translated into spot-level data, as depicted in
Supplementary Fig. S6f. This case demonstrates METI’s capability to
merge gene expression and image analysis in a knowledge-aware
manner, ensuring robustness in cell-type annotation even when image
quality is low.

Discussion
In this study, we present METI, a robust machine-learning framework
developed to address the demand for comprehensive profiling of
diverse cell types and their phenotypic states within the TME. By
effectively integrating transcriptomic data with histological image
information, METI reduces the risk of non-specific mapping of key cell
types in the TME. Unlike certain existing methods whose performance
depends on the quality and granularity of cell type annotations in their
reference data, METI is not constrained by these factors, providing
considerable advantages in terms of flexibility and applicability across
various datasets. These features set METI apart from existing cell
deconvolution tools, which primarily rely on gene expression data and
overlook tissue histology.

While METI utilizes established tools such as TESLA and K-means
segmentation for its analysis framework, these methods were origin-
ally developed as general-purpose tools, not specifically optimized for
cancer ST data analysis. METI’s innovation lies in its ability to com-
pensate for low-quality data in one modality by robustly integrating
tissue morphology with transcriptomic profiles in a knowledge-driven
manner. We have systematically benchmarked METI against multiple
popular spatial clustering and cell-type deconvolution methods, and
the results demonstrateMETI’s superior accuracy, high resolution, and
improved visualization in analyzing key components of the TME.

METI comprises five modules that characterize various cellular
components, encompassing distinct types and states of tumor cells,
immune cells, and stromal cells. By jointly analyzing transcriptomic
and histological information, METI offers a more comprehensive
approach to understanding cancer cells and the TME compared to
analyzing gene expression and histology images separately. Notably,
our results have shown thatMETI is able tomitigate the impact of low-
quality data in one modality by leveraging high-quality information
from the othermodality. As described in the goblet cell detection case
with regional low UMI counts, METI’s integrated results compensate
for the low-quality gene expression data. Moreover, this integrative
approach makes METI robust against issues such as low resolution or
artifacts in H&E images.

Additionally, METI is uniquely capable of stratifying various cell
states, including CD4+ Tregs, CD8+ Tex cells, iCAFs, myCAFs, apCAFs,
among many others. Notably, this stratification is not restricted to the
aforementioned subtypes; users have the flexibility to define and
explore other cell subtypes to suit their research needs. METI is
designed to be user-friendly and accessible. To this end, we have
integrated a predefined set of cell-typemarkers andmodel parameters
within METI’s framework. Based on recent pan-cancer studies40,52, the
expression of cell lineage markers and markers characteristic of cell
phenotypic states for immune and stromal cells are typically con-
sistent across different tumor tissues and datasets, serving as a valu-
able reference. Hence, METI can be used effectively without the need
for user-specified input, making it an accessible tool for users across
different levels of bioinformatics expertise. Furthermore, recognizing
the diversity of research needs and the specificities of different tissue
types and diseases, METI offers flexibility for more advanced users.
Researchers can customize METI by inputting their own markers of
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interest, tailored to specific tissues or diseases under study. This flex-
ibility allows users to leverage METI’s framework to conduct highly
specialized analyses. By combining both predefined markers and the
ability for users to introduce their markers, METI bridges the gap
between ease of use and customizability, catering a broad spectrumof
research requirements.

METI has potential translational value and practical utility. By
seamlessly integrating with existing clinical diagnostic and treatment
planning tools, METI has the potential to complement and enhance
current diagnostic workflows, facilitating more informed decision-
making in clinical settings.WhileMETI presents a useful framework for
in-depth cancer cell and TME cell profiling, it is important to recognize
its limitations. One notable challenge arises from the dependence on
transcriptomics data, which can be susceptible to technical fluctua-
tions, constrained sample quality, dropout occurrences, and depen-
dence on user-provided gene signatures, possibly resulting in the
generation of false negative outcomes. Moreover, the performance of
METI’s segmentation function could exhibit variability contingent on
the quality and resolution of the images being analyzed.

Methods
Human samples
All human data in this manuscript are deidentified to ensure patient
privacy. All human LUAD and normal lung tissues were obtained from
patients who provided informed consent and under institutional
review board-approved protocols at The University of Texas MD
Anderson Cancer Center. Written informed consent was given to all
the subjects. Two patients with primary muscle-invasive bladder car-
cinoma (T2–T4) were evaluated at the MD Anderson Cancer Center
and underwent trans urethral resection of bladder tumor (TURBT). All
patients received no treatments at the time of surgery. Bladder tumor
tissues at the MD Anderson Cancer Center were obtained via institu-
tional IRB-approved research protocol PA17-0577 (PI: J.G.). Signed
informed consent was obtained from all patients. The collection of
gastric tumor tissues at Zhejiang Cancer Hospital was approved by the
institutional Ethics Committee (no. IRB-2020-109), and all patients
provided written informed consent.

ST data generation
ST on FFPE slides was performed with the Visium spatial technology
from 10X Genomics. Two to three consecutive tissue sections of 5-μm
thickness were collected for RNA extraction with the Qiagen RNeasy
FFPE Kit. To assess the RNA quality of the tissue, the purified RNA was
immediately processed to calculate the percentage of total RNA frag-
ments >200 nucleotides (DV200) using the Agilent RNA6000PicoKit.
Based on DV200 evaluation, blocks with DV200> 30% were selected
for proceeding with sectioning. The area of interest (11 × 11mm) on
section was carefully placed within the allowable area to ensure com-
patibility with the Visium CytAssist instrument. The tissues were then
deparaffinized, stained, and decross-linked, followed by probe hybri-
dization, ligation, CytAssist-enabled RNA digestion, and oligo capture,
release, and extension. The Visium spatial gene expression FFPE
libraries were constructed using the Visium CytAssist Spatial Gene
Expression for FFPE Human Transcriptome Probe Kit (PN-1000444)
following the manufacturer’s guidance. Constructed libraries were
sequenced on the Illumina NovaSeq 6000 platforms to achieve a
depth of at least 75,000 mean read pairs per spot.

ST data alignment
There are two steps related with ST alignment. First alignment is dur-
ing the sample generation, and second alignment is related with
annotation including pathologist annotation and METI’s automatic
annotation. Firstly, the spatial gene expression and H&E image are
generated on the same tissue section. According to 10x CytAssist
technology, Visium slide with two Capture Areas are placed in the

CytAssist instrument so that the tissue sections on the standard slides
can be aligned on top of the Capture Areas. During the preprocessing
step, we use the Spaceranger Count alignment process to obtain the
coordinates of each measured spot. These coordinates are then used
to accurately map each spot back onto the image. Secondly, Manual
annotations bypathologist are completed in Loupe Browser, which is a
ST image visualization tool developed by 10x Genomics. METI anno-
tates gene expression onto the H&E image based on spot coordinates.

Data processing
METI takes spatial gene expression and histology image data as input.
The ST gene expression data contains anN × Mmatrix of UMI counts,
whereN denotes the number of spots andM represents the number of
genes. Each spot is associated with 2-dimensional spatial coordinates
denoted as (x, y). The gene expression values for each spot are nor-
malized by dividing the UMI count of each genewithin that spot by the
overall UMI count of all genes in the same spot. The result is then
scaled up by a factor of 10,000 and converted to a natural
logarithm scale.

Meta gene plot generation
Weutilized TESLA to get a pixel-level gene expressionmatrix. For a cell
type which has K marker genes, we combine these K markers into a
single meta-marker gene. Considering that not all marker genes may
be expressed, the meta gene is designed to preserve the expression
patterns for at least a subset of the marker genes. Given K marker
genes and a predefined number k based on the specificity of the
markers,k ≤K, for any given pixel i, we first sort the relative expression
of all markers in descending order as fe1,i, e2,i, e3,i, :::,eK ,ig. Next, we
select the top k expression values and compute the meta gene’s rela-
tive expression at pixel i as:

emeta,i = minðe1,i, e2,i, e3,i, . . . ek,iÞ ð1Þ

If number of expressed marker genes less than k, which is kth

marker has zero expression at a given pixel, the meta gene’s relative
expressionwill be 0 at that pixel. This ensures that expression patterns
present in less than k genes are excluded from the meta gene, pre-
venting the generation of less representative patterns.

T cell states mapping
First, weemployedCD3D andCD3E asmarkers to accurately annotateT
cell-enriched regions using TESLA. The output of TESLA is a binary
value array AT cell of the same size as the histology image, in which
value of 1 indicates T cell enrichmentwhile0 indicates non-enrichment
of T cells. Similarly, we used CD4marker gene to identify rough CD4+ T
cell distribution patterns using TESLA, and the results is stored as a
binary array A0

CD4+ T indicating the enrichment of rough CD4+ T cells.
Since CD4+ T cells are a subset of T cells, we then filterA0

CD4+ T based on
AT cell to get a more accurate enrichment matrix of CD4 T cell, ACD4+ T ,
as below:

ACD4+ T =A
0
CD4+ T ×ATcell ð2Þ

This operation filtered out false positive detected CD4+ T cells by
TESLA which do not express general T cell markers. Using a similarly
pipeline,METI is able to identify CD8+ T cells usingCD8A andCD8B. We
obtained array A0

CD8+ T where 1 denotes CD8A or CD8B positive and 0
denotes negative. By intersecting AT cell and A0

CD8+ T , we obtained
ACD8+ T storing pixel with CD8+ T cell positive expression.

ACD8+ T =A
0
CD8+ T ×ATcell ð3Þ

Next, to identify the CD4+ Treg cells, we input specific marker
genes for Tregs, including FOXP3 and IL2RA, to delineate the
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corresponding regions and generate an array A0
Treg . Given that CD4+

Treg cells is a subset of CD4+ T cells, we construct a new binary array,
ACD4+ Treg , by intersecting ACD4+ T and A0

Treg . By visualizing ATreg , we
obtained the annotation that outlines the CD4+ Treg signature on the
H&E image.

ACD4+ Treg =A
0
Treg ×ACD4+ T ð4Þ

The identical procedure is employed to identify CD8+ Tex cells.
We input specific marker genes for Tex cells, including HAVCR2, LAG3,
CTLA4, TIGIT, PDCD1, and LAYN. With prior knowledge53, any pixel
expresses any 2marker genes out of these 6marker geneswill be set to
1. To annotate the corresponding regions, we generate an array A0

Tex .
Like the CD4+ Treg identification process, we create a new binary array
ACD8+ Tex for CD8

+ Tex cells by intersecting ACD8+ T and A0
Tex . This array

annotates the CD8+ Tex cell signature on the H&E image. In this case,
we have K = 6 and set k = 2 based on previous publication, we derived
the meta gene as formula (1), in which pixels with at least 2 marker
genes expression out of the 6 have non-zeros expression. Then
ACD8+ Tex can be obtained as:

ACD8+ Tex =A
0
Tex ×ACD8+ T ð5Þ

For other immune cell annotations, the markers and choice of k
can be found in Supplementary Table 3.

Nuclei segmentation
We first divided the image intomultiple patches of size 2000 × 2000
pixels, and supplement incomplete patches on the border with black
blocks to 2000 × 2000 pixels. We next converted the image from
the default blue (B), green (G), red (R) color format to RGB format
using OpenCV and then reshaped the 3D image array into a 2D array,
where each row represents a pixel in the image, and three columns
corresponds to the RGB color values of each pixel. Subsequently, we
employed OpenCV K-means clustering algorithm to 2D image array
with 10 channels, yielding two crucial outcomes, “centers” storing
the coordinates of 20 centroids representing the color of each cen-
troid, and “labels” storing the labels for each pixel indicating which
centroid it belongs to. By assigning colors from the “centers” array to
each pixel in the image based on their cluster labels stored in the
“labels” array, segmented images were created. To better visualize
the K-means clustering results, we set all the cluster centers to black
as initial values and plot each color channel separately. To identify
the cluster corresponding to the target region, such as nuclei, we
performed a color mapping. Users first need to input the color of
target region in RGB format based on the prior knowledge, for
example:

ctarget = ðrtarget , gtarget ,btargetÞ

For each cluster derived from K-means segmentation, we calcu-
late its average color value as:

ci = ðri, gi,biÞ

i 2 f1, 2, . . . , 10g

Next we calculate the Euclidean distance of each centroid color
to ctarget :

dt,i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðri � rtargetÞ2 + ðgi � gtarget Þ2 + ðbi � btarget Þ2
q

ð6Þ

for each i 2 f1, 2, . . . , 10g. Then we look for the cluster with the mini-
mum Euclidean distance:

i* = argminidt,i ð7Þ

where i* represents the index of the cluster that is closest in color
to ctarget .

For example, in immune cell nuclei detection, we can use (50, 0,
100) as they appear dark blue/purple on H&E image, while for goblet,
we used (240, 230, 230) as they look pale and clear. It is possible for a
channel contains similar-colored noisy elements. We then incorpo-
rated a closing morphological operation using “morphologyEx” in
OpenCV on the segmented results as a refinement step. This operation
involves a combination of dilation and erosion processes as below:

A�B= ðA� BÞ � B ð8Þ

where � and � denote the dilation and erosion, respectively.
This step aims to eliminates noise points, while concurrently

dilate the nucleus. Subsequently, the nucleus is returned to its normal
size through the erosion process. For certain process such as filtering
our goblet cells, we have one more step applying filters to refine the
result which helps us to keep specific cells only. For instance, with
filters such as an element’s area >40, solidity >0.5, and a length-to-
width ratio <3, we were able to distinguish goblet cells from other
irrelevant elements. Notably, these parameter values are not fixed
while they are adaptable based on cell types and samples. We
employed a similar segmentation process for immune cells and
fibroblasts, with the key distinction being the use of different filters
and parameter values tailored to each cell type.

Combined results from gene expression and image
In Module 1, focusing on goblet cell detection, we initially conducted
separate analyses using gene expression and image. Because the
marker genes for goblet cells are highly specific, and theirmorphology
is distinctively different from other cell types, detections from each
modality more prone to false negatives due to data quality issues
rather than false positives. Therefore, the final detection results for
goblet cells are combined as a union of detections from both gene
expression and image analysis.

In Module 2, emphasizing on cancer cells, tumor regions are
delineated through the combined analysis of gene expression and
image. To distinguish tumor subtypes, including proliferative cancer
cells, stem-like cancer cells, and other subtypes, we employed specific
tumormarkers such asMKI67, SOX9, CLDN18, andMSLN to identify the
regions of tumor subtypes. Additionally, we applied distinct color
overlays to these tumor subtype regions to visually represent the co-
localization or exclusivity different cancer cells, enabling better
understanding of tumor heterogeneity within the TME.

In Modules 3 and 4, which focuses on immune cells, we initially
identify lymphocyte cells based on their morphological features,
characterized by dark-purple nuclei in the H&E images. Differentiating
among various immune cell types like B cells, CD4+ T cells, and CD8+

T cells based on morphology alone is challenging. Therefore, these
distinct immune cell types are subsequently identified by examining
their gene expression profiles within the lymphocyte areas delineated
from the image. Afterward, T cell subtypes such as Treg and Tex cells
can be identified using their specific marker genes within the areas
whereTcells have alreadybeenpinpointed. This hierarchical detection
strategy, grounded in biological knowledge, ensures precise classifi-
cation of immune cells,

In Module 5, our primary focus is on CAFs. Initially, we identify
fibroblast cells through both imaging and gene expression analysis.
Subsequently, we stratify CAF subtypes, including myofibroblastic
CAFs (myCAFs), inflammatory CAFs (iCAFs), and antigen-presenting
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CAFs (apCAFs), based on the expression of specific cell markers. To
further elucidate the interactions within the TME, we apply distinct
color overlays to these CAF subtype regions, demonstrating the co-
localization of CAF subtypes within the TME.

3D cell density visualization
Utilizing the nuclei detected from the previous step, we further per-
formed a strong erosion to make the overlapped nuclei separable,
follow by objective detection using function “findContours” in
OpenCV. Thenwe computed the density of nuclei within a 20× 20-pixel
patch by using the spatial coordinates of each spot. These nuclei counts
were served as the Z-coordinate values to construct our density plot.
We generated a 3D surface map based on the complete set of Z-values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
A detailed description of lung cancer and gastric Visium datasets
including data sources and accession numbers RE described in our
previous studies40,43. The lung cancer (LC_1) dataset54 is available under
restricted access and can be downloaded from EGA under accession
number EGAS00001005021. The gastric cancer and bladder cancer
raw sequencing and imaging data have been uploaded to GEO. We
have released all newly generated data on GEO under the accession
code GSE246011. We confirm that all data analyzed in this manuscript
are accessible via the links included in the Supplemental Table S1.

Code availability
All original code has been deposited at GitHub (https://github.com/
Flashiness/METI) and is publicly available as of the date of publication.
We have obtained a DOI for our Github repository by linking it to
Zenodo. The Zenodo DOI is: https://doi.org/10.5281/zenodo.
11247565 [55].
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