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Abstract

The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to
dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regi-
mens include some form of AR modulation. In this regard, AR remains the central driver of
prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in ad-
ditional cancer types, thereby expanding the importance of this drug target beyond prostate can-
cer. In this mini-review, new roles for AR in other cancer types are discussed as well as their po-
tential for treatment with AR-targeted agents. Our understanding of these additional functions for
AR in oncology expand this receptor's potential as a therapeutic target and will help guide the de-
velopment of new treatment approaches.
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While androgen receptor (AR) signaling is the major therapeutic target for the treatment of
prostate cancer, recent studies have highlighted causal roles for AR in other cancer types. These
functional studies importantly distinguish direct roles for AR in tumor biology from indirect hor-
mone actions and/or potential noncausal correlations. With cancers that present sexually dimor-
phic patterns, a key distinction is whether the differences in incidence and/or severity are due to
environmental factors or underlying biological differences. Cancers such as gastric, lung, and
mesothelioma are more common in men, but it remains uncertain whether these sex-speci�ic dif-
ferences are due to direct androgen/AR actions within these tumor types or caused by differences
in environmental factors such as diet, smoking, and occupational hazards (1-3). For instance, the
increased incidence of mesothelioma in men compared with women is thought to be attributable
to men being more often employed in jobs exposing them to asbestos (4, 5). Additional environ-
mental factors such as diet and smoking could also in�luence how many males and females de-
velop cancer (6). The incidence of other sexually dimorphic cancers such as Kaposi's sarcoma,
while occurring 2.3 times to 50 times more often in men than in women, likely re�lects the higher
transmission rate of Kaposi's sarcoma–associated herpesvirus in men, and hence indirectly skews
the cancer incidence sex ratio (7-9). In contrast, several cancer types exhibit sex disparities even
when accounting for environmental variables. For instance, some mouse models of hepatocellular
carcinoma (HCC) can disproportionately occur in male mice compared with their genetically simi-
lar female counterparts when other factors are equal (eg, housing conditions, diet, etc.), mirroring
what is observed in male and female patients where men are 2 to 3 times more likely to get HCC
than women (10-12). While sex steroid hormone signaling is often proposed as a causative factor,
the systemic effects of hormones and their metabolism have made it challenging to delineate the
exact molecular mechanism of action. However, recent advances in preclinical modeling, combined
with clinical data, have begun to clarify functional new roles for long-suspected players like the AR
in previously underexplored cancers. In this mini-review, we examine mounting evidence that sup-
ports testing AR-targeting agents (both agonists and antagonists) in tumor types beyond prostate
cancer.

Bladder Cancer

Urothelial carcinoma has a nearly 4:1 male:female predominance (13). Sex differences persist
even after correcting for other known risk factors for bladder cancer including smoking, urinary
tract infection, occupation, and environmental hazards (14). These observations suggest that sex
is a critical biological variable in urothelial carcinoma biology. The sex disparity is possibly ex-
plained by the interplay of the promoting effect from testosterone (15), the protective effect of es-
trogen (16, 17), and sex hormone modulation of the liver's ability to metabolize bladder carcino-
gens (18).

AR signaling has been proposed to play a role in the pathogenesis of urothelial carcinoma, and
may represent an advantageous therapeutic target (19). Through sex chromosome–independent
mechanisms, androgens promote a CD8+ T cell exhaustion program and contribute to sex bias in
urothelial carcinoma. Mechanistically, AR transcriptionally transactivates Tcf7/TCF1, which can
drive a novel sex-speci�ic regulon in progenitor exhausted CD8+ T cells. Ablation of the androgen–
AR axis rewires the tumor microenvironment to favor effector T cell differentiation and potenti-



ates the ef�icacy of anti-PD-1 immune checkpoint blockade in preclinical mouse models (20).
Within bladder cancer cells, AR signaling may also crosstalk with other oncogenic proteins (eg,
ERBB2, EGFR, NF-κB, ELK1, ATF2), regulate CD44 (biomarker associated with progressive tumori-
genesis), downregulate uridine diphosphate (UDP) glucuronosyltransferases (carcinogen detoxi�i-
cation), and activate an epithelial–mesenchymal transition (associated with metastasis) (18, 21-
27). Alternatively, in a sex chromosome–dependent fashion, key sex chromosome–based epige-
nomic genes have been reported to suppress bladder tumorigenesis in females. A recent report
demonstrated that KDM6A and its murine ortholog Kdm6a are encoded by the X chromosome but
escape X chromosome inactivation. KDM6A expression is twice as high in females compared with
males (28). Urothelium-speci�ic conditional knockout of Kdm6a in mice signi�icantly increased
urothelial carcinoma risk in females, but not in males, suggesting that KDM6A is a female-biased
tumor suppressor.

In urothelial carcinoma patients, high AR expression has been associated with tumor progression,
recurrence, and metastasis, as well as resistance to radiotherapy and certain chemotherapies in-
cluding cisplatin, gemcitabine, and doxorubicin (29-36). However, a contrasting clinical study re-
ports decreased AR expression in urothelial carcinoma compared with benign bladder, and low
AR being associated with higher grade and more invasive tumors (37). Despite this discrepancy,
use of 5-alpha reductase inhibitors and AR suppression alone or in combination with chemother-
apy or immunotherapy have been associated with diminished urothelial carcinoma tumor pro-
gression and decreased disease recurrence (38-46) (Table 1).

Tissue analysis of patients in the LAMB trial (NCT00949455) found that ∼30% of urothelial carci-
noma tumors overexpressed AR, which correlated with worse prognosis (66). This work provided
rationale to test the bene�it of androgen deprivation therapy with enzalutamide in ATLANTIS
(EudraCT number 2015-003249-25. ISRCTN25859465), an ongoing multi-arm phase II trial of
maintenance therapy in metastatic urothelial carcinoma. In patients with positive AR expression by
immunohistochemistry, ATLANTIS randomizes between enzalutamide and placebo maintenance,
using progression-free survival (PFS) as a primary outcome (67). Such studies will be helpful to
prospectively assess the ef�icacy of targeting AR in patients with urothelial carcinoma. Future stud-
ies should include the use of AR antagonism in both maintenance and frontline combination ther-
apy settings for patients with urothelial carcinoma, as well as in combination with immune check-
point inhibition given the potential for synergistic effect of anti-PD1 therapy with AR inhibition ob-
served in preclinical studies (20).

Melanoma

Differences in outcomes by sex have been noted in melanoma for decades, with male sex being in-
dependently associated with worse prognosis both in terms of relapse from early-stage disease
and survival in late-stage disease (68-71). The biology behind this dimorphic outcome is likely
complex and may involve hormone-dependent and -independent effects on both tumor-intrinsic
and -extrinsic pathways (72-76). Androgens may play a role in melanoma metastasis via the mod-
ulation of miRNA signaling and subsequent microphthalmia-associated transcription factor (MITF)
degradation and an altered MITF–AXL ratio (77, 78). Alternatively, inhibition of AR can decrease
melanoma cell growth in cell lines and xenograft tumor growth in both immunocompromised and
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immune-intact mice by a proposed cancer cell–intrinsic mechanism of induced dsDNA breakage,
cytoplasmic leakage, and STING activation (79). Recently, androgen signaling in melanoma has also
been implicated in resistance to targeted therapy possibly through a similar melanoma cell–intrin-
sic mechanism (80).

Fifty percent of melanomas have a BRAF mutation that activates the MAPK signaling pathway (69).
In these patients, BRAF-directed targeted therapy with combined BRAF and MEK inhibition is a
highly effective therapy for many patients; however, outcomes are heterogeneous and strategies
to improve response are urgently needed (69). Robert et al (69) and Vellano and colleagues (80)
noted signi�icant differences in outcome by sex in patients treated with BRAF- and MEK-directed
targeted therapy (n = 664) . Importantly, the investigators had access to paired tumor specimens
in a subset of patients treated with BRAF/MEKi in the neoadjuvant setting (n = 23). Analysis of
pretreatment tumor biopsies demonstrated that AR staining was minimal at baseline. However,
post-treatment resected specimens showed increased AR staining, particularly in males, as well as
expression of AR signaling genes noted in patients who failed to achieve a pathological response,
suggesting an association between AR activity and response (Fig. 1). Murine models of BRAF-mu-
tated melanoma demonstrated a similar sexual dimorphism with female mice showing improved
control compared with males in both immunocompetent and immunocompromised (CD-1 nude)
preclinical models. Intriguingly, administration of testosterone in male and female mice upregu-
lated AR expression and led to diminished tumor control while treatment with enzalutamide im-
proved tumor control in both male and female mice. CRISPR-mediated AR knockout in melanoma
cells abrogated the differences by mouse sex in animals receiving BRAF/MEKi both with and with-
out hormonal modulation. Although additional cancer cell extrinsic roles for AR cannot be fully
ruled out, these data support the concept of AR as a melanoma cell autonomous driver of targeted
therapy resistance. Importantly, hormonal modulation represents a potential druggable target to
augment current standard of care therapies in melanoma.

The �irst clinical trial targeting AR in melanoma (Debio 8200-IMM-101) was reported in March
2023 (49). In this phase I, single-arm, open-label study, the safety and ef�icacy of ADT (triptorelin)
plus bicalutamide and anti-PD-1 (nivolumab) was evaluated in male melanoma patients (n = 14)
who were refractory to anti-PD-1. No grade 4 or 5 adverse effects were observed. Disease control
was observed in 6 patients, but objective responses were seen in only 1 (RECIST) and 2 (iRECIST)
patients. Whether the responses were due to the AR-targeted therapy needs to be tested in ran-
domized controlled trials.

Endometrial Cancer

Hormonal signaling is well known to be important in endometrial cancer, particularly in tumors
with low grade histology. Although most work has focused on estrogen and progesterone signal-
ing and blockade (81), there is mounting evidence that AR is relevant in this disease.
Epidemiologic and translational studies have highlighted the importance of circulating androgens
in patients with endometrial cancer (82, 83), and androgens have a known link with obesity (84),
which one of the primary predisposing factors for development of endometrial cancer (85, 86).
When primary endometrial tumors are evaluated, AR expression has ranged from 20% to 86%
depending on the cohort studied (87-90). Highest expression has been found in lower grade tu-
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mors (87, 88), but notably, even some nonendometrioid (higher risk) tumors had AR expression
(91, 92). Although most cases that were AR+ were also estrogen receptor α (ERα+), a smaller sub-
set of patients had AR+/ERα− tumors (92). From a prognostic standpoint, most tumors with in-
creased hormone receptor expression (namely, ERα and progesterone receptor [PR]) are lower
grade and have a better prognosis than higher-grade tumors, which are more frequently hormone
receptor negative (93, 94). As such, patients whose tumors demonstrate AR positivity will often
have an improved survival relative to those with AR-negative tumors (P < .0001; n = 85) (91).
However, 1 study demonstrated that while AR expression was correlated with favorable outcomes
overall, patients with AR+/ERα− tumors (ie, a high AR to ERα ratio) had shorter survival outcomes
(P < .001; n = 142) (88). Thus, the role of AR signaling in endometrial cancer may be more compli-
cated than initially thought.

Data are limited regarding the use of AR blockade in the treatment of endometrial cancer.
Preclinical data evaluating enzalutamide have been mixed (95). Although short-term there was evi-
dence of increased local control in vivo, long-term there was a paradoxical increase in the amount
of invasive and metastatic lesions. This suggests a more complex role of androgen blockade within
the context of endometrial tumor biology relative to other hormone signaling pathways, as pro-
gesterone modulation and estrogen modulation have both been successful in endometrial cancer
(96-98). More recently, however, a phase II study evaluating enzalutamide in combination with pa-
clitaxel and carboplatin (the standard �irst-line treatment for metastatic endometrial cancer) in pa-
tients with untreated advanced or recurrent endometrioid, endometrial cancer found an impres-
sive overall response rate (ORR) of 71% and a median PFS of 14 months (NCT02684227; n = 35)
(47). Multiple translational endpoints were included. Once available, these data may inform which
patients are most likely to bene�it from AR blockade alone or in combination with standard
chemotherapy.

Adrenal Cancer

Adrenocortical carcinoma (ACC) is a rare, yet highly aggressive cancer that originates in the outer
portion of the adrenal gland (99, 100). The overall 5-year survival rate for ACC is <50%, and there
are currently no available targeted therapies (101). In contrast to most other nonreproductive
cancers (6), ACC is more common in women than in men (∼2.5:1) (102, 103). This unique sex bias
in ACC may provide important clues about the etiology of adrenal cancer and provide new oppor-
tunities for therapeutic intervention. A protective role for androgens, which is mediated by both
tumor cell–intrinsic and –extrinsic mechanisms, has recently emerged.

The potential for AR to play a bene�icial role in adrenal cancer was �irst suggested by clinical ob-
servations of androgen-producing tumors. Although adrenal tumors that purely secrete excess an-
drogens are extremely rare, they are known to have a more favorable prognosis. In one of the
largest cohorts available (104), ∼50% of cases were benign. Of the malignant ACC cases, 80% of
patients showed durable, long-term survival and remained disease free following treatment with a
mean follow-up of more than 10 years. Consistent with these �indings, analysis of The Cancer
Genome Atlas project on ACC (105) reveals that pure androgen-secreting tumors are predomi-
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nately found within the least aggressive subtype (Table 2). Moreover, high AR expression is associ-
ated with signi�icantly longer PFS and overall survival (OS). Together, these data suggest that con-
trary to other cancer types like prostate, high androgen levels are clinically favorable in ACC.

Building on these clinical correlates, recent preclinical studies have uncovered tumor cell–intrinsic
and –extrinsic mechanisms through which androgens can suppress the growth of adrenal tumors.
Studies in mice demonstrate that circulating androgens regulate homeostatic renewal of the
adrenal cortex by suppressing the recruitment and proliferation of stem cells (106), and enhanc-
ing apoptotic turnover of differentiated cortex cells (107). In human ACC cells, dihydrotestos-
terone (DHT) treatment reduces proliferation as well as anchorage-independent growth, effects
that can be rescued by antiandrogens, indicating a tumor suppressive role for AR in ACC cells
(108). Beyond these ACC cell-autonomous roles, androgen signaling has more recently been found
to promote antitumor immunity in a mouse model of ACC. This newly developed transgenic model
is based on targeted loss of ZNRF3, a Wnt pathway inhibitor (109, 110) that is frequently deleted
in human ACC (105, 111). Despite initial hyperplasia in both males and females (112), Znrf3 condi-
tional knockout mice only develop adrenal tumors with advanced aging, in a sex-dimorphic man-
ner (113, 114). Speci�ically, females predominately develop metastatic adrenal tumors while males
primarily develop benign tumors. This striking sex difference in tumor formation is linked to a dif-
ferential immune response whereby males exhibit signi�icantly higher recruitment of CD68-posi-
tive myeloid cells, including phagocytic macrophages and antigen-presenting dendritic cells. In fe-
males, DHT treatment enhances phagocytic macrophages (113). Conversely, androgen deprivation
in males through surgical castration potently blocks this response by suppressing recruitment of
monocyte-derived Cd11c- as well as Cd11b-positive cells (114). Notably, T cell in�iltration is also
reduced with castration (114), suggesting impaired adaptive immunity from the loss of antigen-
presenting cells. This work supports a new role for androgens in promoting antitumor immunity
in the adrenal, and importantly translates to ACC patients. Analysis of The Cancer Genome Atlas
revealed that men have a higher Adrenal Myeloid Response Score than women, which is associ-
ated with better OS and PFS even when patients are strati�ied by sex (114). These �indings may
have signi�icant clinical implications, particularly with respect to hypogonadism that is prevalent in
aging men (115) and a known side effect of mitotane (116)—the only available frontline therapy
for ACC.

Liver Cancer

The development and progression of HCCs manifest more in men than in women (1). Previous re-
search indicates that differences between sexes in occupational roles, smoking habits, and diet ac-
count for higher incidence and mortality rates in men vs women (117). Prior studies also suggest
that the disproportionate manifestation of HCCs in men compared with women can be explained
by sex hormones rather than environmental factors (117). To that end, preclinical models recapit-
ulate the sexual dimorphism observed in humans with HCC, supporting the notion that there are
fundamental biological differences that underly the observed HCC sex disparities. These mechanis-
tic studies have begun to demonstrate how sex hormones crosstalk with pathways involved in cell
proliferation, survival, and migration to promote HCC (11, 118-127). Moreover, a recent study un-
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veiled AR-dependent molecular mechanisms primarily driven by neutrophils promoting male-
driven liver metastasis by creating a protumorigenic milieu for tumor cells residing in this organ
(128). Importantly, these steroid hormone studies may yield tractable treatment approaches.

Overexpression of AR in HCCs has been linked to protumorigenic states, worse prognosis, and
worse OS according to database/genomic results, in vitro studies, in vivo experiments, and emerg-
ing clinical trials (11, 123-127). Paradoxically, loss of function or low expression of AR has also
been linked to the development and progression of HCC, suggesting that AR can also function as a
tumor suppressor (118-122). Thus, both agonists and antagonists of AR signaling have been pro-
posed for the treatment of HCC.

Oncogenic roles for AR in HCC

Liver-speci�ic deletion of the pioneer factors Foxa1 and Foxa2 in a diethylnitrosamine-induced
mouse model of hepatocarcinogenesis that recapitulates the sexual dimorphism observed in hu-
mans completely reversed the oncogenic effects of androgens as well as the tumor suppressive ef-
fects of estrogens (11). Chromatin immunoprecipitation (ChIP)-Seq analysis revealed that
AR/FOXA1/2 complexes drive hepatocarcinogenesis while ERα/FOXA1/2 complexes impair HCC.
In a separate study, high AR expression in human HCC tissues (n = 142) correlated with advanced
disease stage and poor OS (123). Cell culture and xenograft mouse model studies using AR+ HCC
cells demonstrated that these cells have intact AR transcriptional activity and AR-mediated cell
growth that could be blocked with enzalutamide. However, AR inhibition led to feedback activation
of AKT–mTOR signaling to alternatively promote HCC progression by increasing nuclear AR ex-
pression. Combined targeting of AR and mTOR had dramatic anti-HCC activity in vivo. Thus, treat-
ment of AR-driven HCC may require drug combination approaches to overcome AR reactivation
mechanisms.

Tumor-suppressive roles for AR in HCC

Despite the higher incidence of HCC in men, several studies suggest that AR can have tumor-sup-
pressive roles in liver cancer. For example, AR inhibited the expression of the RAS oncogene family
member RABL6 by increasing the expression of the RABL6-targeting miRNA miR-122-5p (118).
These functional studies were supported by clinical correlates derived from the UALCAN, GEPIA,
and ENCORI databases that demonstrated that AR signaling decreases as HCCs progress to later
stages and is negatively correlated with RABL6 expression. Further, preclinical studies using or-
thotopic HCC xenograft models demonstrated that silencing of AR using shRNAs promoted tumor
growth and increased RABL6 expression (118). In a separate study, AR loss of function, via low-
ered miR-325 expression, increased ACP5-mediated HCC cell migration and invasion (120).
Accordingly, AR knockdown in HA22T human HCC cell xenograft models increased ACP5 expres-
sion and metastasis. Similarly, the loss of AR signaling in HCC cells due to hypoxia also increases
the circular RNA circ-LNPEP, which indirectly increases RAB9A expression, leading to the subse-
quent progression of HCC (119). Here, expression of circ-LNPEP, AR, or the combination was mod-
ulated in SK-HEP-1 cells and injected orthotopically into nude mice. AR signaling suppressed
metastasis of HCC, an effect that could be reversed by circ-LNPEP.



The multifaceted roles of AR in HCC suggest a mixed role for the receptor in liver cancer that com-
plicates the use of AR modulators for treatment (Fig. 2). An example of this is a phase II, double-
blind, 2-arm study (NCT02528643, n = 165) testing the ef�icacy of enzalutamide alone in advanced
HCC in men and women that demonstrated no signi�icant effect on OS or PFS (48). The existence
of both procancer and anticancer roles of AR in HCC suggests that an improved understanding of
the downstream effects of AR signaling may yield better therapies that can block the AR's onco-
genic signaling while sparing its tumor-suppressive effects.

Gastric/Lung/Kidney/Esophageal Cancer

The sexual dimorphism observed in several cancer types or subtypes has been linked to environ-
mental and occupational factors. For instance, increased rates of gastric, lung, kidney, and
esophageal cancers in men may be attributed to the higher rates of smoking in men and differ-
ences in diet (129-132). Despite the numerous reports of environmental, recreational, and occu-
pational factors driving sexual dimorphisms in these cancers, less is known about the potential
roles and mechanisms of sex hormones in these malignancies. Reports of AR signaling in gastric
and esophageal cancers suggest oncogenic roles where AR overexpression is negatively corre-
lated with prognosis and enables the expression of other oncogenes such as CCRK via transcrip-
tional activation (133-141). In lung cancer, there are mixed reports on the AR's function, suggest-
ing AR may play contradictory roles in carcinogenesis (142, 143). Likewise, AR has been reported
to have differential effects in renal cell carcinoma metastasis depending on the metastatic site
(144, 145). Hence, targeting AR signaling in these cancers has not been a major clinical focus.

Breast Cancer

AR is expressed in ∼70% of breast cancers but varies between subtype with the highest expres-
sion (∼70-90%) in ERα+ tumors and the lowest (∼10-30%) in triple-negative breast cancers
(TNBCs) (Fig. 3) (55, 146, 147). Clinical studies have correlated altered AR expression with dis-
ease progression and therapy relapse (148-156). However, there are con�licting data with regards
to whether AR is marker of favorable or poor prognosis (149-152, 154-156). Further, attempts to
link serum androgen levels with prognosis have also yielded unclear answers, in part due to the
challenges with measuring available/free intratumoral androgen levels (157). Likewise, a series of
preclinical studies suggest that both AR agonists and antagonists can impair breast cancer in cellu-
lar, ex vivo, and in vivo models (149-151, 154, 158-176). Importantly, early phase (I/II) clinical tri-
als reinforce the paradoxical preclinical �indings that both activation and inhibition of AR may ben-
e�it breast cancer patients (50, 52, 54, 55, 57-60). What is becoming clear is that the AR's role in
breast cancer depends on the subtype as well as host factors (eg, hormonal status—pre-
menopausal vs postmenopausal—body composition).

Triple-Negative Breast Cancer

TNBCs are characterized by the absence of ERα, PR, and HER2 staining. TNBC represents an ex-
tremely aggressive subtype of breast cancer with limited treatment options. As such, there is great
interest in identifying new therapeutic targets for TNBC. Interestingly, a series of microarray stud-
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ies found that TNBCs can be further subdivided (152, 170, 177, 178). Within TNBCs, there is a
population of AR+ tumors commonly referred to as molecular apocrine or the related luminal AR
TNBC that does not express ERα, but demonstrates paradoxical expression of genes typically asso-
ciated with ERα+ luminal breast cancers. Consensus suggests that these apocrine TNBCs are
driven in part by AR and as such, are good candidates for AR signaling inhibitors.

Preclinical studies using AR+ TNBC cell lines (eg, MDA-MB-453) and xenograft (cell line and pa-
tient-derived [eg, HCI-009]) mouse models indicate that AR signaling inhibitors such as enzalu-
tamide and seviteronel have antitumor ef�icacy alone and in combination with other mechanisti-
cally distinct agents such as radiotherapy or CDK4/6, mTOR, and/or PARP inhibitors (160, 163,
165, 166, 168). Conversely, androgens increase the growth AR+ TNBC cells and tumors (149, 160,
171, 172). For these molecular apocrine TNBCs, AR signaling appears to compensate for the lack
of procancer signaling normally provided by other nuclear receptors such as ERα. AR promotes a
gene expression signature resembling that of an ERα-mediated signature, despite the lack of ERα
protein in these cells (152, 170, 171). In addition, AR signaling can increase the phosphorylation
and activity of HER2 and/or HER3 signaling (163, 179, 180), and enhance the transcriptional ac-
tivity of MYC (181). Similar to prostate cancer (182), AR inhibition decreases the expression of
DNA repair machinery, thereby sensitizing breast cancers to PARP inhibitors or radiotherapy
(166, 168).

Clinical studies suggest a potential role for AR signaling inhibitors in the treatment of a subset of
TNBC. A multicenter, single-arm, phase II trial (NCT01842321) of abiraterone acetate plus pred-
nisone in patients with AR+ locally advanced or metastatic TNBC (n = 30) reported that after 6 
months of treatment, patients had a clinical bene�it rate (CBR) of 20% (below its primary endpoint
goal of 25%) with 1 patient having a complete response and 5 patients having stable disease (50).
Here, the ORR was 6.7% (95% CI 0.8-22.1%) and the median PFS was 2.8 months (95% CI 1.7-
5.4%). These data suggest that some patients selected for the molecular apocrine subtype had a
bene�icial response to abiraterone. Likewise, early results from a phase II trial (NCT02580448)
testing seviteronel, another CYP17 lyase inhibitor with partial AR inhibitory activity, in women with
advanced AR+ TNBC or ERα+ breast cancer suggest bene�it from seviteronel with 33% CPR at 16 
weeks (albeit only 6 evaluable patients) for TNBC (51). Since TNBC lacks the ER, it is probable that
any bene�icial effects of CYP17 lyase inhibitors are due to their ability to lower androgens rather
than effects on estrogen levels.

Multiple antiandrogens have also been tested in patients with TNBC. In a single-arm, open-label,
phase II study (NCT01889238) evaluating the safety and ef�icacy of enzalutamide in women with
locally advanced or metastatic AR+ TNBC (n = 78), the primary endpoint of CBR at 4 months was
33% (95% CI 23%-45%) in the evaluable (de�ined as at least 10% AR+ cells by immunohistochem-
istry (IHC) and 1 or more postbaseline tumor assessments) group compared with the intent-to-
treat population (25% CBR; 95% CI 17-33%) (52). Secondary endpoints such as median PFS and
OS also suggested enzalutamide-mediated ef�icacy. PFS was 2.9 months (95% CI 1.9-3.7 months) in
the intent-to-treat group and 3.3 months (95% CI 1.9-4.1 months) in the evaluable group.
Likewise, OS was 12.7 months (95% CI 8.5-16.5 months) in the intent-to-treat population com-
pared with 16.5 months (95% CI 12.7-20.0 months) in the evaluable group. These data support
the notion that enzalutamide has ef�icacy in women with AR+ TNBC. These data are supported by
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another single-arm study of adjuvant enzalutamide in early-stage AR+ TNBC (n = 50) that re-
ported enzalutamide was well-tolerated and exhibited a 3-year disease-free survival of 80% (95%
CI 67-94%) with adjuvant endocrine therapy (53). Further, interim analysis of NCT03383679, a
randomized, phase II trial of darolutamide or capecitabine, an inhibitor of de novo nucleotide syn-
thesis, in patients with advanced AR+ TNBC revealed that 5 of 19 evaluable patients had a 26.3%
CBR (95% CI 9.2%-51.2%) after 16 weeks of darolutamide treatment (54). An open-label, single-
arm, multisite, phase II study (NCT00468715) testing bicalutamide in patients with AR+ERα/PR−
breast cancer (n = 26) (55) (the majority of these patients also had normal HER2 levels and,
hence, �it TNBC criteria) reported that patients had a 19% CBR (95% CI 7-39%) after 6 months of
bicalutamide treatment and a median PFS of 12 weeks (95% CI 11-22 weeks), the latter being
comparable with single agent or combination chemotherapy in similar trials. In addition, a nonran-
domized phase I/II trial (n = 46) testing the CDK4/6 inhibitor palbociclib in combination with bica-
lutamide in patients with AR(+) TNBC (NCT02605486) met its initial primary endpoint, with the
combination therapy having ∼24% PFS at 6 months (56). An important consideration for all these
trials is that, at present, it is unclear whether screening for AR+ tumors selected for a more indo-
lent form of TNBC. Future, randomized trials should help address this issue.

A single trial (NCT02971761) has also been reported that tested the initial ef�icacy of the selective
AR modulator (SARM) GTx-024 (enobosarm) in combination with anti-PD-1 therapy (pem-
brolizumab) in patients (n = 16 evaluable) with AR+ TNBC (63). Although the combination of eno-
bosarm and pembrolizumab had a modest clinical bene�it of 25% at 16 weeks, the trial was
stopped because of the withdrawal of the enobosarm drug supply.

HER2+ Breast Cancer

HER2+ breast cancers overexpress HER2, often as a result of HER2 gene ampli�ications and/or
dysregulation (183). While ∼70% of HER2+ breast cancers are ERα negative, this subtype does ex-
press AR more often than other ERα-negative breast cancer types (eg, TNBC) (157). As noted
above for TNBC, some studies suggest crosstalk between AR and HER2 in ERα–/HER2+ breast
cancers (163, 164, 179). This pathway could be further enhanced by AR-mediated expression of
WNT7B and subsequent coactivation of AR by β-catenin (179). Hence, AR signaling may promote a
HER2+ phenotype in a subset of ER-negative breast cancers. These preclinical �indings are sup-
ported by a clinical study (NCT02091960; n = 89) testing the safety and ef�icacy of enzalutamide in
an open-label, single-arm, phase II study of women with advanced HER2+/AR+ breast cancer pre-
viously treated with the anti-HER2 agent trastuzumab (57). In this study, CBR at 24 weeks was
24% but was not related to AR expression levels or hormone receptor status. Collectively, these
data suggest that while some HER2+ patients bene�it from the addition of enzalutamide, there is a
need to identify biomarkers predictive of response.

ERα+ Breast Cancer

A long-standing debate in the hormone-dependent cancer �ield is regarding the role of AR in ERα+
breast cancer. Without a full understanding of their mechanism of action, androgens were �irst
used for the treatment of breast cancer in the 1940s (157). However, their use was discontinued
in the 1980s due to the discovery of more effective treatments that exhibited fewer masculinizing

https://clinicaltrials.gov/ct2/show/NCT03383679
https://clinicaltrials.gov/ct2/show/NCT00468715
https://clinicaltrials.gov/ct2/show/NCT02605486
https://clinicaltrials.gov/ct2/show/NCT02971761
https://clinicaltrials.gov/ct2/show/NCT02091960


side effects, such as chemotherapy and, later, tamoxifen. Genomic analyses from large clinical co-
horts including METABRIC indicate that AR is rarely deleted in breast cancer and is instead, more
often ampli�ied (184, 185). However, decreased copy number variations are observed in many
breast cancers and track with poor prognosis (184, 185). Consistent with these �indings, the AR
was demonstrated to counter ERα-mediated transformation, and thus have a protective role in
normal breast (186-190). In the past decade, a series of preclinical studies and clinical trials have
explored the use of both activators and inhibitors of the AR to treat ERα+ breast cancer, with both
seemingly opposing strategies capable of inducing anticancer effects.

The case for AR signaling inhibitors in ERα+ breast cancer Enzalutamide blocks 17β-estradiol (E2)-
mediated MCF-7 cell and tumor growth, mainly by decreasing proliferation (149, 162). Similar re-
sults were observed following shRNA-mediated knockdown of AR (162). Enzalutamide also inhib-
ited the DHT-mediated growth of ER+ MCF-7 and BCK4 cells as well as MCF-7 orthotopic
xenografts but did so by also inducing apoptosis (149). Interestingly, while DHT promoted MCF-7
cell growth, combined DHT+ enzalutamide inhibited MCF-7 cell growth greater than enzalutamide
alone, suggesting potential divergent mechanisms of action. It is not known if this phenomenon
would be observed in vivo since enzalutamide alone control groups were not included in the
xenograft experiment.

Mechanistic studies suggest that ER and AR can cooperate, and that the AR is required for maxi-
mum ER DNA binding (162). E2-induced AR binding at novel sites not observed in the presence of
DHT alone. Rather these new AR binding sites were enriched for ER binding sites and estrogen re-
sponse elements. Of note, cell type–speci�ic effects suggest that other factors beyond ER status
such as FOXA1 likely also play key roles in modulating AR activity. Inhibition of the AR using the
antiandrogen enzalutamide or MJC13, which inhibits AR nuclear localization via disruption of the
AR with its cochaperone FKBP52 (191), inhibited E2-mediated growth. Here, AR inhibition sensi-
tized ER+ breast cancer cells to tamoxifen and fulvestrant. Enzalutamide also decreased the
growth of ER+ tamoxifen-resistant MCF-7 cell and orthotopic patient-derived (PT12) xenograft
models, as well as metastatic burden in a PT12 intracardiac injection model of metastasis. As ob-
served in a prior study (149), enzalutamide decreased proliferation in the context of E2-mediated
tumor growth, while in vivo enzalutamide increased tumor cell death in DHT-treated mice.

Interestingly, noncanonical AR activity was also shown to enable endocrine therapy resistance in
ER+ breast cancer (159). In MCF-7 models of endocrine-resistance, knockdown of AR inhibited cell
growth and growth signaling pathways commonly upregulated in recurrent tumors. Notably,
knockdown of AR, but not enzalutamide, increased a subset of ER-mediated signaling cascades and
restored tamoxifen sensitivity to tamoxifen-resistant MCF-7 cells. Accordingly, enzalutamide did
not alter the growth of an ERα+, aromatase inhibitor–resistant PDX model (Gar15-13). Androgens
were not tested in this model. Similar effects were observed in ERα+ MCF-7 and ZR-75-B cells
where overexpression of AR promoted the ER agonist activity of tamoxifen (154, 161). This switch
of tamoxifen's pharmacological activity was proposed to occur via AR-mediated activation of
EGFR-extracellular signal-regulated kinase. Likewise, the synthetic androgen R1881 increased
ERα+ breast cancer cell growth, but only when levels of the Rho guanine nucleotide dissociation



inhibitor (Rho GDI), a potential suppressor of tamoxifen resistance, were low. Likewise, overex-
pression of AR also promoted resistance to aromatase inhibitors in MCF-7 cells, an effect that
could be reversed with antiandrogens (167).

A drawback of many preclinical studies is that they do not evaluate the AR's role in the context of
important host variables such as menopausal status and obesity (Fig. 4), which are factors that
have known effects on ERα+ breast cancer. For instance, in an ovariectomized rat model of post-
menopausal breast cancer, AR promoted tumorigenesis in obese, but not lean rats (169), an effect
that could be blocked by enzalutamide. This study went on to suggest that circulating factors
unique to the obese host such as increased interleukin 6, could �ine-tune the tumor's response to
sex steroid hormones like testosterone. These data suggest that future clinical trials targeting AR
in ERα+ breast cancer will need to account for these additional host factors.

Clinical trials testing the ef�icacy of AR signaling inhibition in ERα+ breast cancer have yielded
equivocal results. In a randomized phase II study (NCT01381874) testing the safety and ef�icacy of
abiraterone acetate plus prednisone ± the steroidal aromatase inhibitor exemestane vs exemes-
tane alone in postmenopausal women with ERα+ metastatic breast cancer pretreated with nons-
teroidal aromatase inhibitors (letrozole or anastrozole) (n = 297), the addition of abiraterone to
exemestane did not improve PFS compared with exemestane alone (4.5 vs 3.7 months; HR 0.96;
95% CI 0.70-1.32; P = .794) (58). In the AR+ subpopulation (n = 227) of this cohort, there was
also no signi�icant bene�it with abiraterone treatment. While there was a trend toward abi-
raterone-mediated bene�it, there were no signi�icant differences between arms observed for the
secondary endpoints of ORR (12.1% abiraterone acetate plus exemestane vs 6.3% exemestane
alone; P = .366) and CBR (22.7% abiraterone acetate plus exemestane vs 12.7%; P = .137). It is un-
clear whether an abiraterone-mediated buildup of progesterone, observed in abiraterone-treated
patients, contributed to the lack of clinical ef�icacy. While subgroup analyses suggested a possible
response to enzalutamide in patients with luminal A, the addition of enzalutamide did not improve
exemestane inhibition of proliferation in a phase II study (n = 194) of preoperative treatment with
enzalutamide in ER+ breast cancer (NCT02676986) (59). Similarly, the addition of enzalutamide to
exemestane did not improve PFS compared with exemestane alone regardless of previous expo-
sure to an endocrine therapy in a phase II, randomized, double-blind, placebo-controlled, multi-
center study (n = 247) of enzalutamide in combination with exemestane in women with advanced
ERα+ or PR+, HER2-normal breast cancer (NCT02007512) (60). However, retrospective analysis
revealed that patients who had not previously received any endocrine therapy (n = 127) and
whose tumors expressed high AR mRNA levels and possibly low ESR1 levels may have bene�itted
from enzalutamide (HR 0.24; 95% CI 0.10-0.60; P = .0011). These results are consistent with a
small (n = 18) phase 2 trial of bicalutamide in combination with aromatase inhibition in ERα+/AR+
breast cancer that was terminated early due to futility (192).

Finally, in a single-arm, open-label, phase II trial (n = 32) of fulvestrant plus enzalutamide in
women with ER+/HER2 normal metastatic breast cancer (NCT02953860), PFS >24 weeks was ob-
served in 22% of patients (61). These �indings included 42% of women who had received prior
fulvestrant, suggesting that the addition of enzalutamide bene�itted patients. Here, the best re-
sponders expressed higher levels of AR and ER, whereas the poorest responders had evidence of
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increase PI3K–AKT–mTOR signaling in their tumors. Increased programmed death-ligand 1 levels
were also observed in the treated patients, suggesting that the addition of immune checkpoint
therapy may bene�it these patients.

The case for AR activators in ERα+ breast cancer While the above-described studies advocate for
the use of AR signaling inhibitors in the treatment of ERα+ breast cancers, there are also com-
pelling data indicating that AR agonists could bene�it these patients. This work began with early
studies demonstrating that androgens inhibited the growth of ERα+/AR+ breast cancer cell lines
such as T47D and ZR-75-1, an effect that could be reversed by co-treatment with antiandrogens
(172, 176). Both basal and estrogen-induced breast cancer cell growth was impaired by andro-
gens (176). A caveat to studies relying exclusively on androgens, such as testosterone and DHT, is
that they can be further metabolized to strong and weak estrogens, respectively (193). Hence,
some effects observed in ER+ cells may be indirect, underscoring the need for complementary ap-
proaches (190, 193). Using mutant expression constructs, AR's DNA-binding domain was shown to
be required for its regulation of ERα activity (151). Accordingly, electrophoretic mobility shift,
ChIP, and ChIP-Seq data indicate that the AR can interact with estrogen response elements in lumi-
nal breast cancer cells and disrupt >25% of ERα-mediated transcription (174). In contrast to the
cooperativity observed in MCF-7 cells (162), ChIP-Seq and microarray expression pro�iling in ZR-
75-1 cells demonstrated a mutual interference between the ligand-activated receptors (AR and
ERα) on transcriptional activity (174). Androgens suppressed estrogen-induced survival and pro-
liferative pathways. Androgen response elements and AR-binding sites were enriched at ERα bind-
ing sites and vice versa. The net impact on transcription when both AR and ER were present de-
pended on the genome locus. In addition to endogenous androgens, SARMs can also inhibit the
growth of ERα+ breast cancer cell and PDX models (175). Ligand-activated AR reprogrammed the
ER and FOXA1 cistrome, inhibiting the growth of breast cancer models driven by wildtype or mu-
tant ERα, the latter being commonly observed in refractory metastatic breast cancers (173, 175).
In the context of mutant ERα, androgens could also inhibit distant metastasis in PDX models (173).
In contrast, enzalutamide had minimal effects in these studies on the growth or spread of the
same ERα+ PDX models (173, 175). The AR-mediated inhibition of ERα genomic signaling and anti-
tumor activity was explored further in a large study using ERα+ cell lines, estrogen-treated, pri-
mary patient-derived explants (n = 17), cell line xenografts, PDX models (n = 4 different models)
derived from metastatic breast cancers expressing wildtype or mutant ERα, and an intraductal in-
jection model of reported tamoxifen-resistant breast cancer (150). Robust antitumor effects of an-
drogens (DHT or the SARM enobosarm) were observed across multiple disease contexts including
resistance to hormone therapy and CDK4/6 inhibitors (150). It was not tested if the androgen-me-
diated tumor suppressive effects could be reversed by co-treatment with antiandrogens. Notably,
androgens were able to improve the ef�icacy of current standard-of-care agents. Conversely, enza-
lutamide had no effect when tested in 2 of the PDX models. Mechanistically, activated AR could se-
quester ER and shared coactivators such as p300 and SRC-3 away from ER target genes control-
ling proliferation and survival (150, 194). Conversely, activated AR increased the expression of tu-
mor suppressors encoded by known AR target genes.

Recent clinical studies provide preliminary support for additional testing of AR agonists in ERα+
breast cancer. In a small (n = 22) phase II study (NCT01616758) examining the initial safety and
ef�icacy of enobosarm in postmenopausal women with AR+/ERα+ metastatic breast cancer who
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previously responded to adjuvant and/or salvage endocrine therapy, 3/15 patients who made it 6 
months on therapy and con�irmed AR+ cancers had stable diseases (64). A phase II, open label,
multicenter, randomized study (NCT02463032; n = 136) investigating the safety and ef�icacy of
enobosarm in postmenopausal women with metastatic or locally advanced ERα+/AR+ breast can-
cer further demonstrated that enobosarm was well tolerated and had positive effects on quality of
life (65). Importantly, a higher percent tumor AR staining correlated with greater enobosarm anti-
tumor activity such that enobosarm-treated patients exhibited a CBR of 52% at 24 weeks when tu-
mors were >40% AR+. These data provided the impetus for a larger randomized, open label,
phase III ARTEST trial (NCT04869943) testing the ef�icacy of enobosarm monotherapy in
AR+/ERα+/HER2− metastatic breast cancer (n = 210) (62).

Conclusions and Future Perspectives

Given the widespread expression of AR throughout the body in both men and women, it is per-
haps not surprising that AR activity has been causally linked to other malignancies beyond
prostate cancer. What is becoming increasingly clear is that AR expression alone is likely not suf�i-
cient to predict for response to AR-targeted therapy in many cancers. Hence, additional markers
are needed to identify optimal patient populations. Moreover, systemic factors known to in�luence
steroid hormone signaling such as menopausal status in women and obesity may also prove to be
important variables when evaluating AR as a therapeutic target. Further re�inement of these new
patient subtypes will help oncologists leverage the arsenal of AR-targeting drugs already available
and, therefore, expand treatment options for these additional cancers.
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Abbreviations

ACC adrenocortical carcinoma

AR androgen receptor

CBR clinical bene�it rate

ChIP chromatin immunoprecipitation

DHT dihydrotestosterone

E2 17β-estradiol

HCC hepatocellular carcinoma

ORR overall response rate

OS overall survival

PFS progression-free survival

PR progesterone receptor

SARM selective androgen receptor modulator

TNBC triple-negative breast cancer
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Figures and Tables

Table 1.

Notable nonprostate cancer clinical trials testing AR modulators

Clinical	trials
identi�ier

Phase Population Size Treatment Primary
outcome
measures

Results Re

AR	antagonists	in	endometrial,	liver,	bladder	and	melanoma	clinical	trials

NCT02684227 II; single arm Measurable stage III,
stage IV, chemonaive

recurrent
endometrioid
endometrial cancer

n = 52 Enzalutamide
plus paclitaxel

and carboplatin

ORR and
proportion

progression
free at 6 
months

ORR 71%;
PFS at 6 

months 79%

(47

NCT02528643 II; randomized Progressive and
advanced HCC; or
nonresponsive HCC

n =
165

Enzalutamide OS at 22 
months;
median follow-

up at 14.65
months

No
signi�icant
difference in

OS

(48

NCT02642913 I/II;

nonrandomized

Advanced HCC n = 28 Enzalutamide ±

sorafenib

PFS Primary

outcome
results not
reported

Ha

al. 
not
pub

NCT02197897 II; single-arm Non–muscle
invasive bladder

cancer

n = 15 Tamoxifen
citrate

Clinical
response of the

marker lesion
over 2.5 years
using RECIST

combined with
�inal biopsy

Primary
outcome

results not
reported

Go
Re

pub

NCT02605863 II;

nonrandomized

Non–muscle

invasive bladder
cancer

n = 1 Enzalutamide Number of

patients with
recurrent
disease at 1 

year

Terminated;

low
enrollment;
sponsor

withdrew
support

Me

al R
not
pub

NCT02300610 I/Ib;

nonrandomized

Stage IV (locally

advanced or
metastatic) bladder

n = 10 Enzalutamide

combined with
gemcitabine

Dose escalation

(all patients
with mUC);

MTD: 160 

mg in 6
participants.

(45

https://clinicaltrials.gov/ct2/show/NCT02684227
https://clinicaltrials.gov/ct2/show/NCT02528643
https://clinicaltrials.gov/ct2/show/NCT02642913
https://clinicaltrials.gov/ct2/show/NCT02197897
https://clinicaltrials.gov/ct2/show/NCT02605863
https://clinicaltrials.gov/ct2/show/NCT02300610


Abbreviations: AR, androgen receptor; CBR, clinical bene�it rate; CR, complete response; DLT, dose-limiting toxicity; ER, es-
trogen receptor alpha; HCC, hepatocellular carcinoma; HER2, human epidermal growth factor receptor 2; ITT, intention to

treat; MTD, maximum tolerated dose; NCT, national clinical trial; ORR, overall response rate; OS, overall survival; PD, pro-
gressive disease; PF, progression-free; PFS, progression-free survival; PR, partial response; RP2D, recommended phase 2
dose; SD, stable disease; TNBC, triple-negative breast cancer.

Figure 1.

AR promotes resistance to BRAF and MEK inhibitors in BRAF-mutant melanomas. Patients harboring BRAF-mutant
melanoma are treated with BRAF and MEK inhibitors (BRAF/MEKi). Treatment-resistant BRAF-mutant melanomas exhibit
increased expression and activity of the androgen receptor (AR).



Table 2.

Steroid hormone production by adrenocortical carcinoma subtype

Molecular	subtype	and	prognosis Total:	n
(%)CoC1:	n	(%) CoC2:	n	(%) CoC3:	n	(%) Unknown:	n

(%)Good

prognosis

Intermediate

prognosis

Poor

prognosis

Adrenal
hormone excess

Silent 16 (51.6%) 6 (19.4%) 4 (12.9%) 5 (16.1%) 31
(33.7%)

Androgen 5 (62.5%) 2 (25%) 1 (12.5%) — 8 (8.7%)

Androgen + estrogen 1 (50%) — 1 (50%) — 2 (2.2%)

Androgen +
mineralcorticoid

— — — 1 (100%) 1 (1.1%)

Cortisol 3 (17.6%) 6 (35.3%) 6 (35.3%) 2 (11.8%) 17

(18.4%)

Cortisol + androgen 3 (15%) 4 (20%) 8 (40%) 5 (25%) 20

(21.7%)

Cortisol +
mineralcorticoid

1 (100%) — — — 1 (1.1%)

Mineralcorticoid 1 (33.3%) 1 (33.3%) 1 (33.3%) — 3 (3.3%)

Estrogen 2 (100%) — — 2 (2.2%)

Unknown 1 (14.3%) — 3 (42.9%) 3 (42.9%) 7 (7.6%)

Notably, androgen-producing tumors are enriched in the subtype with the best prognosis (CoC1). Data are derived from The
Cancer Genome Atlas.
Abbreviation: CoC, Cluster of Cluster.



Figure 2.

Procancer and anticancer roles for AR in HCC. Schematic of reported contrasting roles for AR in HCC. ACP5, tartrate-resistant
acid phosphatase type 5; AR, androgen receptor; ERα, estrogen receptor α; FOXA1, forkhead box protein A1; HCC, hepatocel-

lular carcinoma; mTOR, mammalian target of rapamycin; RABL6, Rab-like protein 6.

Figure 3.

Subtype-speci�ic roles for AR in breast cancer. Schematic of reported roles for AR in ERα+, HER2+ and triple-negative breast
cancer. AR, androgen receptor; BrCa, breast cancer; ERα, estrogen receptor α; TNBC. Triple-negative breast cancer. Figure cre-
ated with BioRender.com.



Figure 4.

Effects of obesity of steroidogenesis. Indicated in blue on the right are the steroid metabolites that have been reported to be
increased in obese individuals. Shown in italics are steroidogenic enzymes. AR, androgen receptor; ER, estrogen receptor;

SARM, selective androgen receptor modulator; SERD, selective estrogen receptor degrader; SERMs, selective estrogen recep-
tor modulator.


