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Abstract

Background: Pulmonary sarcomatoid carcinoma (PSC) is a rare and

aggressive subtype of non‐small cell lung cancer (NSCLC), characterized by

the presence of epithelial and sarcoma‐like components. The molecular and

immune landscape of PSC has not been well defined.

Methods: Multiomics profiling of 21 pairs of PSCs with matched normal lung

tissues was performed through targeted high‐depth DNA panel, whole‐exome,
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and RNA sequencing. We describe molecular and immune features that define

subgroups of PSC with disparate genomic and immunogenic features as well

as distinct clinical outcomes.

Results: In total, 27 canonical cancer gene mutations were identified, with

TP53 the most frequently mutated gene, followed by KRAS. Interestingly, most

TP53 and KRAS mutations were earlier genomic events mapped to the trunks

of the tumors, suggesting branching evolution in most PSC tumors. We

identified two distinct molecular subtypes of PSC, driven primarily by immune

infiltration and signaling. The Immune High (IM‐H) subtype was associated

with superior survival, highlighting the impact of immune infiltration on the

biological and clinical features of localized PSCs.

Conclusions: We provided detailed insight into the mutational landscape of

PSC and identified two molecular subtypes associated with prognosis. IM‐H
tumors were associated with favorable recurrence‐free survival and overall

survival, highlighting the importance of tumor immune infiltration in the

biological and clinical features of PSCs.
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1 | INTRODUCTION

Pulmonary sarcomatoid carcinoma (PSC) is a rare subtype
of non‐small cell lung cancer (NSCLC) characterized by
the presence of both epithelial and sarcoma‐like compo-
nents, accounting for 0.1% to 0.4% of all newly diagnosed
lung cancers [1, 2]. The 2021 World Health Organization
(WHO) classification defines three different histological
subtypes of PSC: pleomorphic, carcinosarcoma, and
pulmonary blastoma [3]. Due to the heterogeneity among
these tumors, diagnosis is often challenging, especially
when only small biopsy specimens are available [4–7].
PSCs are overall resistant to conventional platinum‐based
chemotherapy and are associated with poor prognosis
compared with other NSCLC subtypes [8].

Targeted and immune therapies in recent years have
greatly advanced the treatment of NSCLC, providing new
opportunities for the therapeutic strategies of PSC.
Previous studies have shown a high prevalence of TP53
(60%–74%) [9] and KRAS (20%–43%) [4, 5, 10], followed by
PIK3CA, MET, NOTCH, STK11, and RB1 [6, 9] in PSCs.
KRAS mutations were reported to be associated with poor
prognosis [4, 5, 10].MET exon 14 skipping mutations have
been recently identified in PSC, providing a targeted
therapy option for PSC [4–6]. In addition, PSC was among
the tumors with high tumor mutation burden (TMB),

which has been reported to be associated with superior
response to immune checkpoint blockade (ICB) therapy
[1, 8, 11], offering new hope for patients with PSC [12].

The underlying molecular pathophysiology account-
ing for the sarcomatoid phenotype and its distinct
characteristics, as well as potential mechanisms related
to the prognosis of PSC, are poorly understood, largely
due to the lack of appropriate materials for comprehen-
sive profiling. In this study, we performed multiomics
profiling of 21 pairs of PSCs with matched normal lung
tissues through targeted high‐depth DNA panel, whole‐
exome, and RNA sequencing. We describe molecular and
immune features that define subgroups of PSC with
disparate genomic and immunogenic features as well as
distinct clinical outcomes.

2 | METHODS

2.1 | Study population

Tumor and matched (histologically) normal tissue
samples were obtained from 21 patients with PSC before
treatment. Written informed consent for sample collec-
tion and analysis was obtained from all patients. This
study was performed in accordance with the Declaration
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of Helsinki and was approved by the Institutional Review
Board at The University of Texas MD Anderson Cancer
Center. All patients provided written informed consent.

2.2 | DNA sequencing

All 21 pairs of tumor‐normal samples were deeply
sequenced using Ion Torrent's comprehensive cancer
panel (CCP) of 409 cancer genes (mean sequencing depth
355 ± 78). Of these, 18/21 samples with high‐quality
DNA were subjected to whole‐exome sequencing (WES)
using the Ion Torrent AmpliSeq platform, targeting
195,427 exons across 19,070 genes (median sequencing
depth 225 ± 20). Libraries were prepared using the
manufacturer's specifications and sequenced using the
Ion Proton System.

2.3 | Mutation calling on DNA
sequencing

Raw sequencing reads were aligned using the Torrent
Mapping Alignment Program (TMAP‐4.0.6) to HG19
whole‐genome reference. The mark duplicates step was
skipped since these data were derived from single‐end
sequencing. We used a consensus calling approach on
IonTorrent WES data using three different callers
(MuTect, Mutect2, and the platform's proprietary
method, Ion‐Reporter) to derive the mutational land-
scape of PSC. We used a pooled normal consisting of 21
adjacent normal tissues to filter out germline variants
and sequencing artifacts.

Mutations were called on WES and CCP using Ion‐
Reporter caller (based on FreeBayes). A second set of
calls was derived following GATK best practices,
proceeding with somatic calls using Mutect. In addition,
a pooled normal was created using MuTect2 to filter out
sequencing artifacts. This was used as a pooled normal
for MuTect2 and MuTect. Mutations were annotated
using VEP and ICMG tiered criteria. A consensus calling
approach was used by combining data from the three
callers to arrive at confident somatic mutations. Two
filters were established: filter (1) focusing on confident
somatic calls in any gene and (2) reasonable variants in
known oncogenes and tumor suppressors. Filter 1
required that a mutation (1) “PASSED” by two of three
mutation callers (MuTect, MuTect2, or IonReporter) and
(2) showed forward and reverse variant allele frequencies
>5% to remove strand biases mutations. Filter 2 required
that a mutation shows forward and reverse VAF > 5%
and either has a TCGA pan‐cancer count >3, curated in
clinVar, or established as ICMG tier 1 or tier 2 mutations.

We refer to this filtered list as the F1/F2 mutations list,
which was used for TMB analysis. In total, the F1/F2
criterion filtered down mutations to N= 5147; of these,
28 satisfied both the F1 and F2 criterion, 68 mutations
were hotspot/known oncogenic mutations that failed the
strict F1 criterion, and 5051 other somatic mutations.

To find pathogenic somatic mutations, we started
with N= 99 mutations satisfying the F2 criterion and
curated them using WES, CCP, and RNASeq bam files in
IGV, with N= 46 mutations in 28 genes (Supporting
Information: Table S1).

We employed a rule‐based criterion using ACMG
guidelines [13] to annotate the variants and selected all
(1) ACMG tier 1 & tier 2 mutations, or (2) if the specific
mutation had a pan‐cancer count >3 or (3) if the
mutation was annotated in ClinVar [14], as elaborated in
the methods. Using these genes, we distilled for
damaging nonsynonymous mutations or stop gain/
splicing mutations in cancer genes (Supporting Informa-
tion: Figure S1A,C).

2.4 | Copy number variation
(CNV) calling pipeline

Data from all matched normal were pooled using GATK
CNV [15] to create an improved identification of
CNV events from artefactual depth‐ratio variation
(N= 18). CNV segmentation was performed using
TitanCNA [16], followed by tree structure using Phy-
loWGS [17]. Purity was assessed as the total size of
subclones from PhyloWGS, which incorporates CNV
events and cancer cell fraction (CCF) of SNVs.

2.5 | Expression profiling

17/21 samples were used for Ion Torrent‐enabled RNA
sequencing (RNASeq). RNA was extracted, and libraries
were prepared using Ion Total RNA‐Seq Kit v2 (https://
www.thermofisher.com/order/catalog/product/4475936).
We used two‐pass star alignment to align sequencing
reads to the hg19 human genome and HTSeq to get gene‐
level counts using the TCGA V2 GAF file (ref). Counts
were normalized for between samples variation using the
TMM method of edgeR [18]. Differentially expressed
genes (DEGs) between clusters 2 and 1 were calculated
using the Fisher exact test. Pathway analysis was
performed using GSEA and Enrichr [19, 20]. We
manually annotated immune‐related pathways in
MSigDB v5.1 Reactome DB, using terms such as
“immune,” “TCR,” “Interferon,” “antigen,” and so forth.
Immune cell deconvolution was performed using
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MCPCounter [21], CIBERSORT [22], ConsensusTME
[23], and xCell [24].

2.6 | Statistical Analysis

The statistical analysis and generation of figures were
conducted using the R. Box plots and other statistical
summaries were plotted using R package ggstatsplot.
Pearson's correlations were employed to evaluate the
relationship between two continuous variables. When
analyzing one nominal and one continuous variable, the
Student t‐test was utilized for normally distributed data
to examine difference between two groups. For non‐
normally distributed data, the Wilcoxon signed‐rank test
and Mann‐Whitney test were employed for paired and
independent comparisons, respectively. Chi‐squared test
was employed to compare categorical variables in two
groups. Survival analysis was conducted using the log‐
rank test, using the R package survminer and survival.
Multivariate analysis was performed to determine
correlations between multiple factors by analyzing two
or more variables simultaneously. P‐values less than 0.05
were considered to be statistically significant.

3 | RESULTS

3.1 | Clinical characteristics of patients
with PSC

We retrospectively identified 21 patients with the
diagnosis of PSC in our institution (Figure 1a).
The clinicopathological characteristics of these 21
patients are summarized in Table 1. The median age
of the studied cohort was 68 years (range: 49–80).
Fourteen (67%) patients were male, and the majority
(N = 20, 95%) were smokers. The final pathology was
pleomorphic carcinoma (N = 6), spindle cell carci-
noma (N = 6), mixed spindle and giant cell carcinoma
(N = 6), mixed spindle cell/pleomorphic carcinoma
(N = 2), and giant cell carcinoma (N = 1) (Figure 1b).
All patients underwent upfront surgery without
preoperative chemotherapy or radiation therapy, and
none received immunotherapy before or post surgery.
Seven patients (33.3%) received adjuvant therapy,
including one (4.8%) with radiation therapy and six
(28.6%) with chemotherapy. After an average follow‐
up of 39 months after surgery, eleven patients (52.4%)
had disease recurrence.

FIGURE 1 (a) Overview of clinical characteristics of pulmonary sarcomatoid carcinoma (PSC) cohort (N= 21) patient tumors,
including 11 patients with recurrence and 10 patients with no recurrence. (b) Exemplary histopathologic images of three different types of
PSC, including Spinfle cell carcinoma, pleomorphic carcinoma, and giant cell carcinoma. Tumors and adjacent normals were subjected to
whole‐exome sequencing (WES) (N= 18), RNA Sequencing (N= 17), and Comprehensive cancer panel (N= 21).
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3.2 | Mutational landscape of PSC

The average sequencing depth (WES) was 226x for
tumors and 222x for germline controls (uninvolved
normal lung tissues) (Supporting Information:
Figure S1C,F). A total of 5147 somatic mutations
(average 285/tumor, ranging from 5 to 1110, an average
of 5.7/Mb) were identified (Supporting Information:
Figure S1A, Supporting Information: Table S2). The
TMB was not significantly different between the three
main histological subtypes of PSC (Supporting

Information: Figure S1D). Among those mutations,
3278 were exonic mutations with an average of 182 per
tumor (range: 5–728), with mutations of high VAF in
CDKN2A and MET (Supporting Information:
Figure S1E).

We then examined the pattern of known cancer
gene mutations in our cohort, defined as nonsynon-
ymous mutations that lead to pathogenic amino acid
changes in oncogenes or truncating mutations in known
and previously reported tumor suppressor genes [25, 26]
and CancerMine [27]. In total, 27 canonical cancer gene
mutations were identified in 15 of 18 tumors with WES
data available, validated by deep sequencing of CCP of
409 cancer genes and RNASeq (Figure 2, Supporting
Information: Figure S1B) [6]. Among those cancer genes,
TP53 was the most frequently mutated gene (57%; 12/21),
followed by KRAS (28%; 6/21). The potentially targetable
MET exon 14‐skipping mutation reported previously [6]
was detected in 3 patients in our cohort. None of these
three patients carried other cancer gene mutations, such
as TP53 or KRAS, supporting a mutual exclusion
relationship [28]. Patients harboring KRAS mutation
were associated with inferior recurrence‐free survival
(RFS) and overall survival (OS) in our cohort (χ2 test;
p< 0.015, Supporting Information: Figure S2A,B), con-
sistent with the previous reports in NSCLCs [29–31].
However, there was no association observed between
other cancer gene mutations such as TP53 mutations and
MET exon 14‐skipping mutations.

3.3 | Branching evolution in most PSC
tumors

To depict the genomic evolution of these PSC tumors, we
used the GATK pooled normal approach followed by
TitanCNA and PhyloWGS to estimate the phylogenetic
structure of somatic aberrations. Overall, 9 of 18 tumors
with available WES data had a branched evolutionary
pattern with unique somatic mutations present in two or
more subclones. Specifically, 64% of PSC tumors that
subsequently relapsed and 28% of nonrelapsed tumors
had evidence of a branched evolution (Figure 3a–c). Four
of 5 KRAS mutations mapped to the trunk (Figure 3a,b),
suggesting KRAS mutations were early genomic events
during the evolution of most PSCs in this cohort. Similar
to KRAS, 80% of TP53 mutations were also earlier
genomic events mapped to the trunks of the tumors.
Interestingly, two distinct TP53 mutations (a stop‐gain
and a missense) were identified in tumor 334187
(Figure 3a), suggestive of convergent evolution, a
phenomenon that has been observed in multiple tumors
[32–34].

TABLE 1 Summary of patient demographic and clinical
characteristics.

Characteristics N= 21

Age, years (median) 68 (49–80)

Gender, No.

Male 14

Female 7

Histological subtype (%)

Giant 4.8

Pleomorphic 28.6

Spindle 28.6

Mixed 38.1

Tumor size, cm, (median) 4.0 (2.7–8)

Pleural invasion (%) 33.3

Stage (%)

IA 14.3

IB 33.3

IIA 4.8

IIB 28.6

IIIA 9.5

IIIB 4.8

IV 4.8

Smoking status (%)

Never 4.8

Ever 95.2

Adjuvant therapy (%)

Yes 33.3

No 57.1

Unknown 9.5

Recurrence status (%)

Yes 52.4

No 47.6
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3.4 | Gene expression profiles identify
two distinct molecular subtypes of PSC

To further understand the molecular landscape of PSCs,
we performed RNA sequencing in 17 of the 21 tumors
with remaining tumor tissues. Unsupervised clustering
using NMF (nonnegative matrix factorization) [35] led to
two or six stable clusters (Supporting Information:
Figure S3A). Considering the limited sample size,
cophenetic distance between the clusters, and silhouette
widths of each sample (Supporting Information:
Figure S3B), we utilized the two‐cluster system for
further analysis. We ranked all protein‐coding genes to
differentiate the two subtypes using SAM (significance
analysis of microarrays) [36], resulting in 165 candidate
genes (p< 0.05), among which 24 genes were upregu-
lated in Cluster 1 and 141 enriched in Cluster 2
(Figure 4a, Supporting Information: Table S3). Notably,
many of the key pathways represented by the 141 genes
upregulated in cluster 2 were related to immune
response, such as adaptive immune system, T cell

receptor (TCR) signaling, IL‐7 signaling, and GPCR‐
related pathways, and so forth (Figure 4c). Conversely, 24
upregulated genes in Cluster 1 belonged to pathways
related to metabolism and proliferation, and so forth
(Supporting Information: Table S3).

To further understand the genes and pathways
driving these two divergent molecular subtypes, we
extracted DEG between these two clusters and identified
326 genes upregulated and 360 genes downregulated
(p< 0.05) in Cluster 2 compared with Cluster 1
(Supporting Information: Figure S3C). We next applied
geneset enrichment on a ranked list of genes (Supporting
Information: Table S4) based on Reactome, KEGG, and
Hallmark genesets to explore upregulated and down-
regulated pathways in these two subtypes [35, 37, 38].
These analyses demonstrated a significant difference
between these two clusters, with most immune‐related
pathways (10 of 15) enriched in Cluster 2 (Figure 4c). We
then characterized immune infiltration in each tumor
using a previously established signature [39], and we
observed a significantly higher immune signature in

FIGURE 2 Mutation spectrum across pulmonary sarcomatoid carcinoma (PSC) tumors found using whole‐exome sequencing (WES)
across 18 tumors. TP53 is the majority mutation (53%), followed by KRAS in 28% of tumors.
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Cluster 2 (hereafter referred to as Immune High, IM‐H)
compared with Cluster 1 (hereafter referred to as
Immune Low, IM‐L) (Figure 4b, Supporting Information:
Table S5). SsGSEA analysis for MSigDB hallmark path-
ways further revealed that IM‐H tumors were enriched in
various immune pathways while IM‐L tumors were
enriched in pathways associated with cell proliferation,
epithelial–mesenchymal transition (EMT), metabolism,
and so forth (Supporting Information: Figures S4 and S5)
suggestive of highly aggressive nature and less immune
surveillance in IM‐L tumors.

To further understand the immune landscape of these
PSCs, we applied ESTIMATE [39] to RNA‐seq data. As

expected, IM‐H tumors exhibited a significantly higher
immune score and a higher stromal score but a
lower tumor purity score (Supporting Information:
Figure S6A–C). We further applied MCPCounter [21],
CIBERSORT [22], ConsensusTME [23], and xCell [24] to
infer the infiltration of different immune cell types in IM‐
H versus IM‐L tumors. Cells with consistent trends
across at least two methods were used for further analysis
with clinical variables. The distinct immune‐centric
molecular characteristics between these two clusters
were also observed in neutrophils (Figure 4d), B cells
(Supporting Information: Figure S6D), endothelial
cells (Supporting Information: Figure S6E), plasma cells

FIGURE 3 Phylogenetic trees of (a) relapsed tumors and (b) non‐relapsed pulmonary sarcomatoid carcinoma (PSC) tumors derived
using mutation and copy‐number data. (c) Relapsed tumors showed an increased number of branches per tumor in 64% of tumors, while
branching was detected in 28% of non‐relapsed tumors.
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(Supporting Information: Figure S6F), M1 macrophage
fraction (Supporting Information: Figure S6G), and
CD4+/CD8+ T cell ratio [40] (Supporting Information:
Figure S6H) further supporting a more active immune
repertoire associated with IM‐H PSC tumors. In addition,
several tumors in the IM‐H group exhibited higher
expression of various immune checkpoint‐related genes,
including LAG3, IDO1, and TIGIT (Supporting Informa-
tion: Figure S7).

3.5 | Patients with IM‐H versus IM‐L
PSC tumors exhibit different survival

We next sought to assess the potential impact of these
molecular subtypes on clinical outcomes of PSC patients.
Importantly, all seven patients in the IM‐L cluster have
relapsed, compared with only 3 of 10 patients with IM‐H
PSC. Furthermore, survival analysis revealed signifi-
cantly longer RFS and OS in patients clustered into

FIGURE 4 (a) Gene‐expression heatmap of differentially expressed genes across two clusters: Immune High (IM‐H) and Immune
Low (IM‐L). (b) Tumor immune infiltration estimated using ESTIMATE indicates higher immune infiltration in IM‐H tumors.
(c) Immune‐related reactome pathways (red) are highly expressed in IM‐H tumors. Estimated (d) neutrophils in IM‐H and IM‐L tumors
using MCPCounter.
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IM‐H group (HR= 10, 95% CI: 2–51, p= 0.005 for RFS;
HR= 23, 95% CI: 2.7–192, p= 0.04 for OS; Figure 5a,b).
The associations remained significant in multivariate
analysis after adjusting for smoking status, stage, and
gender (Supporting Information: Figure S8A,B).

To better understand the correlations of immuno-
genicity with the clinical outcome, we further investi-
gated the relationship between subtype and patient

survival in lung squamous cell carcinoma (LSCC) in
the TCGA cohort. We identified 68 patients with IM‐L
cluster and 108 patients with IM‐H cluster in LSC
(N= 320 unassigned), and a favorable prognosis was
observed in cluster 2 patients, the same finding with
our PSC cohort (Figure 5c). Taken together, these
results demonstrated the distinct clinical outcomes in
PSC patients with different molecular subtypes, further

FIGURE 5 (a) Recurrence‐free survival (RFS) and (b) overall survival (OS) in Immune Low (IM‐L, cluster 1) and Immune High
(IM‐H, cluster 2) tumors. (c) Projection of IM‐H and IM‐L subtyping on lung squamous TCGA cohort has prognostic value in
nonsarcomatoid lung tumors.
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highlighting the impact of tumor immune infiltration
on patient survival.

3.6 | IM‐L and IM‐H PSC tumors had
different genomic features

Finally, we sought to understand the genomic basis
underlying the difference in immune infiltration in these
PSC tumors. First, we investigated whether the canonical
cancer gene mutations that are known to impact immune
infiltration and response to ICB [41, 42] would impact
the immune infiltration of these PSC tumors. The most
commonly mutated cancer genes in this cohort, includ-
ing TP53, KRAS, and MET, did not seem to associate
with different immune infiltration (Supporting Informa-
tion: Figure S9A–F). Next, we compared IM‐L and IM‐H
tumors regarding their TMB, which has been reported to
be associated with active immune infiltration and
superior benefit from ICB [43, 44]. As shown in
Supporting Information: Figure S10, we did not observe
a significant difference in TMB between IM‐L and IM‐H
tumors, suggesting TMB may not be the main driving
force of different immune infiltration of these clusters. Of
particular interest, IM‐L tumors demonstrated a trend
toward higher CNV burden than IM‐H tumors (Support-
ing Information: Figure S11), consistent with our
previous findings that high CNV burden may be
associated with cold immune infiltration [45, 46].

4 | DISCUSSION

Lung cancer is the leading cause of cancer‐related deaths
worldwide. Comprehensive molecular profiling has
significantly advanced our understanding of lung can-
cers, identified novel therapeutic targets, and improved
patient survival. However, these efforts have so far
focused on its most common subtypes, such as LUAD
and LSCC [47–49]. In contrast to these conventional
cancer types, PSC, this exceptionally aggressive lung
cancer subtype, exhibited high CD8+ T cell density,
tumor‐associated macrophages, and PD‐L1 expression
and was linked to poorer survival and a higher incidence
of postoperative progression [50]. Over the past several
years, targetable molecular alterations such as MET exon
14 skipping mutations were identified [1, 4, 6, 51–56].
However, there were very few studies have assessed the
comprehensive molecular landscape of PSC using
multiomics approaches. A recent study characterized
179 PSCs by immunohistochemistry, next‐generation
sequencing, and in silico analysis with respect to clinical,
immunological, and molecular features and revealed a

high prevalence of MET exon 14 skipping mutations as
well as high PD‐L1 expressions in PSCs [56]. In this
study, we performed an integrative molecular analysis of
21 PSC samples using targeted gene sequencing, WES
and RNA sequencing to comprehensively define the
molecular underpinnings of this rare clinical entity. We
provided detailed insight into the mutational landscape
of PSC and identified two molecular subtypes associated
with prognosis. Consistent with previous reports, TP53
mutations were identified in 57% of cases, and KRAS
mutations were found to be associated with inferior
survival. Unsupervised clustering based on transcrip-
tomic data identified two molecular subtypes of PSC
exhibiting high and low immune infiltration. Impor-
tantly, IM‐H tumors were associated with favorable RFS
and OS, highlighting the importance of tumor immune
infiltration in the biological and clinical features of PSCs.
PSC represents a therapeutic challenge clinically, with
patients often treated with standard chemotherapy
and/or radiotherapy while the other NSCLCs provide
unsatisfactory success [5]. MET exon 14 skipping
mutations have provided a new therapeutic target for
PSCs, but only in a small proportion of PSC patients, and
disease control is often short‐lived for most patients [57].

Immunotherapy by ICB has shown unprecedented
durable clinical responses in patients with various cancer
types, including NSCLC [58]. ICB has been recently
tested in PSCs and demonstrated promising clinical
efficacy and tends to be associated with favorable
survival [50, 59–61]. However, the response rate is
suboptimal in unselected patient populations [62].
Although ICB is better tolerated than chemotherapy, it
does come with severe side effects [63]. As such,
establishing reliable biomarkers is urgently needed to
identify PSC patients who will most benefit from ICB is
critical. A prior study showed that patients with low
processing mutations display survival benefits treated
with immunotherapy [56]. In this study, we identified
two distinct molecular subtypes of PSCs. The IM‐H group
was associated with an overall high immune score, high
infiltration of immune cell subsets, and high expression
of checkpoint molecules that are associated with better
response to ICB across different cancer types [64, 65].
Accordingly, patients with IM‐H PSCs could more likely
benefit from ICB.

As a retrospective study on rare tumors, our study
was limited by the sample size. Therefore, the intriguing
findings presented in this study warrant validation in
future studies on large cohorts of PSC tumors, which will
likely require multi‐institutional collaboration, given the
scarcity of resected PSCs. Another caveat is that none of
these patients received ICB treatment. Therefore, how
well the IM‐H and IM‐L PSCs associate with response to
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ICB treatment is yet to be determined. Nevertheless,
using multiomics approaches, our study provided proof‐
for‐principle evidence that gene expression‐based molec-
ular subtyping may be informative for the underlying
biology and clinical outcome of patients with PSC, a rare
and aggressive lung cancer that is still very poorly
understood.

5 | CONCLUSION

In conclusion, we reported data from integrated genomic
and transcriptomic analysis on 21 resected PSC tumors.
Twenty‐seven canonical cancer gene mutations were
identified, with TP53 the most frequently mutated gene,
followed by KRAS. We also identified two distinct
molecular subtypes of PSC exhibiting high and low
immune infiltration. The IM‐H subtype tumors are
associated with favorable clinical outcomes, highlighting
the importance of tumor immune infiltration in the
biological and clinical features of PSCs. Our study
provides evidence that gene expression‐based molecular
subtyping may be informative for the underlying biology
and clinical outcome of patients with PSC, which is of
great translational significance.
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