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Abstract

PURPOSE—The quality of radiotherapy auto-segmentation training data, primarily derived from 

clinician observers, is of utmost importance. However, the factors influencing the quality of 

clinician-derived segmentations are poorly understood; our study aims to quantify these factors.

METHODS—Organ at risk (OAR) and tumor-related segmentations provided by radiation 

oncologists from the Contouring Collaborative for Consensus in Radiation Oncology data set were 

used. Segmentations were derived from five disease sites: breast, sarcoma, head and neck (H&N), 

gynecologic (GYN), and GI. Segmentation quality was determined on a structure-by-structure 

basis by comparing the observer segmentations with an expert-derived consensus, which served 

as a reference standard benchmark. The Dice similarity coefficient (DSC) was primarily used as a 

metric for the comparisons. DSC was stratified into binary groups on the basis of structure-specific 

expert-derived interobserver variability (IOV) cutoffs. Generalized linear mixed-effects models 

using Bayesian estimation were used to investigate the association between demographic variables 

and the binarized DSC for each disease site. Variables with a highest density interval excluding 

zero were considered to substantially affect the outcome measure.
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RESULTS—Five hundred seventy-four, 110, 452, 112, and 48 segmentations were used for the 

breast, sarcoma, H&N, GYN, and GI cases, respectively. The median percentage of segmentations 

that crossed the expert DSC IOV cutoff when stratified by structure type was 55% and 31% for 

OARs and tumors, respectively. Regression analysis revealed that the structure being tumor-related 

had a substantial negative impact on binarized DSC for the breast, sarcoma, H&N, and GI cases. 

There were no recurring relationships between segmentation quality and demographic variables 

across the cases, with most variables demonstrating large standard deviations.

CONCLUSION—Our study highlights substantial uncertainty surrounding conventionally 

presumed factors influencing segmentation quality relative to benchmarks.

INTRODUCTION

Segmentation (also termed contouring) of regions of interest (ROIs) on medical images 

is crucial for radiotherapy planning.1 Importantly, accurate segmentation of organs at risk 

(OARs) and tumor-related (ie, target) structures is required to optimize radiotherapeutic 

efficacy. Segmentation is often performed by clinicians, such as radiation oncologists. 

However, clinician-derived manual segmentation is a time- and labor-intensive task, thereby 

prompting the increasing development of artificial intelligence (AI)–based methods for 

auto-segmentation.2

The Contouring Collaborative for Consensus in Radiation Oncology (C3RO), a large-

scale crowdsourcing challenge for radiotherapy segmentation, demonstrated that nonexpert 

consensus segmentations could quantitatively approximate expert consensus segmentations 

in a variety of disease sites,3 thereby motivating the potential use of a large number of 

lower-quality segmentations in place of a small number of high-quality segmentations for 

AI model training. Notably, segmentations were highly variable among the participants of 

C3RO, suggesting underlying factors associated with resultant segmentation quality.

Despite AI advancements, human clinicians will likely be involved in the radiotherapy 

segmentation process for the foreseeable future, both as suppliers of ground truth for 

algorithmic training and as the final arbiters of quality. Understanding the characteristics 

of clinicians associated with superior segmentation performance could help guide training, 

inform the design of auto-segmentation tools, and ultimately improve the quality of care 

provided to patients. While some data do suggest that clinician experience is associated with 

improved radiotherapy outcomes,4–6 no studies have directly examined underlying factors 

related to segmentation quality. Therefore, we aim to investigate whether demographic 

factors of a large number of radiation oncologists are associated with improved segmentation 

quality through a secondary analysis of C3RO.

METHODS

Study Participants and Demographic Variables

Participants in C3RO were categorized as recognized experts or nonexperts. Recognized 

experts were identified by the C3RO organizers as board-certified physicians who 

participated in the development of national guidelines and/or contributed to extensive 

scholarly activities within a specific disease site. Nonexperts were any participants not 

Wahid et al. Page 3

JCO Clin Cancer Inform. Author manuscript; available in PMC 2024 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



categorized as an expert for that disease site. For this study, nonexpert participants from 

each separate disease site of the C3RO database, namely, the breast, sarcoma, head and 

neck (H&N), gynecologic (GYN), and GI cases, were selected for the analysis. Greater 

details on the publicly available C3RO data set can be found in the corresponding data 

descriptor.7 Self-reported demographic variables of interest from the participants were 

initially collected through an intake survey performed on REDCap.8 Informed by previous 

research,9,10 various demographic variables were collected for physicians in this study 

(Table 1). Before use in the analysis, nonexpert participants were filtered out of the data 

set if they were trainees (eg, residents) or nonphysicians (eg, radiation therapists, medical 

physicists, other). The primary practice description variable was converted to a binary 

format by grouping academic/university (academic) into one group and all others into a 

separate group (nonacademic).

Segmentation Evaluation

All ROIs from all disease sites in the C3RO data set were used for this analysis (Data 

Supplement, Table S1). Notably, participants generated ROI segmentations based principally 

on contrast-enhanced radiotherapy planning computed tomography scans. Participants were 

provided a short clinical history for each case. Additional case-specific considerations 

included the following: the breast case not receiving contrast, the H&N and GI cases 

having positron emission tomography scans available for reference, and the sarcoma case 

having a magnetic resonance imaging scan available for reference. For each nonexpert 

ROI, we calculated segmentation quality by comparing the nonexpert segmentation with 

the consensus of experts as derived using the Simultaneous Truth and Performance Level 

Estimation (STAPLE) algorithm11 (Fig 1). The number of expert observers used for each 

ROI consensus segmentation is presented in the Data Supplement (Table S1). It should be 

noted that as with any segmentation study, there was no definitive underlying ground truth 

set of segmentations we could reference. Although experts were subjectively determined in 

the original C3RO study, they demonstrated significantly improved interobserver variability 

(IOV) compared with their nonexpert counterparts.3 Therefore, the expert STAPLE can 

be considered as a reference standard segmentation. We used the existing Neuroimaging 

Informatics Technology Initiative structure files for comparisons, which were previously 

converted from Digital Imaging and Communications in Medicine using DICOMRTTool.12 

The Dice similarity coefficient (DSC) was used as the main metric for comparison because 

of its ubiquity.1 We also investigated two metrics of surface similarity, the surface DSC 

(SDSC) and 95% Hausdorff distance (HD95), for additional experiments; SDSC tolerance 

values for each ROI were determined from the pairwise average surface distance of the 

expert segmentations. Metrics were calculated using the surface-distance Python package v. 

0.113 and in-house Python code (Python v. 3.11.4).

To ensure that metrics were comparable across ROIs, metrics were stratified into binary 

groups on the basis of previously established ROI-specific expert-derived IOV cutoffs—

cutoffs were calculated as the median of pairwise metric values for all available expert 

segmentations.7 Namely, if the metric for a given ROI was greater than or equal to the 

ROI-specific expert IOV, it was classified as 1, otherwise, 0 (Fig 1). Finally, for each ROI, 

we calculated the percentage of observers who were able to cross the expert IOV cutoff.
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Bayesian Regression Analysis

Generalized linear mixed-effects models with Bayesian estimation were used to investigate 

the relationship between demographic variables and binarized segmentation quality metrics. 

The stratified binary segmentation quality metric acted as the dependent variable for 

the models. The key independent variables were practice location, primary practice type, 

number of radiation oncologist colleagues, presence of another radiation oncologist during 

clinic, actively treat disease site, and years of practice. Notably, exploratory correlative 

analysis (Data Supplement, Figs S1–S5) revealed high relative correlation between academic 

affiliation and primary practice type; therefore, academic affiliation was not included as 

a covariate to facilitate model parsimony. An additional binary categorical variable, ROI 

type, was added as an independent variable to indicate if the ROI was an OAR or tumor 

volume. Furthermore, models were corrected for self-identified sex and self-identified race 

by including them as independent variables in the models. A random intercept was used 

in the models to account for the various observers who could segment multiple structures 

on the same image. Any empty values for numerical variables were imputed to the median 

value relative to the total number of observations. Finally, numerical variables were Z-score 

normalized.

The Python package Bambi v. 0.12.0,14 which is built on top of the robust Markov chain 

Monte Carlo (MCMC) library PyMC3,15 was used for all regression analyses. For each 

disease site, the regression formula was defined as

Y ij Bernoulli pij ,
logit pij = β0 + uj + β1 × Locationij + β2

× Practice_typeij + β3 × Number of Colleaguesij +
β4 × Colleague_presenceij + β5 × Treat_siteij

+β6 × Number of Years_practiceij +
β7 × ROI_typeij + β8 × Genderij + β9 × Raceij ,

where Yij is the dependent variable for observation i nested within observer j, which follows 

a Bernoulli distribution with success probability pij; logit(pij) is the log odds of the success 

probability; β0 is the overall intercept; uj is the random intercept for observer j; β1, …, β9 

are the fixed effect coefficients for the predictors.

For each MCMC Bayesian regression model, 10,000 samples were drawn from four 

chains with a tuning set of 1,500 iterations for a total of 46,000 samples drawn for each 

model. Weakly informative priors as determined using the Bambi package were intelligently 

generated for all model terms by loosely scaling them to the observed data.14 Computations 

were performed across six cores of an Intel Core i7-8700 Processor.

The ArviZ v. 0.15.116 Python library was used to derive summary data for the posterior 

distribution. Point estimates (posterior means) and assessments of uncertainty (posterior 

standard deviation) were calculated for each variable. In addition, the 89% highest density 

interval (HDI) was calculated; a value of 89% was selected as suggested in recent 

literature.17,18 Demographic variables for which the HDI did not include zero were 
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considered to have a substantial impact on the outcome measure of interest and could be 

interpreted as loosely analogous to the frequentist notion of statistical significance.

Data and Code Availability

All C3RO data, including the original demographic factors and segmentation data, are 

available on Figshare (DOI = doi.org/10.6084/m9.figshare.21074182). All Python code used 

for this study are available on GitHub.19 Corresponding newly created data can also be 

found on Figshare (DOI = doi.org/10.6084/m9.figshare.24021591).

RESULTS

Study Participants

After filtering out structures from noneligible observers, 574, 110, 452, 112, and 48 ROI 

structure observations from practicing radiation oncologist observers remained for the 

analysis for the breast, sarcoma, H&N, GYN, and GI cases, respectively (Fig 2). Descriptive 

statistics for the clinician observers used in our study are presented in the Data Supplement 

(Tables S2 and S3).

Individual Observer Performance

Figure 3 shows the DSC scores for each observer relative to the expert consensus 

segmentation stratified by ROI; the percentage of observations that were able to cross the 

expert IOV cutoff are also shown. The highest percentages per case were BrachialPlex_L 

(82%), Genitals (44%), Glnd_Submand_L (76%), GTV n (70%), and Bag_Bowel (73%) for 

breast, sarcoma, H&N, GYN, and GI, respectively. The lowest percentages per case were 

CTV_IMN (36%), CTV (18%), GTVn (24%), CTVn_4500 (26%), and CTV_4500 (29%) 

for breast, sarcoma, H&N, GYN, and GI, respectively. Aggregated median percentage values 

when stratified by ROI type were 55% (IQR, 35%) and 31% (IQR, 15%) for OARs and 

tumor volumes, respectively. Analogous bar plots using SDSC and HD95 as metrics are 

shown in the Data Supplement (Figs S6–S15). SDSC and HD95 values mirrored DSC values 

for most ROIs. Aggregated SDSC median percentage values when stratified by ROI type 

were 36% (IQR, 32%) and 30% (IQR, 30%) for OARs and tumor volumes, respectively. 

Aggregated HD95 median percentage values when stratified by ROI type were 57% (IQR, 

40%) and 41% (IQR, 26%) for OARs and tumor volumes, respectively.

Bayesian Regression Models

Mixed-effects regression results using binarized DSC and binarized SDSC as the outcome 

variables are shown in Tables 2 and 3, respectively. For the breast case, tumor-related ROI 

type for both DSC (mean ± standard deviation, −0.97 ± 0.20) and SDSC (−1.24 ± 0.20) had 

HDIs that excluded zero. For the sarcoma case, the tumor-related ROI type for both DSC 

(−1.04 ± 0.54) and SDSC (−2.74 ± 0.81) had HDIs that excluded zero. For the H&N case, 

the DSC tumor-related ROI type (−1.00 ± 0.24) and DSC White racial self-identification 

(0.66 ± 0.41) had HDIs that excluded zero. For the GYN case, only the SDSC academic 

practice type (−1.30 ± 0.79) had an HDI that excluded zero. For the GI case, the DSC tumor-

related ROI type (−2.95 ± 0.98) and DSC colleague presence (2.21 ± 1.40) had HDIs that 

excluded zero. Additional regression results for HD95 are presented in the Data Supplement 
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(Table S4). Model convergence parameters estimated for each variable are presented in the 

Data Supplement (Tables S5–S19).

DISCUSSION

To date, there are limited standardized measures to evaluate radiotherapy-related 

segmentation quality. Nissen et al20 recently proposed the utilization of the Jaccard Index 

for longitudinal quantitative evaluation. However, the inherent quality discerned from these 

metrics in their raw numerical form often varies on the basis of the specific ROI. For 

example, a DSC of 0.80 for a particularly simple OAR may be less desirable than a DSC of 

0.80 for a particularly difficult tumor volume. However, stratification of evaluation metrics, 

as we have performed in our study, allows for ROI-specific thresholds that act as rough 

measures of acceptability. Notably, our ROI-specific thresholds are derived from reference 

standard measurements provided by experts, which were established to have significantly 

improved segmentation consistency compared with nonexperts.3 When stratified by 

previously defined expert IOV cutoffs, the ROIs with the lowest percentage of observers 

who were able to cross cutoffs were often tumor volumes. This is consistent with the 

generally held notion that tumor volumes, which often require domain-specific knowledge, 

are inherently more difficult to segment than OARs.21,22 Echoing the aforementioned 

results, Bayesian regression analysis demonstrated that the tumor-related ROI type adversely 

affected segmentation performance. This highlights the need for standardized automated 

tumor segmentation methods, which so far have been less developed and used than their 

OAR counterparts.9

Interestingly, results were inconsistent and mostly non-substantial for the majority of 

demographic variables across disease sites. Historically, greater institutional support has 

been perceived to be important for radiotherapy quality.9 Therefore, our mostly negative 

results for proxy variables intuitively linked to greater institutional resource support, such 

as academic practice and prevalence of radiation oncologist colleagues, are particularly 

surprising. These findings suggest that the auto-segmentation community should reconsider 

heuristic choices, such as those based on annotator qualities, when choosing reference 

segmentations for algorithm development. It may instead be preferable to use consensus 

segmentations, which have demonstrated quantitatively reliable results as shown in our 

previous work,3 in place of single-annotator segmentations for prospective data collection 

efforts. Finally, while existing literature regarding observer demographic impact on 

radiotherapy-related tasks is sparse, it warrants mentioning that one of the few studies in 

this area found no significant relationship between demographic factors and the resultant 

quality of radiotherapy plans.23 Another study investigating lung disease annotations also 

demonstrated no impact of observer demographics on segmentation quality.24 These studies 

echo our mostly null results.

While most of the investigated demographic variables were nonsubstantial with large 

degrees of uncertainties, there were a few results that we believe warrant further discussion. 

Academic practice in the GYN case was substantially negatively associated with SDSC 

performance; a nonsubstantial negative association was echoed in most of the disease sites. 

This could imply, perhaps contrary to common assumptions, that community clinicians 
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produce segmentations more closely aligned with our reference standard and, presumably, 

more consistent with contouring guidelines. Moreover, White racial self-identification was 

substantially positively associated with DSC in the H&N case, which exhibited conflicting 

relationships in other disease sites. It is crucial to emphasize that the association between 

racial self-identification—a complex social construct which has been drastically simplified 

in this binary variable—and segmentation performance likely reflects broader institutional 

or regional conformance to contouring guidelines, rather than a reductive racial skill 

disparity. Notably, US and European organizations, which would have over-representation 

of White racial self-identification, have the largest proportion of contouring guideline 

endorsements.25 The heterogeneity within C3RO’s categorization of non-US observers 

might have confounded these relationships. In addition, the presence of a radiation 

oncologist colleague was substantially positively associated with DSC in the GI case; 

this positive relationship seemed to hold for most disease sites. These results suggest that 

clinicians who likely participate in consensus decision making tend to create segmentations 

closer to our reference standard and thus are likely to adhere to guidelines. Perplexingly, 

years of practice was found to have a consistently negative (though nonsubstantial) impact 

on DSC across the various disease sites. This may be because recent clinician graduates are 

more likely to adhere to contouring guidelines. Finally, our study did not show that treatment 

of a particular disease site was substantially associated with superior segmentation quality; 

in fact, it often demonstrated a negative correlation. This seemingly challenges previous 

findings highlighting the significant role of clinician experience in treatment quality.4–6 

However, the variable did not assess treatment frequency for the specific site, thereby 

potentially introducing heterogeneity in its interpretation and ultimately diminishing its 

utility.

Our study is not without limitations. First, we relied on an existing data set with inherent 

constraints. While boasting an unprecedented number of radiation oncologist observers, 

C3RO only principally used a single imaging modality from one representative patient per 

disease site. While this provides a dedicated reference standard, demographic relationships 

could change depending on a variety of underlying patient-related factors. Moreover, the 

C3RO intake survey was self-reported and requested limited demographic information. 

For example, direct indicators of treatment volume, which have been shown in previous 

studies to be strongly correlated with patient outcomes,4 were not collected because of the 

high potential for recall bias. Similarly, variables related to the annotator’s initial clinical 

training and current workflow, that is, routine use of contour guidelines/resources/software 

and access to multiple imaging modalities, would have also likely been highly informative 

but were not collected. Second, we have relied exclusively on conventional geometry-based 

metrics of segmentation quality, which have been noted to have flaws in the assessment 

of radiotherapy-related structures.1 Future studies should investigate metrics more closely 

tied to relevant patient outcomes, such as dose-volume histogram measures. On a related 

note, how to best define segmentation quality in a quantitative manner, and subsequently 

how to improve it, remains an open question. We hope to mitigate some of these issues 

by binarizing our outcome segmentation quality variable and thus calibrating the value 

relative to a reference standard baseline. We fully acknowledge that this methodology has 

flaws, principally in that edge cases may be unfairly penalized or rewarded. Furthermore, 
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our definition of a reference standard baseline is a subjective metric derived from our own 

data set. Specifically, our study presupposes expert consensus segmentations as ideal quality 

benchmarks. Large deviations from this assumption could indicate that our results simply 

reflect expected segmentation similarity variations secondary to clinical practice variation. 

A final limitation of our study lies in our reliance on weakly informative priors for our 

Bayesian analysis, primarily because of insufficient existing data to extract meaningful 

priors. Nevertheless, our current data can serve as valuable priors for future Bayesian 

analyses.

In conclusion, we used an extensive number of radiation oncologist observers in several 

disease sites to probe trends between common demographic variables and segmentation 

quality using generalized linear mixed-effects models with Bayesian estimation. Tumor-

related structures were, as expected, more difficult to segment than OARs. However, results 

for demographic factors were mixed and exhibited high uncertainty as evident by large 

posterior standard deviations and wide HDIs. Surprisingly, there were no obvious recurring 

relationships for conventionally presumed factors influencing segmentation quality—this 

may incentivize the research community to reconsider heuristic choices when selecting 

reference segmentations for auto-segmentation development.

While stark variations in quantitative performance among observers compared with our 

reference standard segmentations can be observed, it is still unclear if and how demographic 

factors influence segmentation similarity to these benchmarks. Given the anticipated 

scenario that auto-segmentation algorithms will require humans in the loop in some 

capacity, these factors are still likely important to understand and should be investigated 

in prospective analyses of auto-segmentation interaction. Future studies should investigate 

a greater number of demographic variables (eg, direct indicators of treatment volume), a 

greater number of patients and imaging modalities, and alternative metrics of segmentation 

acceptability (eg, dosimetric indicators).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CONTEXT

Key Objective

How do demographic factors of radiation oncologists influence the quality of 

radiotherapy-related segmentation in medical imaging?

Knowledge Generated

Tumor-related structures were generally more challenging to segment than organs at risk. 

However, the impact of demographic factors on segmentation quality was minimal and 

characterized by high uncertainty.

Relevance (J.L. Warner)

This study further provides guidance regarding how to best implement autosegmentation 

within clinical practice. Specifically, it suggests that tumor structures should likley be 

auto-segmented with caution.*

*Relevance section written by JCO Clinical Cancer Informatics Editor-in-Chief Jeremy 

L. Warner, MD, MS, FAMIA, FASCO.
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FIG 1. 
Derivation of binarized structure segmentation quality for each observer. Each observer 

could segment multiple structures, that is, organs at risk and tumor volumes. Observer 

segmentations (red volume) were compared with a reference standard derived from a 

consensus segmentation of experts (green volume) using the DSC. Segmentation metrics 

were then stratified into being greater than or equal to (yes—1) or below (no—0) a 

previously derived expert-derived IOV cutoff value for that particular region of interest. 

In this example, the primary gross tumor volume structure for the head and neck case is 

shown. A similar process was used to derive binarized values for surface DSC. DSC, Dice 

similarity coefficient; IOV, interobserver variability.
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FIG 2. 
Flow diagrams showing the final number of structure segmentations evaluated for each 

disease site. Breast, sarcoma, H&N, GYN, and GI cases are shown in panels (A-E), 

respectively. GYN, gynecologic; H&N, head and neck; N, number of nonexpert structure 

segmentations; O, number of unique nonexpert observers.
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FIG 3. 
Bar plots of individual observer segmentation performance versus reference standard. 

Magenta, red, blue, purple, and green plots correspond to breast, sarcoma, head and 

neck, gynecologic, and GI ROIs, respectively. The reference standard segmentation is 

the consensus segmentation of all experts as derived from the Simultaneous Truth and 

Performance Level Estimation algorithm. Black dashed lines indicate median expert 

interobserver DSC for a corresponding ROI. The percentage of observers that crossed 

the expert IOV cutoff is shown in red above each plot. DSC, Dice similarity coefficient; 

IOV, interobserver variability; ROI, region of interest; STAPLE, Simultaneous Truth and 

Performance Level Estimation.
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