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SUMMARY

Understanding tumor microenvironment (TME) reprogramming in gastric adenocarcinoma (GAC) 

progression may uncover novel therapeutic targets. Here, we performed single-cell profiling of 

precancerous lesions, localized and metastatic GACs, identifying alterations in TME cell states 

and compositions as GAC progresses. Abundant IgA+ plasma cells exist in the premalignant 

microenvironment, whereas immunosuppressive myeloid and stromal subsets dominate late-stage 

GACs. We identified six TME ecotypes (EC1–6). EC1 is exclusive to blood, while EC4, EC5, and 

EC2 are highly enriched in uninvolved tissues, premalignant lesions, and metastases, respectively. 

EC3 and EC6, two distinct ecotypes in primary GACs, associate with histopathological and 

genomic characteristics, and prognosis. Extensive stromal remodeling occurs in GAC progression. 

High SDC2 expression in cancer-associated fibroblasts (CAFs) is linked to aggressive phenotypes 

and poor survival, and SDC2 overexpression in CAFs contributes to tumor growth. Our 

study provides a high-resolution GAC TME atlas and underscores potential targets for further 

investigation.

Graphical Abstract
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eTOC Blurb

Wang et al. conduct a comprehensive characterization of the tumor microenvironment (TME) 

across gastric adenocarcinoma (GAC) progression stages, which uncovers TME ecotypes linked 

with GAC phenotypic progression and outcomes. The study also highlights the role of SDC2-

overexpressing CAFs in disease progression, suggesting them as potential therapeutic targets for 

future investigations.

INTRODUCTION

Gastric adenocarcinoma (GAC) remains one of the most lethal cancers worldwide due 

to rapid progression, treatment resistance, and a high metastasis rate1. There is a need 

for strategies to treat GAC in its early or premalignant stages, but our understanding of 

the cellular and molecular mechanisms from early tumorigenesis to metastases is lacking. 

The evolution from precancerous conditions like chronic atrophic gastritis (CAG) and 

intestinal metaplasia (IM) to primary GAC and then metastases is not well understood. 

Peritoneal carcinomatosis (PC), a common form of metastases, occurs in ~45% of patients 

and accounts for 60% of all recurrences2–6. Patients with PC experience progressive 

symptoms and a rapid clinical decline, with most succumbing within 6 months7. HER2-

directed therapy can produce modest improvements in a limited population8,9 and immune 

checkpoint blockade, combined with chemotherapy, has benefited a subset of patients with 

advanced or metastatic GAC10. Therapy development may greatly benefit from a detailed 

exploration of the constantly evolving tumor microenvironment (TME), which might unveil 

various immune suppression mechanisms and potential therapeutic targets. It is thus critical 

to understand the complexities of the TME11–14, and such a research trajectory would be 

a departure from the traditional approaches where enormous efforts have mainly focused 

on GAC tumor cells15–20. However, to date, only a handful of studies, including ours, have 

explored the immune and stromal subtypes of GAC. While these studies provided valuable 
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insights, they either relied on bulk expression level20–23 or were constrained by their scope, 

cohort size, or depth of analysis24–27. A recent single-cell study characterized GAC TME 

in 31 patients28, but primarily focused on primary GACs, with only 3 metastatic patients 

included. The evolution of various immune and stromal cell subsets during GAC progression 

remains poorly understood.

In this study, we obtained single-cell RNA sequencing (scRNA-seq) data from precancerous 

lesions, primary, and metastatic tissues, along with uninvolved normal and peripheral blood 

samples. We characterized diverse immune and stromal cell populations in the TME across 

GAC stages, including their transcriptional states, cellular compositions, developmental 

trajectories, cell interactions, as well as cellular ecotypes. This study provides a detailed 

view of immune and stromal cell evolution within GAC progression and reveals potential 

targets for further investigation, while also providing valuable resources for future research.

RESULTS

Single-Cell TME Landscapes in Different Stages of GACs

We obtained scRNA-seq data on immune and stromal cells from 68 samples collected 

from 43 subjects. These included tissues and cells from patients at various stages of 

GAC development, such as precancerous conditions (CAG and IM), localized GACs, and 

metastases in the peritoneal cavity, ovary, and liver (Figure 1A; Table S1). We collected 

matched, non-neoplastic tumor-adjacent tissue (NAT), normal gastric tissue (NGT), and 

peripheral blood monocyte cells (PBMCs) from a subset of patients. We also included 

PBMCs collected from two healthy donors. After rigorous quality filtering, we retained 

a total of 77,392 high-quality cells for subsequent analyses. We assessed and corrected 

batch effects (Methods), and performed unsupervised clustering analyses, which revealed 

10 distinct lineages split into 3 major cell compartments including lymphoid (77%, e.g., T, 

B, NK, and plasma cells), myeloid (13%, e.g., pDCs, mast cells, other myeloid cells), and 

stromal cells (10%, e.g., fibroblasts, endothelial and mesothelial cells) (Figure 1B).

Among all TME cells, 1.8% were at the G2M or S phase with a high expression of 

cell proliferation markers29. Down-sampling analysis suggested that the clustering results 

were reproducible and not influenced by the total number of cells from each tissue type 

(Figure S1A). Further subclustering analysis identified a total of 62 cell transcriptional states 

(Figures 2–3; S2–4; Table S2).

To better understand the TME landscapes, we examined the cellular abundances and 

compositions of major lineages across different tissue groups (Figures 1C–E; S1B). We 

observed substantial changes in the proportions of plasma cells and mast cells over GAC 

progression with a significant increase in precancerous conditions (CAG and IM), followed 

by a sharp decline in primary GACs, while both populations were largely absent in 

metastases (Figures 1D–E). This observation aligns with the etiology of CAG/IM, which 

is suggested to result from chronic inflammatory injury of the gastric mucosa due to 

Helicobacter pylori (H. pylori) infection30,31. In contrast, the cellular abundance of myeloid 

and CD4+ T cells showed a distinct pattern, with a major shift from premalignant lesions 

to primary GACs and remained at high levels in metastases (Figures 1C–E). To further 
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examine changes in cellular compositions during disease progression, we analyzed matched 

NAT-primary GACs (n = 9 pairs) and primary-metastatic GACs (n = 6 pairs) collected from 

the same patients (Figure 1F). Although small in sample size, paired comparisons showed a 

significant decrease in the fractions of plasma cells and an increase in myeloid cells as GAC 

progressed. These coincided with the patterns that emerged from analyses using all samples.

Next, we sought to correlate major clinical and histopathological features (Table S1) with 

TME cell characteristics. The CD8+ T cell fractions among all TME (or immune) cells were 

significantly higher in distal compared to proximal GACs in microsatellite-stable tumors 

(Figure 1G), consistent with the poor prognosis of patients with proximal GAC. Although 

TME cell heterogeneity based on primary GAC location has not been described, our data 

will need validation in a larger cohort. Additionally, we observed that stromal cell fractions 

were significantly higher in signet-ring cell carcinoma (SRC) compared to non-signet ring 

cell carcinoma (NOS), and plasma cells tended to be more abundant in poorly versus 

moderately differentiated GACs (Figure 1H). While CD8+ T cell fractions significantly 

decreased and myeloid cell fractions increased in primary GACs compared to NAT tissues, 

no difference was observed between GACs with and without microsatellite instability (MSI, 

Figure S1C), likely due to the small cohort size.

Changes in T cell States as GAC Progresses

Unsupervised clustering analyses of T/NK cells (Figure S2) identified 7 major cell types 

including CD4+ T, CD8+ T, NK, double-negative T (DNT), gamma delta T (γδT), NKT, and 

proliferating cells (Figure S2A; Table S2). Further subclustering analyses revealed 7 CD4+ 

T cell states and 10 CD8+ T cell states (Figures 2A–B, S2B–C; Table S2). Among CD4+ 

T cells, we identified naïve (TN, C0), regulatory (TREG, C3), follicular helper (TFH, C6), 

memory (TMEM, C1)32,33, Th17-like (C5)34, stress response (TSTR, C2), and notably the 

understudied cytotoxic T cells (CTL, C4)35. Among them, the TFH, TREG, Th17-like, CTL, 

and TSTR subpopulations were more abundant in tissue samples, and TREG was specifically 

enriched in primary GACs (Figures 2D–F; S2C–E).

Among CD8+ T cells (Figures 2B–C, S2B–C; Table S2), we identified naïve (TN, C3), 

cytotoxic (CTL, C6), memory (TMEM, C1), central memory (TCM, C9), and stress response 

(TSTR, C4) CD8+ T cells35. We also identified a CD8+ subset displaying high expression 

of interferon-stimulated genes (ISGs) (TISG, C7) and a cluster of transitional effector 

CD8+ T cells (TTE, C0) that showed high expression of GZMK36, MHC class II genes 

and KLRG1, similar to the previously described GZMK+ CD8+ T cells37,38; a plastic 

exhaustion state (TPEX, C2) and a terminal exhaustion state (TEX, C8) characterized by the 

highest expression of exhaustion related markers39–43 (Figure 2C). In addition, cells of C5 

demonstrated high expression of the semi-variable T cell receptor (TCR) gene TRAV1–2, 
SLC4A10, and KLRB1, matching the phenotypes of CD8+ mucosal-associated invariant T 

(MAIT) cells44. Among these CD8+ states, the TSTR, TPEX, and TEX subsets were nearly 

exclusive to tissues or PC samples and rarely seen in PBMCs. The TMEM, TISG, and CTL 

subpopulations were also highly abundant in tissues or PC samples (Figures 2D; S2C–E). 

The C8 TEX and C6 CTL, although small subsets, showed high enrichment in primary 

GACs. The C0 TTE and C2 TPEX subsets gradually increased as GACs progressed and were 
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most abundant in metastatic GACs, which was corroborated using scRNA-seq data from an 

independent cohort28 (Figures 2D–F).

Next, we applied Monocle 345–47 to infer the differentiation trajectory of CD8+ T cells 

(Figures 2G–J). This analysis showed a trajectory that started with CD8+ TN, which then 

segregated into two major branches (Figures 2B, 2G). Branch 1 connected with C0 TTE, 

followed by C6 CTL, C1 TMEM, and ended in C4 TSTR. Branch 2 passed through C0 TTE, 

followed by C2 TPEX, and reached C8 TEX. Intriguingly, CD8+ T cells from NAT samples 

were mainly aligned along branch 1, while CD8+ T cells from metastatic GACs were 

mostly aligned along branch 2, and CD8+ T cells from the primary GACs spread on both 

branches (Figure 2H), indicating diverse CD8+ T cell differentiation trajectories that were 

possibly shaped by local contexts. We further examined the expression dynamics of immune 

regulatory genes along the pseudotime axis. Expression of transcription factors associated 

with T cell exhaustion (e.g., BATF, TOX) gradually increased along the pseudotime axis 

during the transition from CD8+ TTE to TPEX mainly in the primary GACs, and expression 

of inhibitory immune checkpoint genes (e.g., CTLA4, HAVCR2, and LAYN) upregulated 

subsequently and peaked in the primary GACs (Figures 2I–J). Expression dynamics of 

ENTPD1 (CD39), TNFRSF9 (4–1BB), and CXCL13 showed a similar pattern, suggesting 

that these exhausted CD8+ T cells were likely TME-specific.

Immunosuppressive Myeloid Subsets Dominated in Tumors at Advanced Stages

We then characterized the heterogeneous myeloid cell subsets. In addition to pDCs and 

mast cells (Figure 1B), we identified 11 other myeloid cell states, including 3 clusters for 

monocytes, 4 clusters for tumor-associated macrophages (TAMs), and 4 clusters for DCs 

(Figures 3A; S3A; Table S2). Overall, TAM and DC cluster cells showed high expression 

of phagocytosis gene signature (Figures 3B–C, S3B). TAM clusters highly expressed 

M2-like, angiogenesis-related gene signatures, and inhibitory immune checkpoint genes 

(Figures 3B–C, S3B–C), suggesting an immunosuppressive phenotype. TAMs and DCs were 

predominantly present in tissue and PC samples, while monocytes mainly originated from 

PBMCs (Figures 3D, S3D–E).

Within the TAM clusters, TAM_C0, which displayed the most substantial expression of M2-

like gene signature and immunosuppressive genes (e.g., HAVCR2, SIRPA, and LAIR1), was 

abundant in precancerous lesions, primary, and metastatic GACs (Figures 3B–C, S3C, S3D). 

TAM_C3, characterized by the highest expression of IL1B, MMP19, CCL20, VEGFA, was 

most prevalent in primary GACs (Figures 3B, 3D, S3C–E). TAM_C7, specifically enriched 

in metastatic GACs, exhibited the highest expression of genes involved in angiogenesis48 

and FN1, which encodes fibronectin, a core component of the tumor matrisome that sustains 

proliferative signaling and promotes metastatic spread of malignant cells49, alongside 

high expression of immunosuppressive genes such as SPP150, LAIR1, SIRPA, HAVCR2, 
TGFB1, and MARCO (Figures 3B–D, S3B–E).

In addition, we identified four DC subsets, including the classical CLEC9A+ cDC1 (C14), 

CD1C+ cDC2 (C5), MKI67+ proliferating DC (C9), and a LAMP3+ mature cDC subset 

(C13)48,51 (Figures 3A, S3A; Table S2). Among them, cDC1, exhibiting the highest 

expression of the antigen-presenting cell (APC) gene signature and the lowest expression 
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of M2-like gene signature, was dominant in NAT and IM but less abundant in primary 

and metastatic GACs (Figures 3B–C, S3B, S3D). Similarly, proliferating DCs were highly 

enriched in the precancerous lesions but their fractions decreased in primary and metastatic 

GACs (Figures S3D–E). Conversely, LAMP3+ DCs, displaying the highest expression of 

CD274 (PD-L1), IDO1, and TIGIT signaling genes (e.g., NECTIN2 and PVR), were 

enriched in IM and most abundant in primary GACs (Figures S3C–E). When inferring 

the likely origins of these myeloid cells in PC (Figure 3E), we found that LAMP3+ 

DCs and M2-like TAM_C0 were more closely related to myeloid cells from primary 

GACs, while the three monocyte clusters were transcriptomically similar to myeloid cells 

from PBMCs. Together, myeloid cells were abundant in the TME with diverse lineages, 

transcriptional states, and altered cell compositions, transitioning from immune-stimulating 

to immunosuppressive states as GAC progressed.

Highly Enriched IgA+ Plasma Cells in Precancerous Lesions

To better delineate the tumor-infiltrating B and plasma cells, we performed subclustering 

analysis and identified B cell clusters (C2, C3), IgG+ (C4) and IgA+ plasma cells (C0, C1) 

(Figures 3F, Table S2). C3 B cells were CD20+CD38−CD27−IgD+ with high expression 

levels of IRF4 and markers associated with B cell activation such as CD69, CD8352, and 

DUSP253, thus aligning with the phenotype of antigen-activated B cells. Both C2 and 

C3 displayed TGFB1 expression, a marker of regulatory B cells (Bregs)54. However, we 

couldn’t detect other Breg-related markers such as IL10, CD274, FASL, IL35, HAVCR1 
(TIM-1).

The absolute abundance of B and plasma cells varied across tissues and the relative B/

plasma cell proportions also showed significant differences, with plasma cells of various 

isotypes present in specific tissues. In CAG/IM, B cells were nearly eliminated, while the 

relative proportions of IgA+ plasma cells were the highest (Figures 3G, S4A). IgG+ plasma 

cells were most prevalent in primary GACs but had low frequencies in other tissues. The 

proportions of B cell subsets were high in both metastatic GACs and PBMCs (Figures 3G, 

S4A). In our study, we had access to the H. pylori status for 30 samples from 22 patients. 

We compared the proportions of plasma cells between H. pylori-negative and positive 

samples and observed a trend of increased IgA+ plasma cell in H. pylori-positive (versus H. 

pylori-negative) samples, both in CAG/IM (median: 50.5% vs. 25.8%) and primary GACs 

(median: 11.5% vs. 4.7%) (Figure 3H). However, these differences did not reach statistical 

significance, likely due to the small cohort size.

Stromal Cell Remodeling in GAC Progression

We identified 4 major stromal cell lineages and 13 clusters, comprising 5 fibroblast, 

4 endothelial cell, 2 vascular smooth muscle cell (VSMCs), and 2 mesothelial cell 

clusters (Figures 3I, S4B; Table S2). These fibroblasts displayed distinct tissue distribution 

(Figure 3J). To better characterize the heterogeneous states of cancer-associated fibroblasts 

(CAFs), we quantified the expression of gene signatures of inflammatory CAF (iCAF) 

and myofibroblastic CAF (myCAF)55. Fibroblast C6 showed high IFNγ-iCAF signature 

expression, while clusters C2 and C9 displayed dominant myCAF signatures (Figure S4C). 

C2/C9 cells also highly expressed INHBA (Figure S4E), linked with CAFs and poor 
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prognosis28. C9 fibroblasts were enriched in IM, and C2 fibroblasts were abundant in 

primary GACs in both this study and the scRNA-seq cohort from Kumar et al.28 (Figures 3J, 

S4D). Notably, a combined C2/C9 gene signature was associated with unfavorable survival 

outcomes in 4 large cohorts of localized GACs, encompassing over 1,300 patients (Figure 

S4F), with expression levels strongly linked to the risk of developing local recurrences and 

metastases (Figure S4G).

Endothelial cluster C7, expressing ESM1 and VWF that regulate angiogenesis56, and C13, 

expressing RGS5, abundant in endothelial cells of tumor vessels57,58, were enriched in 

primary GACs (Figures 3J, S4B, and S4H). VSCM C14 was prevalent in IM, and both 

mesothelial clusters, C12 and C8, were highly abundant in metastatic GACs corresponding 

to PC (Figure 3J). Additionally, we found that endothelial C7 population frequency 

negatively correlated with proportions of CD4/CD8/NK cell subsets, and positively 

correlated with proportions of other stromal, TAMs, and plasma cell subsets (Figure 3K). 

Further validation in large cohorts and mechanistic studies are necessary to better understand 

the complex interplay between stromal cells and T/NK cell infiltration in the TME.

We next examined the expression of 67 functionally characterized inhibitory immune 

checkpoint genes (Table S3)59,60 and found 10 genes expressed in ≥ 20% of cells in 

at least 1 stromal cell subset (Figure S4I). Among them, NECTIN2, CD276 (B7-H3), 
CD200, and SIRPA were expressed by stromal cells, especially endothelial and mesothelial 

subsets, with the highest expression in metastatic GACs (Figure 3L). Together, our results 

highlight considerable stromal changes along GAC progression, potentially driving tumor 

angiogenesis and immunosuppressive signaling pathways. Upregulated inhibitory immune 

checkpoint genes could be potential therapeutic targets, requiring further validation studies.

Phenotypic Relationships and Population Abundance of 62 TME Cell Subsets

After individually exploring the distinct cell types/states for each major TME compartment 

(Figures 2–3, S2–4), we next investigated the relative abundance and phenotypic 

relationships of these 62 TME cell subsets (Methods). We quantified their transcriptomic 

similarity by conducting unsupervised hierarchical clustering, which revealed two primary 

groups (Figure 4A, top): one mainly composed of lymphoid cells, which was further divided 

into 5 branches dominated by proliferating, B/plasma, NK/NKT, CD8+ T, and CD4+ T cells; 

the other composed of myeloid and stromal cells in two distinct branches. Overall, different 

cell populations of the same major lineages clustered together with a few exceptions. Within 

the lymphoid compartment cluster, as expected, plasmacytoid dendritic cells (pDCs) that 

resemble plasma cells61 grouped with B/plasma cells; CD8+ TN cells were more similar to 

CD4+ TN cells than other CD8+ subsets; and proliferating cells, regardless of their origins, 

clustered together, possibly due to their unique expression of cell proliferative markers. Mast 

cells and DNT cells clustered together within the lymphoid branch, possibly due to their 

expression of inflammation-related genes. VSMCs were more closely related to fibroblasts, 

likely due to their joint role in angiogenesis62.

We then compared global trends in cluster enrichment (Figure 4A, middle). As expected, 

stromal, plasma, and mast cell subsets were mainly in tissue samples, highly abundant in 

CAG/IM, while monocytes clusters were enriched in PBMCs and PC samples. DC and 
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TAM clusters, showing high inflammatory and cytokine signature expression, tended to 

be enriched in IM, primary, and metastatic GACs. Primary GACs showed enrichment of 

proliferative lymphoid cells, CD4+ TREG, CD4/CD8+ TSTR and CD8+ TEX, while metastatic 

GACs had increased levels of innate immune cells (e.g., NK/NKT, MAIT, γδT), CD4+/

CD8+ TN and CTL, demonstrating distinct TME landscapes between primary and metastatic 

niches. We next examined whether the presence of a particular cell subset in the TME 

of primary GACs was associated with prognosis by deconvoluting the bulk expression 

data using our single-cell-derived gene signatures. We found the abundance of stromal cell 

subsets to be the most strongly associated with shorter patient survival (Figure 4A, bottom).

We also examined sample-level correlation between the population frequencies of these 

62 subpopulations (Figure 4B). We observed negative correlations between fibroblasts, 

endothelial cells, TAMs, and plasma cells with CD4+/CD8+ T, NK, and B cell subsets, and 

a positive correlation between stromal and plasma subsets. Consistent with this, previous 

studies have shown that stromal cells recruit plasma cells in other cancer types63–65 and 

influence the ability of TILs to infiltrate tumor beds66–68. Collectively, our results revealed 

evolving TME landscapes as GAC progressed and suggested potential interactions between 

tumor-associated stromal and immune cells.

Ecotypes of TME Cells and Their Clinical Significance

To understand how these phenotypically diverse immune and stromal cell subsets form 

cohesive cellular “ecosystems” in the TME and how these ecosystems change across GAC 

progression, we quantified the cellular compositions of 58 samples (≥ 150 cells). Using 

unsupervised clustering analysis based on relative cellular abundance (Tables S4–5), we 

inferred cellular relationships and co-association patterns (Methods). Our analysis identified 

3 distinct cellular ecosystems (i.e., EC1/2, EC3/4, EC5/6) and 6 ecotypes (hereafter referred 

to as EC1–6) (Figures 5A–B), which were confirmed through independent approaches, 

including the Jaccard similarity index of cell population co-existence (Figure 5B; Table S6).

Each ecosystem/ecotype was dominated by specific cell types/states, showing unique 

cellular compositions and co-habitation patterns. This supports the notion that the discovered 

ecosystems/ecotypes can collectively capture the landscape of TME transcriptional 

heterogeneity across these tissue types. Intriguingly, the ecotypes appeared to be context-

dependent (Figures 5A–C), with EC1 comprising all PBMC samples and dominated by 

monocytes, NK cells, and CD4+/CD8+ TN cells, EC2 enriched in metastatic GACs, EC4 

prevalent in NAT, EC5 most common in premalignant lesions, and primary GACs dominated 

by EC3 and EC6 with drastically different cellular compositions (Figures 5A–B and 5D). 

EC3 was mainly composed of CD4+ and CD8+ T cells, NK/MAIT, and DCs, whereas EC6 

was comprised mostly of stromal cell subsets, proliferative B cells, and IgG+ plasma cells.

We then examined the clinical relevance of EC3 and EC6 in primary GACs (n = 13). No 

statistically significant difference was observed, likely due to the small sample size. We then 

employed a deconvolution approach (Methods) to infer the presence of EC3-like and EC6-

like ecotypes in three large-scale primary GAC cohorts with available gene expression and 

clinical data69–71. Both EC3-like and EC6-like ecotypes were present in all cohorts (Figures 

5E–F and S5A). Notably, the EC6-like gene signature outperformed the previously described 
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fibrotic microenvironment subtype (subtype F) signature72 in identifying stromalenriched 

tumors (Figures S5B–C). Moreover, analysis of the inferred ecotypes revealed significant 

correlations with previously defined histology, genomics, molecular subtypes, and clinical 

outcomes (Figures 5E–F and S5B). Consistently across all three cohorts, the EC3-like 

ecotype was highly enriched in intestinal-type GACs, whereas the EC6-like ecotype was 

dominant in the aggressive diffuse-type GACs (Figures 5E–F and S5B). In the TCGA 

primary GAC cohort (Figure 5E), the EC3-like ecotype was prevalent in Epstein-Barr virus 

(EBV)-positive tumors (two-sided Fisher’s exact test, P = 0.038), and the genomically 

stable (GS) tumors were primarily EC6-like ecotype (two-sided Fisher’s exact test, P = 

1.1e-11). Patients with tumors harboring the EC6-like ecotype showed significantly shorter 

survival when compared to those with the EC3-like ecotype (P = 0.017). The most frequent 

chromosomal instability (CIN) subtype was composed of both EC3-like and EC6-like 

ecotypes at a similar frequency, but interestingly, survival analysis within tumors of the 

CIN subtype demonstrated that patients with EC6-like ecotype had shorter overall survival 

than those with EC3-like ecotype (P = 0.0062). Within the CIN group, compared to the 

EC3 subtype, tumors of the EC6 subtype exhibited a significantly increased stromal cell 

fraction, elevated TGF-β response score, a lower fraction of genome altered, and decreased 

proliferation score (Figure S5D). Moreover, survival analysis within the diffuse-subtype 

GACs showed that the survival of patients with EC6-like ecotype appeared to be worse than 

those with EC3-like ecotype (P = 0.077).

Consistently, in the other primary GAC cohort69 (Figure 5F), the EC3-like ecotype was 

significantly associated with the proliferative molecular subtype (P = 2.6e-15), and the 

EC6-like ecotype was enriched in the invasive molecular subtype (P = 7.6e-21) defined 

by the original study. Again, patients with the EC6-like ecotype had significantly shorter 

survival when compared to those with the EC3-like ecotype (P = 0.015); and the significance 

was retained with stratified analysis performed within GACs of the metabolic subtype. In the 

third primary GAC cohort70 (Figure S5B), the EC6-like ecotype was significantly enriched 

in the MSS/TP53− tumors (P = 0.04) and tumors with epithelial-to-mesenchymal transition 

(EMT) features (P = 1.2e-4). Overall, we did not observe a significant correlation between 

the ecotypes and tumor stage in these cohorts (Figure S5E). Inhibitory immune checkpoints 

such as PDCD1LG2 (PD-L2), LILRB2, HAVCR2, and LAIR1 had higher expression 

levels in EC6-like tumors compared to EC3-like tumors in all three cohorts (Figure S5F). 

In conclusion, the non-genetic, cellular ecotype-based classification of primary GACs 

correlated with their genomic, histopathological, and clinical features.

SDC2 Upregulation in Tumor Stroma Associates with Aggressive Phenotype and Poor 
Survival

To identify potential targets in the immune and stromal TME components, we performed 

integrative analysis on a curated list of 157 genes, including immune checkpoint genes 

and other known/emerging viable immunomodulatory targets (Table S3). We screened for 

genes expressed in at least 20% of cells in one or more TME cell subsets, identifying 50 

genes (Figure S6). Among them, 45 genes were highly expressed in tumor versus NAT 

samples, and 21 genes showed a significant association with survival outcomes in public 

GAC cohorts (Figure 6A). Among them, SDC2 (Syndecan 2), ITGB1, and TGFB1 showed 
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a significant association with survival in ≥3 GAC cohorts. SDC2 and ITGB1 exhibited the 

highest expression in cancer-associated stromal cells, whereas TGFB1 was most abundant 

in myeloid cells (Figure 6A). Dysregulated TGF-β signaling has been extensively studied in 

GAC and other cancer types. However, little is known about SDC2 or ITGB1 overexpression 

in stromal cells in GAC, and their roles in oncoprogression of GAC remain elusive.

Subsequent analysis of 3 scRNA-seq datasets, including both cancer and TME cells, 

confirmed SDC2 enrichment in stromal cells (Figure 6B). Consistently across all 3 datasets, 

SDC2 showed the highest expression in stromal cell populations but its expression in 

epithelial or immune cells was low or undetectable. Within the fibroblast subsets, SDC2 
was highly expressed in clusters C9 and C2, both displaying the highest expression of 

myCAF signatures (Figures 6C and S7A). This observation was further validated in an 

independent scRNA-seq cohort28 (Figure 6D). Consistently, the fractions of SDC2+ cells 

among fibroblasts showed a negative correlation with normal-like fibroblast signatures 

and a strong positive correlation with myCAF signatures (Figure 6E). In addition, SDC2 
expression in stromal cells of premalignant and malignant tissues were significantly 

higher than that of NAT samples (Figures 6F–G), supporting our discovery that SDC2 
was predominantly expressed in CAFs. ITGB1 was highly abundant in all stromal cell 

populations across 3 datasets, and it was also expressed at lower levels in immune or tumor 

cells (Data not shown). However, unlike SDC2, NAT stromal cells also showed considerable 

levels of ITGB1 expression (Figure S7B), leading us to focus on SDC2.

To validate SDC2 expression at the protein level, we next performed double 

immunofluorescence staining of primary GAC tissues, which demonstrated intense SDC2 

positivity in stromal cells (vimentin+) (Figure 6H). High SDC2 protein expression in GAC 

stromal cells was also confirmed by the SDC2 IHC staining data from the Human Protein 

Atlas (Figure S7C). In the TCGA primary GAC cohort, SDC2 expression was significantly 

higher in EC6-like compared to EC3-like GACs (Figure 6I). Notably, SDC2 expression 

was significantly higher in diffuse-type GACs, known for poor prognosis, compared to 

intestinal-type GACs (Figure 6J). We also validated this observation using scRNA-seq data 

from Kumar et al.28 (Figure 6K). Together, SDC2 expression in fibroblasts correlated with 

the aggressive phenotype of the disease.

We further evaluated the clinical significance of SDC2 upregulation in GAC cohorts. SDC2 
upregulation correlated with significantly shorter survival in all four primary GAC cohorts 

(Figure 7A). To validate its clinical relevance at the protein level, we conducted additional 

analyses in an independent large-scale primary GAC cohort consisting of 359 patients. 

Tissue microarrays (TMAs) were used to analyze SDC2 protein expression (Figure 7B). 

SDC2 was mainly localized in the cytoplasm and membrane of stromal and tumor cells 

(Figure S7D). SDC2 expression was detected in 270 (75.2%) of 359 GAC tumor tissues, 

which was significantly higher than in normal stomach tissues (30.9%, two-sided Fisher’s 

exact test, P < 2.2e-16) (Figure 7C, left). SDC2 expression was significantly correlated with 

tumor stage. Compared to early-stage GACs (stage I/II, 45/84, 53.6%), the frequency of 

SDC2 positivity significantly increased in GACs at advanced stages (stage III/IV, 186/261, 

71.3%) (two-sided Fisher’s exact test, P = 0.0034) (Figure 7C, right). Consistently, high 

SDC2 expression in GAC tissues was associated with significantly shorter survival (P = 
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0.01) (Figure 7D), and the prognostic significance was retained after adjusting for other 

potential covariates (e.g., tumor stage) in a multivariable Cox regression model (Figure 7E). 

In conclusion, SDC2 expression was upregulated at both gene and protein levels in tumor 

stroma, and its upregulation was significantly associated with tumor progression and poor 

survival, independent of other clinical or histopathological variables.

Finally, to assess SDC2 expression in stromal cells across various cancer types, we 

examined 7 additional scRNA-seq cohorts spanning 5 cancer types: pancreatic73,74, 

colorectal75, bladder, breast cancer76,77, and clear cell renal cell carcinoma (ccRCC). 

Our analysis consistently revealed that SDC2 expression was predominantly elevated in 

stromal cell subsets (Figure S7E), with negligible or undetectable levels in epithelial and 

immune cells. Consistent with our observations in GACs, in 3 datasets with matched normal 

tissues73,75,77, we observed significantly higher SDC2 expression levels in stromal cells 

from tumor samples compared to adjacent normal tissues. In breast cancer patients77, SDC2 
expression in fibroblasts exhibited a progressive increase from precancerous lesions to 

primary tumors (Figure S7E). In summary, SDC2 expression is consistently elevated in 

stromal cells across various cancer types, indicating its potential role in tumor progression.

SDC2 Upregulation in CAFs Contributes to Tumor Growth in vivo in Xenograft Models

Lastly, we sought to assess the functional effect of SDC2 expression in CAFs on tumor 

growth in vivo. We first established an SDC2-overexpressing CAF cell line (GF0818-

SDC2) by transfecting patient-derived CAFs (GF0818) with the plasmid pcDNA3.1-SDC2. 

We successfully validated SDC2 overexpression in GF0818-SDC2 cells using q-PCR. A 

significant increase was observed in SDC2 expression in GF0818-SDC2 cells compared 

to the corresponding vector control (GF0818-EV) (Figure S7F). Next, we examined the in-
vivo tumorigenesis of GF0818-SDC2 in SCID mouse xenograft models by subcutaneously 

co-injecting PC patient-derived cancer cells (GA0518)78 mixed with GF0818-SDC2 or 

GF0818-EV, respectively (Methods). As shown in Figures 7F–H, the growth rate of tumors 

co-implanted with patient-derived tumor cells with GF0818-SDC2 was significantly higher 

than those co-implanted with GA0518 and GF0818-EV, as evidenced by bioluminescence 

imaging. We resected the subcutaneous tumors at the endpoint (Figure 7I) and measured 

their weights. The final weights of the tumors also demonstrated that tumors co-injected 

with GF0818-SDC2 were significantly heavier than those with GF0818-EV (Figure 7J). 

These in vivo data suggest that upregulation of SDC2 expression in CAFs promotes tumor 

growth under immunodeficient conditions.

DISCUSSION

GAC has long been considered a disease characterized by genomic/epigenetic alterations 

and chromosomal instability71. However, the role of immune and stromal cells within 

the TME is now increasingly recognized21,22,25,26,28. In this study, we conducted a 

comprehensive characterization of the complex TME landscapes along the evolutionary 

trajectory of GAC, demonstrating the TME features and properties associated with GAC’s 

phenotypic progression. We discovered unique TME ecotypes linked to GAC progression 

and outcomes, and pinpointed potential biomarkers and therapeutic targets. Our findings 
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were orthogonally validated using both bulk RNA-seq and scRNA-seq datasets and 

functionally confirmed in mouse models. Our data can serve as a valuable resource to spur 

future novel discoveries.

A recent single-cell study described GAC premalignant lesions, but the analysis was limited 

to epithelial cells within a small cohort79. In our study, we found a striking prevalence 

of primarily IgA+ plasma cells in CAG/IM, with a trend towards increased presence 

in H. pylori-positive premalignant lesions. These observations align well with existing 

knowledge. Firstly, H. pylori infection stimulates strong H. pylori-specific IgA antibody 

production in gastric mucosa80,81. Documented evidence shows that IgA competes with IgG 

for bacteria binding82, facilitating bacterial adherence to evade immune recognition83,84. 

Additionally, IgA actively contributes to the initiation of inflammation54,85,86. Secondly, 

IgA+ plasma cells have been reported to exert inhibitory effects on T cells, DCs, and 

other immune subsets through FcαRI receptor activation, induction of IL-10 production, 

and regulation of proinflammatory cytokines54, fostering a “permissive” microenvironment 

promoting malignant transformation. Consistent with this, we found that IgA+ plasma cells 

express high levels of LGALS3 (Galectin-3) and VISTA, known for their contributions 

to immunosuppression87,88. We also showed that the proportions of IgA+ plasma cells 

negatively correlated with CD4+/CD8+ T cells, pDCs, and NK cells, while positively 

correlated stromal cells. Moreover, our cell ecotype analysis discovered EC5, a unique 

ecotype primarily observed in tissues composed of IgA+ plasma cells and stromal 

cells, suggesting their co-existence and interaction in premalignant TME. Collectively, 

our observations suggest an immunopathological role for IgA+ plasma cells in early 

tumorigenesis. Future studies should consider integrating B cell receptor (BCR) sequencing 

to enhance our understanding of the BCR repertoire and plasma cell clonal expansion. 

Investigating cytokines known to induce IgA class switching and provide survival signal 

for IgA+ plasma cells, along with conducting functional studies, is crucial for gaining a 

mechanistic understanding of the factors influencing plasma cell differentiation and antibody 

production in the premalignant microenvironment and GAC TME.

This study highlights extensive TME remodeling during GAC progression. We observed 

increased proportions of immunosuppressive CD4+ Tregs, LAMP3+ cDCs48, TGFB1+ B 

cells54, CD8+ TEX cells, as well as pro-angiogenic TAMs48, myCAFs55, and endothelial 

cells. These findings suggest progressive immunosuppression and tumor stroma remodeling 

favoring angiogenesis and tumor cell adaptations. Moreover, we demonstrated that the 

TME in patients with PC represents a distinct microenvironment characterized by a higher 

proportion (vs. primary GACs) of naïve CD4+/CD8+ T, CD8+ TPEX, NK/NKT cells, 

monocytes, DCs, and TAMs. This is accompanied by diminished fractions of CD4+ TFH, 

Th17-like cells, B/plasma cells, and decreased or absent co-stimulatory signals involved 

in T cell activation/function, implying a skewed TME and unfavorable microenvironment 

that hampers the host’s capacity to mount an effective anti-tumor immune response. Our 

computational lineage tracing analysis revealed that some cell subsets in primary GACs, 

such as M2-like TAMs, tended to accumulate in the ascites. This finding suggests that 

the TME of primary GAC may possess the potential to shape the immune response 

of metastatic niches, as previously described in hepatocellular carcinoma51. However, 
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further investigation into the migration behavior and routes of TME cells in paired primary-

metastatic tumors would be of significant interest.

Utilizing unbiased approaches, we detailed the cellular heterogeneity within the TME and 

uncovered 3 major TME “ecosystems” and 6 ecotypes present at various stages of GAC 

progression. Genomically-independent, ecotype-based clustering effectively segregated 

samples, highlighting the evolutionary remodeling of TME compositions during GAC 

development and progression. Notably, two primary ecotypes−the immune-enriched EC3 

and stroma-enriched EC6−were recurrently observed in primary GACs across multiple 

cohorts69–71. Our analysis revealed that the EC6-like ecotype was significantly associated 

with more aggressive histological, genomic, and molecular subtypes and worse prognosis 

compared with the EC3-like ecotype. While many published single-cell studies have focused 

on characterizing the heterogeneity of each individual cell compartment, our study integrates 

divergent cell ecotypes to elucidate their population relationships, cohabitation patterns, 

and cell interaction networks. This approach offers a valuable methodology that could 

potentially be applied to other cancer studies.

Interestingly, our fundings revealed that the EC3 and EC6 ecotypes strongly correlated with 

the two primary histological subtypes of GAC–the intestinal and diffuse types, supporting 

the notion that TME phenotypes may closely tie into GAC pathogenesis. Additionally, the 

robust correlation between the EC3/EC6 ecotypes and the GAC genotypes89, as well as the 

molecular subtypes70 combined with oncogenic attributes69, underscores the complexity 

of GAC carcinogenesis and progression is reliant on the intricate interplay between 

preneoplastic/neoplastic cells and the TME. To our knowledge, this study is the first to 

characterize cellular ecosystems and ecotypes, and their genomic correlates at single-cell 

resolution, across GAC devlopment and progression. This has advanced our understanding 

of TME heterogeneity and dynamics with greater granularity, and with further research, 

may facilitate potential therapeutic exploitations. As such, innovative technologies like 

spatially resolved transcriptomics, bioimaging, and approaches for characterizing physically 

interacting cells would complement and expand on the insights we have described.

Stromal components within the TME play crucial roles in tumor initiation, progression, and 

metastases90. Our study found that the prevalence of stromal cells negatively correlated 

with immune cells such as CD4+/CD8+ T and NK cells. In particular, GACs with 

stroma-rich EC6 ecotype often exhibited a paucity of these immune cells. Previous 

studies have demonstrated that CAFs can release immunosuppressive factors, like TGFβ, 

leading to T cell exclusion from the tumor core91,92. Our identification of numerous 

immune-regulatory genes within stromal cells, including TIGIT ligands NECTIN2 and PVR 
(CD155), SIRPA, NT5E (CD73), CD276 (B7-H3), CD200, and SDC2, might indicate the 

activation of multiple distinct immunosuppressive signaling pathways in the tumor stroma. 

To date, cancer treatment strategies have rarely focused on modulating stromal components, 

especially in GAC patients. Some of these genes have already been characterized as immune 

checkpoints or are emerging immunomodulatory therapeutic targets59,60. Importantly, our 

study has identified SDC2 as a potential target worthy of further investigation.

Wang et al. Page 14

Cancer Cell. Author manuscript; available in PMC 2024 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SDC2 overexpression in mesenchymal/cancer cells has been observed in epithelial origin-

tumors, including breast, lung, pancreatic, colorectal, and gastric cancers, where SDC2 
appears to promote the invasiveness and migration of cancer cells by activating and 

regulating various oncogenic signaling pathways93. However, the landscape of SDC2 
expression across various TME cell types/states, along with their cellular interactions 

remains to be explored. Additionally, previous studies on GAC were limited by small 

cohort sizes94 and did not assess its prognostic significance. In this study, we discovered 

that SDC2 is primarily abundant in CAFs in both premalignant and malignant tissues. We 

confirmed this finding in independent cohorts across various solid tumor types at single-cell 

resolution. SDC2 overexpression was also validated at the protein level in tumor-associated 

stromal cells using several methods. Given our observations of high SDC2 expression in 

aggressive GAC phenotypes, advanced stages, and its strong association with unfavorable 

survival outcomes, it suggests a role in driving disease progression and serves as a potential 

biomarker of poor prognosis.

There is mounting evidence demonstrating that stromal and immune cells actively engage 

in crosstalk within the TME90. However, the impact of SDC2 upregulation on TME 

remains poorly understood. Previous studies have reported an upregulation of SDC2 in 

human CD4+ T cells during in vitro activation, where it inhibits T cell activation95. Our 

cell-cell interaction analysis shed light on its potential immunomodulatory roles. We noted 

increased crosstalk between SDC2+ stromal cell populations (vs. their SDC2− counterparts) 

and CD4+/CD8+ T and NK cells via TIGIT-NECTIN3, TGFB1-TGFBR3, EGFR-TGFB1, 
LGALS9-HAVCR2, and FAS-FASLG ligand-receptor interactions. These interactions are 

associated with various immunosuppressive signaling pathways96–99. Further in vivo 
functional studies using SCID models validated our hypothesis that SDC2 overexpression 

in CAFs promotes tumor growth. Collectively, these findings suggest that therapeutic 

targeting SDC2-overexpressing CAFs could be beneficial in GAC, with potential for broad 

application in solid tumors. However, our current results in the SCID model reflect the 

impact of SDC2 in the absence of an immune system. Thus, future research should focus on 

the role of SDC2 in immuno-competent models for GAC and other types of cancer.

Limitations of the study

First, although we collected a subset of the NAT, primary, and metastatic GAC from 

the same patients, the precancerous and cancer specimens were not matched, as they are 

extremely challenging to obtain clinically. Second, a comprehensive assessment of the GAC 

continuum would ideally require untreated samples. However, collecting treatment-naïve 

primary GACs from patients with PC is practically infeasible in a clinic setting. As most 

stage-IV GACs were exposed to treatment, the TME cell landscape we observed may 

be influenced by prior therapy. Further investigations in more refined patient cohorts are 

needed to better understand TME remodeling in various therapeutic contexts. Third, paired 

single-cell TCR/BCR-seq data was available for only a small subset of samples, limiting 

the integrative analysis of the TCR/BCR repertoire. Fourth, despite H. pylori infection being 

widely regarded as the strongest risk factor for GAC100–102, its relevance was not deeply 

explored in this study due to sample size limitations, and information on H. pylori treatment 

was not available. Fifth, our analysis mainly focused on PC; liver and ovarian metastases 
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were not equally represented. Additionally, we could not study how genomic alterations 

might contribute to TME reprogramming due to a lack of genomic data. Lastly, the absence 

of tumor cells and spatial data may limit our ability to fully capture the interplay between 

cancer cells and the TME.

STAR METHODS

RESOURCE AVAILABILITY Lead contact

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dr. Linghua Wang (LWang22@mdanderson.org).

Materials availability—This study did not generate any new unique reagents or models.

Data and code availability—The scRNA-seq data generated on samples of Cohort 

#1 can be downloaded from Gene Expression Omnibus database (GEO, https://

www.ncbi.nlm.nih.gov/geo/) under the accession numbers GSE234129. The scRNA-seq 

data generated on PC ascites cells (Cohort #2) can be downloaded from EGA 

(European Genome-phenome Archive, https://ega-archive.org) via accession number 

EGAS00001004443. The raw scRNA-seq data for healthy PBMCs can be obtained from 

EGAS00001005019. The processed feature-barcode matrices generated on NAT, CAG, 

IM, primary GAC, and PBMC samples in the Cohort #325 were available from https://

dna-discovery.stanford.edu. The raw scRNA-seq data generated on NGT, CAG, IM, and 

primary GAC in the Cohort #479 were available from Gene Expression Omnibus (GEO: 

GSE134520). The data can also be accessed through the online Single Cell Data Portal 

(https://singlecell.mdanderson.org/GastricTME), an interactive web-based tool we have 

developed for visualizing our scRNA-seq data. In addition, four public datasets can be 

obtained from NCI’s Genomic Data Commons (TCGA-STAD) and the Gene Expression 

Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/) under the accession numbers 

GSE6225425, GSE1545969, and GSE84437. All codes used for analysis and cell annotation 

are available from https://github.com/ruipwang/GastricTME/. The data that support the main 

findings of this study are provided in Tables S2–6, and additional information are also 

available from the corresponding author upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human specimens—This study follows the principles according to the Declaration of 

Helsinki, with written informed consents obtained from all patients before sample collection. 

A total of 68 samples collected from 41 patients and 2 healthy donors were included in 

this study (Table S1). Among them, 18 patients (Pt10–27) were enrolled and diagnosed at 

The University of Texas MD Anderson Cancer Center (MDACC) (Houston, USA). This 

study was approved by an Institutional Review Board (IRB) approved protocol (#LAB01–

543). Independent review was conducted by experienced pathologists and radiologists 

to confirm disease diagnosis and samples collection (n = 20) was conducted under the 

approved IRB infrastructure as described in our recent study103. Six patients (Pt1–5, Pt9) 

were enrolled and diagnosed at Zhejiang Cancer Hospital (Hangzhou, China) and the 

study was approved by the ethics committee of the Cancer Hospital of the University 
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of Chinese Academy of Sciences (Zhejiang Cancer Hospital). Diagnosis was confirmed 

by experienced gastrointestinal pathologists and radiologists and fresh biopsies (primary 

tumors, ovarian or liver metastases, n = 17) were obtained from each patient, with adjacent 

normal tissue or peripheral blood as controls. The primary tumor tissues and adjacent non-

neoplastic tissues were collected by gastroscopy. The ascites samples were collected when 

patients required a therapeutic paracentesis and cells were isolated for scRNA-seq. The liver 

metastatic tissues were collected when patients required needle aspiration biopsy during 

the diagnostic procedure and the ovary metastatic tissues were collected when patients 

required cytoreductive surgery. None of these six patients were treated with chemotherapy 

or radiotherapy prior to sample collection. The remaining 31 samples from 17 patients 

were from two published studies25,79. Based on the Lauren’s classification, 6 out of 14 

primary tumors were intestinal type, 3 were diffuse type, and 2 were mixed type. Lauren’s 

classification for the rest 3 primary tumors were not available. The detailed information is 

summarized in Table S1.

For the SDC2 validation cohort (n = 388), primary tumor tissues were collected from 

a total of 388 patients underwent total or subtotal gastrectomy with lymphadenectomy 

between January 2009 and December 2014 in the Department of Surgical Oncology 

of the first affiliated hospital of China Medical University. None of these patients had 

received chemotherapy of radiotherapy prior to surgical procedure. We received written 

informed consent from all patients, and the study was approved by the ethics committee of 

China Medical University. The detailed postoperative pathological diagnosis reports were 

gained and included age, sex, tumor size, differentiation status, Lauren’s type, invasion 

depth, lymph node metastasis, distant organ metastasis, TNM stage. We used the TNM 

classification system for gastric carcinoma from the 8th AJCC staging manual. All the 

patients were followed up via telephone inquiry or questionnaires. And the follow-up time 

ranged from 2 to 80 months (median = 48 months).

Cell lines—The patient ascites cells (IP-039–1 for GF1026, and IP-024–1 for GF0818) 

were pelleted and washed twice with PBS and then resuspended in 80 μl of MACS buffer 

[1:20 diluted autoMACS rinsing solution (Miltenyi Biotech, Gaithersburg, MD. Cat#130–

091-222) with PBS per 107 total cells. A 20 μl of human anti-fibroblast microbeads 

(Miltenyi, order no. 130–050-601) per 107 cells was mixed to the cells and incubated at 

room temperature for 30 min followed by washing once with MACS buffer. The cells 

were resuspended in 0.5ml of MACS buffer and applied to the separation column and 

magnetic separator. After washing with MACS buffer, the cells from microbeads were 

flushed out from the microbeads and cultured with DMEM. Cells were passed twice and 

followed by immortalization with lentiviral infection that express hTERT (pHIV7-CNPO-

Tert) and SV40 large-T (pHIV7-CNPO-Tag) (a gift from Dr. Jiing-Kuan Yee, City of Hope). 

The immortalized CAF cells were authenticated and recharacterized in the cell line core 

facility of UT MD Anderson Cancer Center every 6 months. Western blot was used to 

confirm the expression of the fibroblast marker positives (aSMA and FAP), while epithelial 

marker EpCAM negative in these cells every 6 months. Cells were cultured in DMEM 

supplemented with 7% fetal bovine serum (FBS) and antibiotics (100 mg/mLstreptomycin 

and 100 IU/mL of penicillin).
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Mice—All animal procedures were conducted under a peer-reviewed Institutional Animal 

Care and Use Committee (IACUC)-approved protocol (#00000232-RN03). The IACUC at 

MD Anderson Cancer Center (MDACC) approved all animal experiments in accordance 

with NIH guidelines. NOD.Cg-Prkdcscid/J (SCID) mice (The Jackson Laboratory, #001303) 

were bred and maintained in the North MDACC Mouse Facility in accordance with 

institutional requirements. Female SCID mice aged nine weeks were used in this study. 

The investigators did not perform any experiments blindly. Mice were monitored for signs 

of morbidity, which included excessive tumor volume (maximum size permitted by the 

IACUC), hunched posture, ruffled hair, weight loss, paralysis, dyspnea, inability to reach 

food and water, as well as lack of grooming. Mice exhibiting these signs prior to reaching 

the endpoints were euthanized.

METHOD DETAILS

Sample processing—For patients (Pt1–5, Pt9) in cohort #1, the fresh tissues were stored 

in the tissue storage solution (MACS Media) and dissociated into single cell suspensions for 

scRNA-seq. The ascites were spun down for 10 minutes at 1500 rpm, then pelleted cells 

were collected and stored in Bambanker (Nippon Genetics, no.392014681) for scRNA-seq. 

PBMCs were separated from peripheral blood according to standardized procedure. Red 

blood cells were lysed and singlets were counted by Trypan Blue Exclusion before loading 

on 10X Chromium microfluidic chips. All sample were processed using the same protocol 

and by the same research assistant. For patients (Pt10–27) in cohort #2, the details of sample 

processing were described in our recent study103.

scRNA-seq library preparation and sequencing—For Cohort #1 samples, scRNA-

seq including single cell separation, complementary DNA (cDNA) amplification, and library 

construction was performed on the 10× Genomics Chromium Platform. Briefly, the single 

cell suspensions were counted using Countstar® Rigel S2 (Countstar) and loaded on a 

Chromium Controller to generate single-cell gel bead-in-emulsions (GEMs). The scRNA-

seq libraries were constructed using the Chromium Single Cell 5ʹ Library & Gel Bead Kit 

(PN: 220112, 10× Genomics). The single-cell GEMs were used to generate 10× Barcoded 

cDNA through reverse-transcription PCR and the cDNA was purified using Dynabeads 

MyOne SILANE magnetic beads (PN: 2000048, 10× Genomics). The Amplification Master 

Mix kit (PN: 220125, 10× Genomics) was used for cDNA amplification, and the Beckman 

Coulter SPRIselect reagent was used for cDNA purification and target enrichment. The 

Agilent Bioanalyzer High Sensitivity kit was used for determination of concentrations of 

cDNA libraries as well as the quality control of libraries. 50 ng of each sample library 

in 20 uL were mixed with 30 uL Fragmentation Mix (PN: 220108, 220107/220130, 10× 

Genomics) for pooling. The barcoded libraries were sequenced on the NovaSeq 6000 

(Illumina) platform using S2 flow cell (100 cycles) in a 26 (read 1) × 8 (index) × 91 

(read 2) configuration. For Cohort #2 samples, the details of scRNA-seq library preparation 

and sequencing were described in our recent study103. For samples included in Cohorts #2, 

#3, and #4, the Chromium Single Cell 3′ Library & Gel Bead Kit v2 (PN-120237, 10x 

Genomics) were used to construct the scRNA-seq libraries as descripted in their original 

studies25,79,103.
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Microsatellite instability (MSI) testing—Four patients in this study were reported as 

MSI (Table S1). And 18 patients in this study were reported as microsatellite stability 

(MSS). For Cohort #1, MSI testing was performed for all 6 patients. Among them, 3 patients 

were found as MSS and one patient was reported as MSI. Representative sections of the 

primary GACs from each patient were deparaffinized and dehydrated, washed in water, 

pretreated for heat-induced epitope retrieval in citrate buffer (pH = 6.0), and cooled for 

10 min. Immunohistochemistry (IHC) staining with antibodies against hMLH1 (ZM-0154, 

ZSBG-BIO), hMSH2 (ZM-0622, ZSBG-BIO), hMSH6 (ZA-0541, ZSBG-BIO), and hPMS2 

(ZA-0542, ZSBG-BIO) was performed. To interpret IHC staining, the non-neoplastic gastric 

mucosa was used as a control for MLH1, MSH2, MSH6, and PMS2 staining. When tumor 

nuclei stained positive with the same intensity as the control tissue, staining was regarded 

as positive. When more than 10% of tumor cells showed loss of expression or reduced 

expression of these markers, the tumor was regarded as negative for expression. Based on 

the IHC staining results, a negative expression of ≥1 of 4 mismatch Repair (MMR) proteins 

was considered as MSI. Positive expression of all of them was considered as MSS. For 

Cohort #2, 12 out of 18 patients were accessed for MSI using clinical assay or whole-exome 

sequencing (WES), and all 12 patients were reported as MSS. The details of MSI testing and 

analysis for Cohort #2 were described in our recent study103. Three patients from Cohort #3 

were defined as MSS and 4 patients from Cohort #3 were defined as MSI as descripted in 

their original study25,79.

Multi-color immunofluorescence (mIF) staining—Human GAC tissue sections were 

immunostained overnight with Vimetin (SC6260, Santa Cruz,1:200) and SDC2 (710813, 

Invitrogen,1:200) followed by secondary antibodies. Slides were then mounted with DAPI-

containing Vectashield Mounting Medium (Vector Laboratories) and visualized under the 

confocal laser scanning microscope.

SDC2 Immunohistochemistry (IHC) assay—FFPE tissue microarrays (TMAs) 

composed of primary GAC tissues from a total of 388 patients underwent total or subtotal 

gastrectomy were created. Tissue sections in 5-μm thickness were deparaffinized in xylene, 

followed by dehydration in an ethanol series. The slides were incubated in H2O2 for 15 

min at room temperature and subjected to high temperature and high pressure for antigen 

retrieval, Tris-EDTA(PH = 9.0) were used as retrieval buffer. Subjected to dropwise addition 

of the corresponding primary antibody followed by incubation at 4 °C overnight, rinsed with 

phosphate buffered saline (PBS), and subjected to dropwise addition of secondary antibody, 

Avidin and Biotinylated HRP. A DAB solution was added to visualize the antibody binding, 

after which the sections were rinsed with distilled water, counterstained with haematoxylin, 

dehydrated with an ethanol gradient, and fixed with xylene and gelatin. Rabbit anti-human 

SDC2 polyclonal antibody (Cat. Ab205884) was purchased from Abcam, USA. A secondary 

rabbit antibody (Cat. BA5000) was purchased from Vector Laboratories, Inc. Avidin and 

Biotinylated HRP reagent (Cat. ZG0312) were purchased from Vector Laboratories, Inc.

Evaluation of IHC staining results—Two pathologists were blinded to patients’ 

outcomes independently interpreted the IHC staining results using a semi-quantitative 

scoring system. Immunostaining reactions were evaluated based on staining intensity (0 
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for no staining, 1 for weak staining, 2 for moderate staining, 3 for strong staining) and 

the percentage of the staining cells (0 for <5%, 1 for 6%~25%, 2 for 26%~50%, 3 for 

51%~75%, and 4 for >76%). Then the score of staining intensity and the percentage of 

stained cells were multiplied to generate the immunoreactivity scores (IS). A cut-off value 

(0.5) was determined by a ROC curve. IS < 0.5 was defined as SDC2 low and IS > 0.5 was 

defined as SDC2 high.

SDC2 cDNA subcloing—Human SDC2 cDNA was amplified from GA0518 with high 

fidelity enzyme Q5 (New England Biolabs, Ipswich, MA) using primers hSDC2.F1.PacI and 

hSDC2.R1.NheI, and the PCR product was subcloned into pLoc.tGFP.3Flag.MCS1, which 

was modified from Horizon Discovery’s (Cambridge, UK) pLoc.tGFP vector. The resultant 

lentiviral plasmid was verified by sequencing, and was called pLoc.tGFP.3Flag.SDC2, in 

which SDC2 cDNA (stop codon removed) was fused with 3xFlag, the empty vector (EV) is 

pLoc.tGFP.3Flag.MCS1.

Lentiviral vector generation and transfection—HEK293T (ATCC, Manassas, VA) 

cells were grown in exponential growth condition before lentiviral transformation. Lentivirus 

of both SDC2 and EV were generated in HEK293 using 20ul JetPrime (Polyplus, France) 

together with packaging vector pCMV.Dr8.2 and envelope vector pCMV.VSV.G in a 5 ug: 

5 ug: 0.5 ug ratio in a 10-cm plate, the supernatant was filtrated with 0.22um filter and 

then was used to transduce target CAF1026 cell line. The transduced cells were sorted by 

GFP marker in our institutional flow cytometry core, and the sorted cells were used for 

experiments and in vivo mouse studies.

Quantitative real time-PCR (qRT-PCR) analysis—Total RNA extraction: When each 

cell line growing in a 10-cm plate reaches 70–90% confluence, medium was aspired, cells 

were harvested using 1 ml Trizol (Ambion, Austin, TX) directly added into plates, after 

vortexing vigorously and incubation at room temperature for ~15min, 200 μl chloroform was 

added to each 1 ml Trizol, vortex vigorously again, and the mixture sit at room temperature 

for ~15 min. Spun the mixture at maximum speed (~15000 rpm) for 10 min, supernatant 

was transferred to a new tube, the supernatant was added 2 volumes of ethanol for one 

volume of clear supernatant, gently vortexed the tube, then the tube was spun at maximum 

speed (~15000 rpm) for ~10 min, a pellet was seen at the bottom, and gently washed with 

70% ethanol, spun at maximum speed for ~5 min, supernatant was aspired, and air-dried. 

Re-dissolve the pellet with appropriate volume of 1x TE pH8.0 according to the size of 

the pellet. Total RNA concentration was measured in a Nandrop 1000 machine (Thermo 

Scientific, Wilmington, DE).

Reverse transcription and cDNA synthesis: We used NEB’s (Ipswich, MA) LunaScript RT 

SuperMix Kit (E3010), followed the manufacturer’s protocol. Briefly, in a 20 μl reaction, 

LunaScript RT SuperMix (5X) 4 μl was added to a tube with extracted total RNAs, up to 

1μg, the 1st strand cDNA synthesis reaction goes on a PCR machine with primer annealing 

25°C for 2 min, then followed by cDNA Synthesis for 55°C 30 min, and heat inactivation 

95°C for 1 min. The reactions are diluted with H2O to 200 ul in total volume.
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Quantitative real-time qPCR (qRT-PCR) for mRNA gene expression: For the qPCR reaction, 

a 20 μl total volume includes 10 μl (2x) of SYBR Green Supermix from ABI (Applied 

Biosystems, Carlsbad, CA) with addition of 2.5 μl of the above generated 1st strand 

cDNA, and PCR quantitation was performed on the Applied Biosystems’ (ABI, Waltham 

MA) QuantiStudio 3 machine. Thermocycles are set at 95 C for 2 min, followed by 30 

cycles of 95C 10 sec, and 60C 30 sec. Analysis of expression uses GAPDH as the house 

keeping gene. Data are presented using Microsoft Excel or GraphPad Prism. Reference gene 

GAPDH primers and the target gene SDC2 primers104 are listed in the key resources table.

In-vivo tumorigenesis of SDC2-CAFs in mice—Nine-week-old SCID mice were 

randomly divided into 2 groups. Each group received a subcutaneous injection of GA0518-

G2-mCh2 and CAFs, GF0818, suspended in 100 ul PBS into both lateral flanks of the mice. 

The ratio of tumor cells to CAFs was 2:1, and the number of GA0518-G2-mCh2 cells in 

each injection was 1×106. Tumor size was measured twice per week using a digital caliper, 

and tumor volume was calculated with the formula: volume = (Width2 ×Length)/2. Tumor 

growth was also weekly monitored by bioluminescence imaging. D-luciferin, a substrate of 

luciferase (150 ug/kg) was injected via intraperitoneal injection in mice. 10 minutes after 

injection, the converted D-luciferin was measured in the value of emitted photons. Mice 

were sacrificed 4 weeks after injection. All the tumors were collected and weighted.

QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq data processing—The raw scRNA-seq data were pre-processed 

(demultiplex cellular barcodes, read alignment, and generation of gene count matrix) using 

Cell Ranger Single Cell Software Suite (version 3.1.0) provided by 10x Genomics. Detailed 

QC metrics were generated and evaluated, samples and cells were carefully and rigorously 

filtered to obtain high-quality data for downstream analyses. Multiple filters were applied 

using similar approaches as described in our recent studies103,105,106. Briefly, for basic 

quality filtering, cells with low complexity libraries (in which detected transcripts are 

aligned to less than 200 genes) were filtered out and excluded from subsequent analyses. 

This step aimed to remove cell debris, empty drops, and low-quality cells. Likely dying 

or apoptotic cells where >15% of transcripts derived from the mitochondria were also 

excluded. We further removed the outliers, cells with >6,500 genes expressed (the top 1%) 

in the distribution of gene detected per cell. Following the initial clustering, we removed 

likely cell doublets and multiplets (see Doublet detection and removal). In addition, genes 

expression in fewer than 3 cells were removed from the expression matrix. Library size 

normalization was then performed in Seurat107 on the filtered gene-cell matrix to obtain the 

normalized UMI count.

Batch effect evaluation and correction—Statistical assessment of possible batch 

effects was performed using the R package k-BET (a robust and sensitive k-nearest neighbor 

batch-effect test)108. k-BET was run on cells from all samples, and on major lymphoid 

cell types including CD4 T cells, CD8 T cells, myeloid cells, B cells, and stromal cells 

separately with default parameters. Each cell type was down sampled to 500 cells, and the 

k input value was chosen ranging from 1% to 100% of the sample size. In each run, the 

number of tested neighborhoods was 10% of the sample size. The mean and maximum 
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rejection rates were then calculated based on a total of 100 repeated k-BET runs. Following 

estimation of sample processing- or sequencing-related batch effects using k-BET, we 

employed Harmony109 for actual batch effect correction. Harmony was run with default 

parameters to remove batch effects in the PCA space when clustering of major cell lineages 

(e.g., CD4+ T, CD8+ T, myeloid, B cells, plasma cells and stroma) before any clustering 

analysis or cell type identification/annotation was performed. We carefully evaluated the 

performance of Harmony in terms of its ability to integrate batches while maintaining cell 

type separation. Harmony was run on all cells to firstly identify major cell types. It was 

also run on each of the three major cell types (i.e., T cells, Myeloid cells, stromal cells) 

for subclustering analysis to further identify different cell states. Harmony results showed a 

clear separation of major cell lineages and known T cell subsets such as CD4 TREG, CD4 

TFH, CD4+/CD8+ TN, CD4+/CD8+ TMEM, CD8+ TEX, pDC, cDC2 and 3 additional rare DC 

subpopulations including cDC1, LAMP3+ DC, proliferating DC, as well as the 4 types of 

stromal cell lineages indicates an excellent performance of batch effect correction in this 

study. To quantify the performance of Harmony, we further used k-BET and compared the 

rejection rate (reflecting batch effect) before and after Harmony. The data after Harmony 

showed a low rejection rate, indicating an excellent performance of batch effect correction in 

this study.

Moreover, we also applied the local inverse Simpson’s Index (LISI) to assess the 

performance of Harmony. As descried previously109, the ‘integration LISI’ (iLISI) measures 

the degree of mixing among datasets (batches), ranging from 1 in an unmixed space to 

the number of datasets (batches) in a well-mixed space. And the ‘cell-type LISI’ (cLISI) 

measures integration accuracy using the same formulation but computed on cell-type labels 

instead. An accurate embedding has a cLISI close to 1 for every neighborhood, reflecting 

separation of different cell types. Before batch correction with Harmony, cells were mainly 

grouped by dataset (iLISI is around 1) and cells from different cell types were mixed (cLISI 

is far from 1). After batch correction with Harmony, iLISI and cLISI were re-computed 

in the Harmony embedding. iLISI is around 3, indicating a high degree of mixing among 

different datasets, and cLISI is very close to 1, reflecting excellent separation of different 

cell types while remain the well-mixed space.

Unsupervised clustering—Seurat (version 3.1.0)107 was applied to the normalized 

gene-cell matrix to identify highly variable genes (HVGs) for unsupervised cell clustering. 

Principal component analysis (PCA) was performed on the top 2000 HVGs. The elbow 

plot was generated with the ElbowPlot function of Seurat and based on which, the number 

of significant principal components (PCs) were determined. The FindNeighbors function 

of Seurat was used to construct the Shared Nearest Neighbor (SNN) Graph, based on 

unsupervised clustering performed with Seurat function FindClusters. Different resolution 

parameters for unsupervised clustering were then examined, and cluster marker genes 

were checked to determine the optimal number of clusters with distinct transcriptional 

profiles. For visualization, the dimensionality was further reduced using Uniform Manifold 

Approximation and Projection (UMAP) method110 with Seurat function RunUMAP. The 

PCs used to calculate the embedding were the same as those used for clustering.
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We performed sub-clustering analysis of CD4+ T cells and CD8+ T cells with and without 

TCR genes and compared the results. We computed Ro/e (See Quantification of tissue 

enrichment) to quantify the correlation between without-TCR-clustering and with-TCR-

clustering derived cell clusters. If Ro/e > 1, it suggested that cells of a without-TCR 

clustering were more frequently observed than random expectations in a specific with-TCR 

cluster, i.e., enriched. If Ro/e < 1, it suggested that cells of a without-TCR -clustering were 

observed with less frequency than random expectations in a specific with-TCR clustering. 

Overall, we observed a high degree of consistency between the two clustering approaches 

(Table S7).

Doublet detection and removal—Likely doublets or multiplets were identified 

and carefully removed through a multi-step approach as described in our recent 

studies103,105,106. Briefly, doublets or multiplets were identified by the following methods: 

1) library complexity: cells with high-complexity libraries in which detected transcripts 

are aligned to > 6500 genes (the top 1% outliers) were removed. 2) Cluster distribution 

and marker gene expression: some doublets or multiplets can form distinct clusters with 

hybrid expression features and exhibit an aberrantly high gene count. We carefully reviewed 

cluster marker genes, and also checked the expression levels and proportions of canonical 

lineage-related marker genes in each Seurat identified cluster.

Clusters co-expressing discrepant lineage markers (e.g., cells in the T-cell cluster showed 

expression of epithelial cell markers; cells in the B cell cluster showed expression of T or 

myeloid cell lineage markers) were identified and removed. 3) Doublet detection algorithms: 

we applied Scrublet111, an algorithm to predict doublets in scRNA-seq data, to further clean 

doublets. The proportion of expected doublets were based on the number of cells used for 

scRNA-seq library construction. Scrublet predicted doublets were carefully checked before 

they were removed. 4) Cluster marker gene expression: some doublets or multiplets do not 

form separate cell clusters, instead they can spread all over the place on the UMAP plots. 

To further identify and clean doublets that could have been missed in the above steps, we 

generated UMAP plots and carefully reviewed canonical marker genes expression in defined 

cell clusters. Cells co-expressing discrepant lineage-specific markers were further cleaned. 

The above steps 2) and 4) were repeated to ensure that we have filtered out majority of 

barcodes associated with cell doublets. After doublets removal, a total of 77,392 cells were 

retained for downstream analyses.

Differential gene expression (DEG) analysis—Differentially expressed genes (DEGs) 

were identified for each cluster using the FindMarkers function in Seurat R package107 and 

DEGs were filtered with the following criteria: the gene should expressed in 20% or more 

cells in the more abundant group; expression fold change >1.5; and FDR q-value <0.05. The 

top 30 DEGs for each cluster of the major cell type/lineage including CD4+ T, CD8+ T, 

B/plasma, myeloid, and stromal cells were provided in Table S2.

Cell type and state identification—Cell type identification was performed on 

Harmony-defined clusters following batch effect correction. Two rounds of unsupervised 

clustering analysis (clustering and subclustering) were performed to first identify major 

cell types (e.g., CD4+ T cells, CD8+ T cells, innate T cells), and then distinguish cell 
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transcriptional states within CD4+ T cells, CD8+ T cells, innate T cells, respectively. In both 

rounds, 30-nearest neighbors of each cell were determined based on 30 PCs to construct 

shared nearest neighbor (SNN) graphs. To annotate the cell type and state, differentially 

expressed genes (DEGs) were identified for each cell cluster using the FindAllMarkers 

function in the Seurat R package, and the top 30 most significant DEGs were reviewed. 

In parallel, feature plots and bubble plots were generated for the top 30 DEGs as well 

as a curated list of canonical immune cell markers and gene signatures, as described in 

previous reports38,48,55,106, and these results were carefully reviewed by our team including 

two T-cell immunologists (Y.L. and C.Y.). T cell states were then inferred, and annotations 

were added to each cluster based on integrated information from the top-ranked DEGs, 

the expression of canonical marker genes and signatures. To determine whether cells are 

overclustered, we checked for each cell type if multiple subclusters represent the same cell 

state without showing any unique features. To determine whether cells are underclustered, 

we quantified the cellular transcriptional heterogeneity of each cluster using ROUGE112, an 

entropy-based metric for assessing the purity of single cell populations and subclustering 

analysis was performed for low-purity clusters suggested by ROUGE. We employed an 

independent scRNA-seq cohort GSE18390428 to validate the cell types we identified in our 

datasets by FindTransferAnchors and MapQuery functions in Seurat.

Signature score analysis—To infer the functional states of myeloid and fibroblast cell 

subsets, we collected a list of curated gene signatures including the M1, M2, angiogenesis, 

and phagocytosis-associated gene signatures obtained from a recent study by Cheng et 

al48, as well as the normal-like, iCAF, IFNγ-iCAF, myCAF, wound healing-myCAF, 

ecm-myCAF, and TGFβ-myCAF gene signatures defined by Kieffer et al55. In addition, 

we also included the cancer hallmark gene sets for glycolysis, oxidative phosphorylation 

(OXPHOS), antigen presenting (APC) pathways downloaded from the Molecular Signature 

Database (MSigDB, http://software.broadinstitute.org/gsea/msigdb/index.jsp). The signature 

scores of these genes signatures and pathways in cells of each myeloid and fibroblast cell 

subsets were calculated using the ssgsea method in GSVA software package113, similarly as 

described in our recent studies103,106.

Quantification of tissue enrichment—The immune and stromal cell subsets exhibited 

different tissue preferences. To quantify the tissue enrichment of each TME cell subsets 

and determine whether cells of a certain cluster are enriched or depleted in a specific 

tissue, we calculated the ratio of observed to expected cell numbers in each cluster across 

different tissues using the same approach as described in recent studies103,114. For a given 

cell cluster, Ro/e > 1 suggests that cells of this cluster are more frequently observed than 

random expectations in a specific tissue (i.e., enriched), and Ro/e < 1 indicates that cells of 

this cluster are observed with less frequency than random expectations in a specific tissue 

(i.e., depleted).

Single-cell trajectory inference—To interrogate and constrict the differentiation 

trajectory of identified CD8+ T cell subsets, we applied the Monocle3 (version 0.2.0) 

algorithm47 to 9 CD8+ T cell subsets. We excluded the unconventional CD8+ T cell 

subset, MAIT cells (C5), from trajectory analysis. The filtered gene-cell count matrix was 
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normalized and preprocessed using preprocess_cds. Batch effects were corrected using 

function align_cds. UMAP dimensionality reduction was performed on the ‘aligned’ matrix 

using function reduce_dimension with default parameters. The function cluster_cells and 

plot_cells were used for unsupervised clustering and visualization of the Monocle clustering 

results. The function learn_graph was run with default parameters and the CD8+ TN cell 

cluster was designed as the root to build the CD8+ T cell trajectory.

Quantification of cell similarities—For cells of a certain cell type/state found in 

PC samples, to infer their likely origins, i.e., whether they were transcriptomically more 

similar to the corresponding cell type/state of the PBMCs or primary GACs, we performed 

transcriptome similarity analysis to quantify their transcriptome similarities across different 

tissues, using same approach as previously described in single-cell analysis of hepatocellular 

carcinoma51. Briefly, in this study, transcriptome similarity analysis was focused on T 

and myeloid cell subsets that were abundant in PC samples and their similarities with 

corresponding cell types/states from primary GACs and PBMCs were examined. First, 

we obtained the low-dimensional PC space using function Embeddings with parameter 

reduction = ‘harmony’. For each cell detected in the PC samples, we queried for its nearest 

neighbor using the R function queryKNN() among cells of primary GACs and PBMCs in 

the low-dimensional space spanned by the top 50 PCs. The potential origin of each cell was 

then inferred by the tissue origin of its nearest neighbor cell. To determine the statistical 

significance of tissue origin for each cell type in PC samples, we performed permutation 

test by randomly shuffling the tissue labels (primary GACs or PBMCs) for all the nearest 

neighbor cells 1,000 times as previously described51.

Hierarchical relationships among TME subsets—To examine the transcriptome 

similarity and phenotypic relationships among these 62 TME subsets identified in this study, 

we performed unsupervised hierarchical cluster analysis. The dendrogram was drawn based 

on computed Pearson correlation coefficients with average PCA space (Seurat function 

RunPCA) for each subset using the R package denextend.

Identification of cell ecotypes—To examine how these different immune and stromal 

cell subpopulations in the TME form cohesive cellular “ecosystems”, we perform 

unsupervised analysis to infer cellular relationships and their co-association patterns. First, 

we calculated the cellular fractions of these 61 TME cell populations (except one ambiguous 

cell state “DNT”) in each of the 58 samples that had ≥ 150 cells and quantified their cellular 

compositions. We then computed the relative cellular abundance of these TME subsets by 

scaling the sample-cell proportion matrix by cell type/state (Tables S4–5). Unsupervised 

hierarchical clustering analysis was then performed on the scaled sample-cell proportion 

matrix to infer their co-existence patterns across these 58 samples from 5 different tissue 

groups. The 3 unique cellular ecosystems (i.e., EC1/EC2, EC3/EC4, EC5/EC6) were 3 

major branches of the dendrogram from hierarchical clustering analysis, and the 3 cell 

ecosystems were further split into 6 distinct cellular ecotypes (i.e., EC1–6) based on their 

tissue distribution. To validate the cellular co-habitation patterns of each defined cellular 

ecotype using independent approaches, we employed Jaccard similarity index, which is a 

measure of set (here refers to cell subset) co-existence. It defines two sets (cell subsets A and 

Wang et al. Page 25

Cancer Cell. Author manuscript; available in PMC 2024 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B) as the ratio of the size of their intersection (samples had both subsets A and B >0.5 in 

terms of the relative cellular abundance) over the size of their union (all samples had either 

subset A or B >0.5) (see the equation below):

J(A, B) A ∩ B
A ∪ B

For each cellular subset, sample with its relative cellular abundance > 0.5 was represented 

as the set Pi = {c1, c2, …cn}. The Jaccard index was computed between a pair of cellular 

subsets A and B as J(A, B).

Bulk RNA-seq data analysis—To validate the presence of EC3-like and EC6-like 

ecotypes in primary GACs in large-scale primary GAC cohorts with available expression 

and clinical data, we perform ecotypes deconvolution analysis using bulk RNA sequencing 

(RNA-seq) datasets. We downloaded the normalized bulk RNA-seq data generated by 

The Cancer Genome Atlas (TCGA) on primary stomach adenocarcinoma (STAD) from 

NCI Cancer Genomic Data Commons (NCI-GDC: https://gdc.cancer.gov). The RNA-seq 

data was processed and normalized by the NCI-GDC bioinformatics team using their 

transcriptome analysis pipeline. The clinical annotation of TCGA-STAD cohort and 

molecular subtypes defined by TCGA analysis working groups were downloaded from a 

recent PanCanAtlas study89. In addition, we downloaded 3 additional large-scale primary 

GAC datasets (GSE62254, GSE15459 GSE84437) from the Gene Expression Omnibus 

database (GEO, https://www.ncbi.nlm.nih.gov/geo/) (see KEY RESOURCES TABLE and 

Data and code availability). The raw gene expression values from microarray experiments 

were preprocessed (background corrected and log2 transformed) and quantile normalized 

using the Robust Multi-array Average (RMA) algorithm115. For each sample, the expression 

measurements of all probes corresponding to the same Gene ID were averaged to obtain a 

single measurement. For datasets GSE62254 and GSE15459, the clinical, histopathological 

and survival data as well as molecular subtypes defined by their original studies69,70,116 

were downloaded and used for correlation analysis.

In order to assign phenotypes, we first constructed a cell type-specific gene expression 

signature matrix for TME cell populations using the CIBERSORTx web portal (https://

cibersortx.stanford.edu/runcibersortx.php)117 selecting the “Create Signature Matrix” 

module. The top 30 DEGs for each scRNA-seq defined cell cluster were used as the 

input. Next, we employed the “Impute Cell Fractions” module of CIBERSORTx to infer 

the abundance of TME cell populations in bulk RNA-seq data with default parameters 

(B-mode batch correction). We then performed unsupervised hierarchical clustering analysis 

to identify EC3-like and EC6-like groups. The cutoff was determined by silhouette score.

Statistical analyses—In addition to the algorithms described above, all other basic 

statistical analysis was performed in the R statistical environment (v4.0.0). One-way 

Kruskal-Wallis rank sum test was used to compare the cell proportions across different tissue 

groups. The two-sided Wilcoxon rank sum test was used to compare the cell proportions 

of a certain cell type (among all TME cells or cells of a major compartment) between two 

tissue groups and paired two-sided Wilcoxon rank sum test was used for paired comparisons 
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among matched samples from the same patients. Wilcoxon rank sum test was also used to 

compare other continuous variables such as gene expression levels. When comparing the 

cellular proportions of major cell types (Figure 1), samples with ≥ 200 cells were included 

in the analyses, and when comparing the cellular proportions of cell subtypes/states, samples 

with ≥ 50 cells were included in the analyses. The Spearman’s correlation coefficient was 

calculated to assess the association between two continuous variables (e.g., the cellular 

proportions) at sample level. The correlation matrix in Figure 4B was computed using the 

cor function from the R package ‘spearman’. Samples with ≥ 200 cells were included in 

the analysis. Two-sided Fisher’s exact test was used to examine the relationships between 

the two cellular ecotypes and the Lauren’s histology types as well as previously defined 

molecular subtypes.

For survival analysis including overall survival (OS), we used the log-rank test to calculate P 
values between groups, and the Kaplan-Meier method to plot survival curves. For the TCGA 

dataset, the clinical annotation and the times calculated for OS were downloaded from the 

PanCanAtlas study89. For other large-scale primary GAC datasets downloaded from GEO, 

the OS was downloaded from their corresponding published studies. The hazard ratios 

were calculated using the multivariate Cox proportional hazards model. The prognostic 

significance of clinical and pathologic characteristics was determined using univariate 

Cox regression analysis. To assess the presence of possible confounding variables, a Cox 

regression model for multivariate analysis was applied for factors that achieved significance 

in univariate analysis.

All statistical significance testing in this study was two sided. To control for multiple 

hypothesis testing, we applied the Benjamini-Hochberg method to correct P values and the 

false discovery rates (FDR q-values) were calculated. Results were considered statistically 

significant at P value or FDR q-value < 0.05.
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Highlights

• Extensive TME remodeling and altered TME ecotypes occur as GAC 

progresses

• Plasma cells, primarily IgA+ plasma cells, are abundant in precancerous 

lesions

• Two ecotypes in GAC correlate with histological, genomic and clinical 

features

• SDC2 overexpression in CAFs correlates with aggressive phenotypes and 

poor survival
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Figure 1. Single-Cell Landscape of Immune and Stromal Cells at Different Stages of GACs.
(A) Schematic depicting the study design, created with BioRender.com.

(B) UMAP view of major cell lineages.

(C) UMAP plots, as in (B), showing TME cell clusters (upper panels) and cell density 

(lower panels) across tissue groups.

(D) Compositions of total TME cells (upper panels) and immune cells (lower panels) across 

tissue groups. Only samples with ≥ 200 TME cells and groups with ≥ 2 samples were 

included. T_Pri, primary GAC; T_Met, metastatic GAC; PBMC_P, PBMCs from patients; 

PBMC_H, PBMCs from healthy donors.

(E) The proportions of four representative cell types across tissue groups. Only samples with 

≥ 200 TME cells were included.

(F) Paired comparisons of cell proportions of plasma cells and myeloid cells among paired 

samples from the same patients (linked by grey lines). Triangle denotes ovarian metastasis 
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and open circle denotes liver metastasis. P values were calculated by paired two-sided 

Wilcoxon rank sum test.

(G) Box plots comparing the proportions of CD8+ T cells across defined sample groups.

(H) The proportions of representative cell types among all TME (left) or immune cells 

(right) between defined sample groups.

Box, median +/− interquartile range. Whiskers, minimum and maximum. For (E, G, H), P 

values were calculated by two-sided Wilcoxon rank sum test.

See also Figure S1 and Table S1.
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Figure 2. Characterization of T cell States.
(A) UMAP view of 7 CD4+ T cell clusters.

(B) UMAP view of 10 CD8+ T cell clusters.

(C) Expression levels and frequencies of selected markers across CD8+ T cell clusters.

(D) Heatmap showing tissue prevalence estimated by the ratio of observed to expected cell 

numbers with the chi-square test (Ro/e) for each CD4+ (upper panels) and CD8+ (lower 

panels) T cell subsets. Top bar plot showing cell composition and right bar plot showing 

tissue composition.

(E) The cellular proportions of representative CD4+/CD8+ T cell subsets across tissue 

groups for this study. Only samples with ≥ 50 total CD4+ or CD8+ T cells were included.

(F) Same as in (E) showing the single-cell cohort from Kumar et al.

(G) Monocle trajectory inference of CD8+ T cells, colored by their corresponding 

pseudotime.

Wang et al. Page 38

Cancer Cell. Author manuscript; available in PMC 2024 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(H) Same as in (G) but displayed by tissue origins.

(I) Cell density plots for CD8+ T cell subsets along the pseudotime.

(J) Expression dynamics of representative genes in different tissues (color coded), along the 

pseudotime. (E, F) P values were calculated by one-way Kruskal-Wallis rank sum test. Box, 

median +/− interquartile range. Whiskers, minimum and maximum.

See also Figure S2 and Table S2.
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Figure 3. Characterization of Myeloid, B, and stromal cell populations.
(A) UMAP view of myeloid cell clusters.

(B) Expression levels and frequencies of genes composing the M1-like, M2-like, 

angiogenesis, phagocytosis signatures, and checkpoint genes across myeloid cell clusters. 

Only genes (expressed in ≥ 20% cells in at least one of the myeloid cell subsets) are shown.

(C) Expression levels of 4 gene signatures across myeloid cell clusters.

(D) The proportions of 2 myeloid cell subsets across tissue groups. Only samples with 

≥ 50 cells were included. P values across different tissues were calculated by one-way 

Kruskal-Wallis rank sum test and P values between T_pri and T_Met were calculated by 

two-sided Wilcoxon rank sum test.

(E) The odds ratios and P values based on transcriptome similarity with their corresponding 

cell subsets from primary GACs or PBMCs, indicating the likely origins of myeloid cells in 

PC ascites samples. P values were calculated by two-sided Fisher’s exact test.
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(F) UMAP view of B and plasma cell clusters.

(G) Heatmap showing tissue prevalence estimated by Ro/e score for each B/plasma cell 

subsets. Top bar plots showing cell compositions and right bar plot showing tissue 

compositions.

(H) The cellular proportions of IgA+ plasma cells across tissue groups with available H. 
pylori status. Only samples with ≥ 50 total TME cells were included. Number of samples 

(from left to right): 3, 7, 4, 3, respectively.

(I) UMAP view of stromal cell clusters.

(J) Tissue prevalence estimated by Ro/e score for each stromal cell subset.

(K) Correlation coefficient between cell proportions of Endo_C7 and other TME cell 

subsets. Only statistically significant (P < 0.05) positive (red) and negative (green) 

correlations are shown. Correlation coefficient and P values were calculated by Spearman’s 

correlation test.

(L) Expression of 4 representative immune checkpoint genes across tissue groups.

Box, median +/− interquartile range. Whiskers, minimum and maximum. See also Figures 

S3, S4 and Tables S2, S3.
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Figure 4. Phenotypic relationships and population abundance of 62 TME cell subpopulations.
(A) Unsupervised hierarchical clustering of 62 TME cell subsets. The heatmap shows the 

expression of inflammation and cytokine gene signatures (top panels), tissue prevalence 

estimated by Ro/e score (middle panels), and their prognostic significance in 4 primary GAC 

cohorts (bottom panels) as evaluated by univariable Cox regression analysis.

(B) Correlation among 62 TME cell subsets in 58 samples, based on their relative population 

abundance among all TME cells. P values were calculated by Spearman correlation test with 

Benjamini–Hochberg correction for multiple comparisons.
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Figure 5. Ecotypes of TME cells and their clinical relevance.
(A) Six ecotypes (EC1–6) inferred based on TME cell compositions in the 58 samples.

(B) Network plots based on the Jaccard similarity index of cell population co-existence.

(C) Representative histology images for various tissue groups.

(D) The composition of detected ecotypes in primary GACs.

(E) Deconvolution analysis of TCGA STAD cohort. Heatmap on the left shows the 

identification of EC3-like and EC6-like ecotypes. The alluvial plots in the middle depict 

relationships between the two cellular ecotypes and Lauren’s histology types, as well as 

previously defined molecular subtypes. The Kaplan–Meier plots on the right display survival 

correlations of the two cellular ecotypes in all GACs, CIN subtype GACs, and diffuse type 

GACs, respectively.

(F) The same as in (E), showing deconvolution analyses of another primary GAC cohort. 

See also Figure S5 and Tables S4–S6.
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Figure 6. SDC2 Upregulation in Tumor Stromal Cells.
(A) Bubble plots (upper panel) show expression levels and proportions of 

immunomodulatory genes across TME cell clusters. The heatmap (lower panel) depict their 

prognostic significance in 4 primary GAC cohorts using univariable Cox regression model.

(B) SDC2 expression levels across different cell subsets in 3 independent single-cell cohorts.

(C-D) SDC2 expression levels across fibroblast subsets in this study (C) and the Kumar et 

al. cohort (D).

(E) Correlations between the proportions of SDC2+ fibroblasts and expression levels of CAF 

signature scores. P values were calculated by Spearman correlation tests.

(F) Expression of SDC2 in fibroblasts and VSMCs across tissue groups in this study. P 

values were calculated by one-way Kruskal-Wallis rank sum test.

(G) SDC2 expression in fibroblasts of normal and primary tumor samples in the scRNA-seq 

data from Kumar et al.
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(H) Dual immunofluorescent staining of SDC2 and Vimentin. Representative images of 

intestinal and diffuse type of GAC tissues are shown.

(I) SDC2 expression in EC3-like (n=232) and EC6-like (n=177) groups identified in Figure 

6E. Box, median +/− interquartile range. Whiskers, minimum and maximum.

(J-K) Increased SDC2 expression in diffuse (vs. intestinal) type of GAC tissues in this study 

(J) and the Kumar et al. cohort (K).

(L) SDC2 expression in fibroblasts between matched peritoneal metastases (implants) and 

ascites cells obtained from the same GAC patients (n = 13).

(C-D, G, I, J-K) P values were calculated by two-sided Wilcoxon rank sum test. See also 
Figures S6, S7, and Table S3.
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Figure 7. Prognostic Significance of SDC2 Upregulation in GAC Cohorts and the Effect of SDC2 
Overexpression in CAFs on Tumor Growth in Mouse Models.
(A) Kaplan–Meier plots illustrating prognostic significance of SDC2 upregulation across 4 

primary GAC cohorts. P values were calculated by log-rank test.

(B) Schematic depicting the study design of an independent primary GAC cohort to validate 

clinical relevance of SDC2 overexpression at protein level.

(C) Composition of patients with SDC2-positive or SDC2-negative statuses as determined 

by IHC staining of normal and tumor tissues (left), and early (stage I or II) or late stages 

(stage III or IV) (right). P values were calculated by two-sided Fisher’s exact tests.

(D) The prognostic significance of SDC2 staining positivity in this cohort. P values were 

calculated by log-rank test.

(E) Univariate and multivariate Cox proportional regression outcomes for this validation 

cohort, with age, gender, differentiation status, Lauren’s type, tumor stage, and SDC2 IHC 

included. CI, confidence interval; TNM, tumor, node, metastases.
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(F-J) Effect of SDC2-overexpressed CAF in the xenografted mice. In vivo tumor growth 

of co-subcutaneous injection of patient-derived PC tumor cells (GA0518) and cancer-

associated fibroblasts (CAFs) with SDC2-overexpression (OE) as GF0818-SDC2 is shown. 

GA0518 cells labeled with mCherry-Luciferase (GA0518-mCh2) as tumor cells plus 

GF0818-SDC2 or corresponding empty vector transfected GF0818 cells (GF0818-EV) as 

CAFs were subcutaneously co-injected into five female SCID mice with two injection sites 

per mice.

(F) Bioluminescent images by luciferase in representative mice at three time points post-

injection.

(G) Quantification of tumor size expressed as total bioluminescence intensity of injection 

sites at each time points. Box, median +/− interquartile range. Whiskers, minimum and 

maximum.

(H) Tumor growth measured twice a week with a digital caliper over time.

(I) Macro images of the excised subcutaneous tumor mass upon sacrifice. No tumors 

were observed in four injection sites of the EV control group and one injection site of 

SDC2 group at endpoint. One mouse in the SDC2 group was euthanized because of tumor 

ulceration before endpoint.

(J) Tumor weights of the extracted subcutaneous tumors at the endpoint. Data represent 

mean ± SD from five mice. *, P < 0.05; **, P < 0.01; ***, P < 0.001 vs. empty vector 

control (two-sided Wilcoxon rank sum test)

See also Figure S7.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-Vimentin Santa Cruz 
Biotechnology

Cat: SC6260, RRID:AB_628437

Rabbit polyclonal anti-Syndecan 2 Thermo Fisher 
Scientific

Cat: 710183, RRID:AB_2532608

Rabbit anti-human SDC2 polyclonal antibody Abcam, USA Cat: Ab205884

rabbit antibody Vector Laboratories, Inc Cat: BA5000

Avidin and Biotinylated HRP reagent Vector Laboratories, Inc Cat: ZG0312

Biological samples

GAC primary tumor samples Zhejiang Cancer 
Hospital

See Table S1 for details

GAC metastatic tumor samples MD Anderson Cancer 
Center

See Table S1 for details

Peripheral blood samples from GAC patients Zhejiang Cancer 
Hospital

See Table S1 for details

Non-neoplastic adjacent tissues from GAC patients Zhejiang Cancer 
Hospital

See Table S1 for details

Peripheral blood from healthy donors Zhejiang Cancer 
Hospital

See Table S1 for details

Critical commercial assays

JetPRIME Polyplus Cat: 101000046

SYBR Green Master Mix Applied Biosystems Cat: 4367659

LunaScript RT SuperMix Kit New England BioLabs Cat: E3010

TRIzol Reagent Thermo Fisher 
Scientific Cat: 15596018

Quanto studio3 Real Time PCR system Thermo Fisher 
Scientific

N/A

Deposited data

Data files for scRNA-seq (Cohort #1) (processed data) This paper GSE234129

Data files for scRNA-seq (Cohort #2) (raw data) This paper EGAS00001004443;EGAS00001005019 (healthy 
PBMCs)

Expression matrix for scRNA-seq (Cohort #3) (processed 
data)

Sathe et al.25 https://dna-discovery.stanford.edu

Expression matrix for scRNA-seq (Cohort #4) (raw data) Zhang et al.79 GSE134520

Expression matrix for scRNA-seq (Validation cohort) (raw 
data)

Kumar et al.28 GSE183904

Expression matrix for bulk RNA sequencing (processed) TCGA https://gdc.cancer.gov

Expression matrix for microarray experiments (processed) Cristescu et al.70 GSE62254

Expression matrix for microarray experiments (processed) Ooi et al.69 GSE15459

Expression matrix for microarray experiments (processed) Cheong et al. GSE84437

Experimental models: Cell lines

HEK293T ATCC CRL-1573

GA0518 Song et al.78 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

GF0818 This paper N/A

GF1026 This paper N/A

Experimental models: Organisms/strains

Mouse: NOD.Cg-Prkdcscid/J The Jackson Laboratory Jax:001303

Mouse: Xenogen IVIS200 Perkin Elmer #124262

Oligonucleotides

Primers:
hSDC2.mRNA.F: 5’ TGGAAACCACGACGCTGAATA 3’
hSDC2.mRNA.R: 5’ ATAACTCCACCAGCAATGACAG 3’

This paper NM_002998

hGAPDH-5: 5’ ACCCAGAAGACTGTGGATGG 3’
hGAPDH-3: 5’ TCTAGACGGCAGGTCAGGTC 3’

Mani et al.104 N/A

hSDC2.F1.PacI 
5’ ccTTAATTAAGCCGCGACCGTCATGCGGCG 3’
hSDC2.R1.NheI 
5’ aaGCTAGCCGCATAAAACTCCTTAGTAGG 3’

This paper NM_002998

Recombinant DNA

SDC2–3xFlag fusion protein This paper NM_002998

Plasmid: pLoc.tGFP Horizon Discovery, 
Cambridge, UK

N/A

Plasmid: pLoc.tGFP.3Flag.SDC2 This paper N/A

Plasmid: pLoc.tGFP.3Flag.MCS1 This paper N/A

Plasmid: pHIV7-CNPO-Tert Gift from Dr. Jiing-
Kuan Yee, City of Hope

N/A

Plasmid: pHIV7-CNPO-TAg Gift from Dr. Jiing-
Kuan Yee, City of Hope

N/A

Software and algorithms

Cell Ranger 3.1.0 10x Genomics https://10xgenomics.com/

Seurat 3.1.1 Butler et al.107 https://satijalab.org/seurat/articles/get_started.html

Harmony 1.0 Korsunsky et al.109 https://portals.broadinstitute.org/harmony/articles/
quickstart.html

Monocle3 0.2.0 N/A (http://cole-trapnell-lab.github.io/monocle-release/
monocle3/

Scrublet 0.2.1 Wolock et al.111 https://github.com/swolock/scrublet

kBET Büttner et al.108 https://github.com/theislab/kBET

GSVA 1.40.1 Hänzelmann et al.113 http://bioconductor.org/packages/release/bioc/
html/GSVA.html

ROUGE Liu et al.112 https://github.com/PaulingLiu/ROGUE

R 4.0.0 N/A https://www.r-project.org

survcomp 1.6.0 N/A https://www.bioconductor.org/packages//2.10/
bioc/html/survcomp.html

Survminer 0.4.9 N/A https://cran.r-project.org/web/packages/survminer/
index.html

Survival 3.2–11 N/A https://cran.r-project.org/web/packages/survival/
index.html

pheatmap 1.0.12 N/A https://cran.r-project.org/web/packages/pheatmap/

BioRender BioRender.com https://www.biorender.com
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