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Abstract

Motivation: Multilevel molecular profiling of tumors and the integrative analysis with clinical outcomes have
enabled a deeper characterization of cancer treatment. Mediation analysis has emerged as a promising statistical
tool to identify and quantify the intermediate mechanisms by which a gene affects an outcome. However, existing
methods lack a unified approach to handle various types of outcome variables, making them unsuitable for
high-throughput molecular profiling data with highly interconnected variables.

Results: We develop a general mediation analysis framework for proteogenomic data that include multiple exposures,
multivariate mediators on various scales of effects as appropriate for continuous, binary and survival outcomes. Our esti-
mation method avoids imposing constraints on model parameters such as the rare disease assumption, while accom-
modating multiple exposures and high-dimensional mediators. We compare our approach to other methods in extensive
simulation studies at a range of sample sizes, disease prevalence and number of false mediators. Using kidney renal
clear cell carcinoma proteogenomic data, we identify genes that are mediated by proteins and the underlying
mechanisms on various survival outcomes that capture short- and long-term disease-specific clinical characteristics.

Availability and implementation: Software is made available in an R package (https://github.com/longjp/mediateR).

Contact: mjha@yuhs.ac

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the main goals in cancer research is to develop accurate prognos-
tic models that can stratify patients into risk groups and suggest custom-
ized therapeutic strategies (Yuan et al., 2014). Genomic and
transcriptomic profiling and the association analysis with clinical out-
comes such as patients’ survival times have greatly improved the under-
standing of the clinical importance of a given gene (Tang et al., 2017) or
group of biologically related genes, called meta-genes (Alcaraz et al.,
2017). Proteins, however, represent the downstream effect of changes
that are accumulated at the DNA and mRNA levels and the effects of
genomic and trancriptomic changes on a phenotype such as survival
may be mediated by changes in protein expression (Kumar et al., 2016).
Proteogenomics is a field of research that integrate genomics, transcrip-
tomics and proteomics to aid the protein-level understanding of gene ex-
pression and to help refine gene models (Nesvizhskii, 2014). Connecting
tumor-derived DNA, RNA and protein measurements into a central-
dogma perspective has the potential to improve clinical characterization
and treatment for patients with cancer (Rodriguez et al., 2021).

The rich data source from The Cancer Genome Atlas (TCGA)
project has excelled prognostic modeling of multilevel molecular
profiles to patients’ clinical outcomes. Overall survival (OS) is the
most well-defined clinical endpoint in TCGA studies with an event
as death from any cause. However, this endpoint assesses the long-
term outcome and may not reflect disease-specific biology due to in-
clusion of non-cancer causes. To this end, the TCGA Pan-Cancer
Clinical Data Resource (TCGA-CDR) generated standardized clinic-
al outcome endpoints including OS, disease-specific survival (DSS)
and progression-free interval (PFI), of more than 11 000 human
tumors across 33 different cancer types and subtypes (Liu et al.,
2018). DSS captures patients’ long-term survival outcome which is
disease specific while PFI reflects short-term clinical behavior be-
cause patients generally develop disease recurrence or progression
before dying.

Our study is motivated by kidney renal clear cell carcinoma
(KIRC) which is the most common and lethal type of kidney cancer.
TCGA Research Network (2013) identified prognostic signatures on
OS at the levels of mRNA, miRNA, DNA methylation and proteins
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that are involved in a metabolic shift for aggressive tumors, includ-
ing the phosphatase and tensin homolog (PTEN) gene, the citrate
(TCA) cycle, fatty acid synthesis (FAS), AMP-activated kinase
(AMPK) complex and the pentose phosphate pathway. Most TCGA
studies including the KIRC study concatenate the multilevel features
into a vector at a single level without consideration of regulatory in-
formation flow that occurs cross-platform. Modeling multiplatform
data in an ordered domain following the central-dogma perspective
allows for regulations from gene to protein expressions and to a clin-
ical outcome. Our overarching goal is to investigate how changes in
gene expressions in key pathways change the clinical outcomes
through altering the expression levels of multiple proteins in a major
function space in cancer. For our specific example of TCGA KIRC,
we use the curated and filtered survival endpoints that recapitulate
patients’ short- and long-term disease-specific clinical responses
from TCGA-CDR. Identification and quantification of such protein
mediators enhance scientific understanding of how changes at the
mRNA level impact a phenotype, which will further facilitate the de-
velopment of novel diagnostic and therapeutic strategies. In another
case study, we also evaluate mutation–survival relations. When a
mutation occurs, the downstream protein products may be altered.
Identifying proteins that mediate the mutation’s effect on survival
sheds light on potential targets for therapeutic intervention in
tumors carrying such a mutation. For these scientific questions, we
propose a general mediation framework for various types of out-
come variables, including without limitation to time-to-event
outcomes.

The literature on mediation analysis dates back to Baron and
Kenny (1986), who studied the concept in linear models with a
single mediator. Robins and Greenland (1992) and Pearl (2001) gen-
eralized the definitions of direct and indirect effects to include non-
linear models. Since then, estimation of mediation effects has been
studied with various outcome distributions (Imai et al., 2010a), with
multiple mediators (Fasanelli et al., 2019; Huang and Pan, 2016;
Zhao et al., 2020) and on different effect scales (VanderWeele and
Vansteelandt, 2010). These models for binary outcomes, however,
require the response to be rare with logistic outcome models (Huang
et al., 2014; VanderWeele and Vansteelandt, 2010). Along the same
line, Gaynor et al. (2018) proposed a probit approximation to the
logistic function, designed for common responses where the rare dis-
ease assumption does not hold.

For survival responses, Tein and MacKinnon (2003) considered
both proportional hazard models and an accelerated failure time
model for mediation analysis. They quantified the mediation effect
based on both mean difference scale and the product of the regres-
sion coefficients, but this approach does not have a clear causal in-
terpretation. Using the counterfactual approach, VanderWeele
(2011) derived a proportional hazards model with a rare outcome or
accelerated failure time model generally on the mean difference
scale. However, the former model requires a rare outcome and
the latter requires strong parametric assumptions. In addition, these
literatures can only accommodate a single mediator. Fasanelli et al.
(2019) proposed mediation analysis for survival outcomes through
specifications of a response model and a propensity model, using
inverse probability weighting to estimate the causal effects on the
hazard ratio scale. This approach avoids specification of a model for
mediators but can only accommodate a binary or categorical expos-
ure. In the presence of high-dimensional mediators, Zhang et al.
(2021) and Rijnhart et al. (2021) proposed a regularized Cox
proportional hazard model on the pathway of mediators to out-
come. They quantified the mediation effect based on the product of
the regression coefficients and the effect on difference of log-hazard
scale, respectively. However, the former work does not provide
quantification for direct/indirect effects and the latter requires a rare
outcome. In addition, both do not fit in with multiple exposures.
Other frameworks, such as Imai et al. (2010a), accommodate a wide
range of response models but measure effects only on the mean dif-
ference scale, which is often not appropriate for binary or survival
responses. With censored survival times, the mean survival time may
not be identifiable. To this end, we consider the difference of

restricted mean lifetime, which is more interpretable (Chen and
Tsiatis, 2001).

In this article, we develop a unified mediation analysis frame-
work for multiomics and clinical datasets in cancer, which contain
multiple potential causes, multiple mediators and categorical and
survival responses that are not suitable for linear models, as well as
the continuous type. Our novel contributions are summarized as fol-
lows: our framework (1) estimates mediation effects with multiple
mediators that may form a correlation structure without requiring
specification of the causal structure among mediators; (2) handles
continuous, binary and survival response models while measuring
mediation effect on various scales appropriate to the given response
model; (3) eliminates restrictive assumptions such as requiring bin-
ary exposures or ‘rare diseases’ for binary response models and (4)
models high-dimensional mediators by employing regularized out-
come models with ridge penalties, which are seamlessly incorpo-
rated in the effect estimation procedure and the resampling-based
inferential procedure. A publicly available mediateR package incor-
porating all of this functionality facilitates wide use of this frame-
work by others.

This work is organized as follows: Section 2 describes our frame-
work in-depth. The value of our framework is demonstrated in sim-
ulations in Section 3 and an application to the TCGA KIRC dataset
in Section 4. We conclude with a discussion in Section 5.

2 Causal mediation analysis framework

2.1 Causal structure
Our mediation analysis framework is based on the multilayered
graphical structure illustrated in Figure 1. We consider q clinical
variable C ¼ ðC1; . . . ;CqÞT 2 Rq as covariates, p genes X ¼
ðX1; . . . ;XpÞT 2 Rp as exposures, r proteins M ¼ ðM1; . . . ;MrÞT 2
Rr as mediators, and a survival outcome Y as response. Variables in
each layer (e.g. X) potentially have causal influence on variables in
the downstream layers (e.g. M and Y). Our framework assesses the
causal effect of any of the Xi for i ¼ 1; . . . ;p on the outcome Y and
quantifies how much of this effect passes through the set of media-
tors M, termed indirect effect, and how much of the effect is through
other mechanisms, termed direct effect (Pearl, 2001, 2009).

We assume that the correlations among the exposures are the
result of observed confounders C, which may also confound the
mediator–exposure relation and unobserved confounders H that
only causally influence X. Thus, the causal assumptions imply
Xi?XjjC;H. Note that the mediation effects for Xi in our model
cannot be derived by treating the other X variables (termed X�i) as
confounders since this would assume that X�i are causes of XI.
Instead, by allowing H, effects are identified without specifying the
causal ordering of the exposures X. In the real data example

Fig. 1. Illustration of directed acyclic graph for mediation analysis where four dis-

joint sets of variables (nodes), covariates (C), exposures (X), mediators ( ) and re-

sponse (Y) have their unique order, C < X < M < Y. The goal is to assess the

causal impact of changing any single exposure X 2 fX1; . . .Xpg on an outcome Y

and quantify how much of this effect is mediated by the set of mediators

M ¼ fM1; . . . ;Mrg. The variables C ¼ fC1; . . . ;Cqg represent potential confound-

ers. Our model assumes that the causal agents may be linked by unobserved factors

(H) and permits mediators to have internal causal or correlation structure
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(Section 4), we investigate the effects of a gene XI within coordinat-
ing modules X such as functional or cell signaling pathways that are
relevant to metabolic process on survival Y and the extent to which
this effect is mediated by proteins involved in major function spaces
in cancer M (translational mechanism as indirect effect) or occurs
through unmeasured gene regulatory paths of X to the outcome (dir-
ect effect). The latent factors H induce correlations among X as
oncogenes and tumor suppressor genes operate within pathways and
functional networks (Boehm and Hahn, 2011).

In the context of our real data application in Section 4, for each
gene Xi, we calibrate a joint indirect effect for the set of proteins M
(mediators), rather than attempting to assess the indirect effect of in-
dividual protein Mj. There are several reasons and implications for
this approach. We avoid having to specify any internal causal struc-
ture among the proteins M as the causal structure is not identifiable
from observational data [see Akbani et al. (2014) for experimental
design of reverse-phase protein array (RPPA) data]. Moreover, path-
specific effects of Xi on Y through only Mj cannot be identified
when there is a mediator–outcome confounder, which is itself influ-
enced by the exposure Xj (Avin et al., 2005; VanderWeele et al.,
2014). This is likely to be the case when the proteins M represent a
set of multivariate measures on the same platform where a high level
of interactions is present owing to protein–protein interactions
(Szklarczyk et al., 2021). Thus, the indirect effect of our analysis is
the causal effect of a gene Xi on Y that is jointly mediated by the en-
tire functional proteomic space that encompasses key functional and
signaling pathways of human cancer (Akbani et al., 2014).

2.2 Direct and indirect effects
Counterfactual random variables are used to formally define causal
interventions and the notions of direct and indirect effects. Let YX¼x0

be the value of Y obtained by setting X ¼ x0, possibly counter to
fact. For notational simplicity, we will write Yx0 when it is clear that
X is being set to x0. Counterfactual notation can also express inter-
ventions on multiple variables. For example, Yx0;m0

is the value Y
would obtain by setting X ¼ x0 and M ¼ m0. Direct and indirect
effects are represented as functions of nested counterfactual varia-
bles, such as Yx00;Mx0

, the value Y would have obtained had X been
set to x00 and had M been set to the value it would have obtained had
x been set to x0.

We review the terms natural direct effect, natural indirect effect
and total effect as used in VanderWeele and Vansteelandt (2010)
and Tchetgen and Shpitser (2012). These definitions admit a decom-
position of total effect into indirect (effect of X on Y passing
through M) and direct (effect of X on Y not through M) effects. We
analyze these on the mean difference scale, the odds scale and the
restricted mean difference scale for continuous, binary and survival
outcomes, respectively. Counterfactual independence and consist-
ency assumptions in Supplementary Section S1 are needed to derive
direct and indirect effects in terms of the joint distribution. The
proofs of the following results can be found in Supplementary
Section S2 and estimators of these quantities are discussed in Section
2.4.

2.2.1 Mean difference and restricted mean difference scale

The average direct effect on the mean difference scale when chang-
ing Xi from x0 to x00 with respect to mediators M is defined as

DEXi
ðx0; x00Þ ¼ E½YXi¼x00;MXi¼x0

� YXi¼x0�: (1)

The counterfactual random variable YXi¼x00;MXi¼x0
is the value Y

would have obtained had Xi been set to the value x00 and had M
been set to the value it would have obtained had Xi been set to x0. In
contrast, YXi¼x0 is the value of Y when Xi is set to x0 (Note YXi¼x0 ¼
YXi¼x0;MXi¼x0

by Assumption 7 in Supplementary Section S1). Thus,
the difference in these counterfactual quantities captures the intui-
tive notion of the change in Y when the direct link from Xi to Y is

changed from x0 to x00 but the indirect link (through M) remains at
x0. Similarly, the natural indirect effect is defined as

IEXi
ðx0; x00Þ ¼ E½YXi¼x00 � YXi¼x00;MXi¼x0

�:

Finally, we have the general mediation formula

TEXi
ðx0;x00Þ ¼ DEXi

ðx0; x00Þ þ IEXi
ðx0;x00Þ:

With survival outcomes, estimators of the expected response (i.e.

E½Yjx;m; c�) often have high variance in the presence of censoring.
Instead, we consider mean survival time restricted to a fixed time L,
that is, E½minðY;LÞjx;m; c� (Chen and Tsiatis, 2001). The restricted

mean is interpreted as the population average of the amount of sur-
vival time experienced during the initial L time of follow-up, provid-

ing an interpretable and clinically meaningful summary of the
survival in the presence of censoring (Uno et al., 2014). Similar defi-
nitions of direct, indirect and total effects can be applied to the

restricted mean survival scale, denoted with superscript (R),

DER
Xi
ðx0; x00Þ ¼ E½minðYXi¼x00;MXi¼x0

;LÞ � minðYXi¼x0;LÞ�;

IER
Xi
ðx0; x00Þ ¼ E½minðYXi¼x00;LÞ � minðYXi¼x00;MXi¼x0

;LÞ�;

TER
Xi
ðx0;x00Þ ¼ DER

Xi
ðx0; x00Þ þ IER

Xi
ðx0; x00Þ:

The left-hand side of Equation (1) cannot be directly estimated

because it depends on counterfactual random variables that are not
observed. However, it is possible to express the direct effect as a
function of the joint distribution of observed random variables,

which then facilitates estimation. Let g : R1 ! R1. In the mean dif-
ference scale or odds scale, gð�Þ ¼ �, and in the restricted mean differ-

ence scale, denoted with superscript (R), gð�Þ ¼ minð�;LÞ. We derive
the ‘direct effect on the (restricted) mean difference’ as

DEXi
ðx0; x00Þ or DER

Xi
ðx0;x00Þ ¼

ð
E½gðYÞjx00;x�i;m; c�pðmjx0; x�i; cÞpðx�i; cÞdx�idmdc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�eðx0 ;x00 Þor eRðx0;x00 Þ

;

�
ð
E½gðYÞjx0; x�i;m; c�pðmjx0; x�i; cÞpðx�i; cÞdx�idmdc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�eðx0;x0 Þ or eRðx0 ;x0 Þ

:

(2)

Again the natural indirect effect can be represented in terms of

the joint probability distribution of the observed random variables.
We derive the indirect effect on the (restricted) mean difference as

IEXi
ðx0;x00Þ or IER

Xi
ðx0; x00Þ ¼ð

E½gðYÞjx00;x�i;m; c�pðmjx00;x�i; cÞpðx�i; cÞdx�idmdc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�eðx00 ;x00 Þor eRðx00 ;x00 Þ

;

�
ð
E½gðYÞjx00; x�i;m; c�pðmjx0;x�i; cÞpðx�i; cÞdx�idmdc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�eðx0 ;x00 Þ or eRðx0 ;x00 Þ

:

The mediation formula states that the total effect is the sum of
the direct and indirect effects. The relative contributions of the dir-
ect and the indirect effects are important for understanding the paths

by which Xi causes changes in Y. For example, if there is no direct
effect, then all changes in Y caused by Xi pass through M.

2.2.2 Odds scale

The total, direct and indirect effects require computing three quanti-
ties, eðx00; x00Þ; eðx0;x00Þ; eðx0; x0Þ. For binary outcome y, VanderWeele
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and Vansteelandt (2010) defined direct and indirect effects on the
odds scale:

DEoðx0;x00Þ ¼
eðx00 ;x00 Þ

1�eðx00 ;x00 Þ
eðx0 ;x00 Þ

1�eðx0 ;x00 Þ
; IEoðx0;x00Þ ¼

eðx0;x00 Þ
1�eðx0 ;x00Þ
eðx0 ;x0 Þ

1�eðx0 ;x0 Þ
:

The total is defined as TEoðx0; x00Þ ¼ DEoðx0; x00ÞIEoðx0;x00Þ:

2.3 Probability models
The probabilistic relationships among the variables in Figure 1 are
specified with parametric and semi-parametric statistical models for
any configurations c, x, m, and y of C, X , M and Y, respectively. We
assume linear relations for the conditional distribution of M given X
and C. Specifically,

m ¼ bðXÞxþ bðCÞcþ bð0Þ þ �; (3)

where bðXÞ ¼ ðbðXÞ
j;i Þ 2 Rr�p, bðCÞ ¼ ðbðCÞj;i Þ 2 Rr�q; bð0Þ ¼ ðbð0Þj Þ 2

Rr; � � Nrð0;R�Þ and R� 2 Rr�r is a covariance matrix. In the case
where mediators are conditionally independent given X and C, R�

will be a diagonal matrix.
We consider three parametric models, linear, logistic and Cox

proportional hazards, for linking Y with X, M and C for continuous,
binary and time-to-event outcomes, respectively. Each of these

models has parameters a ¼ ðaðXÞ; aðMÞ; aðCÞÞ, where

aðXÞ ¼ ðaðXÞ
j Þ 2 Rp, aðMÞ ¼ ðaðMÞ

j Þ 2 Rr, aðCÞ ¼ ðaðCÞj Þ 2 Rq and

að0Þ 2 R1.

Linear : y ¼ xTaðXÞ þmTaðMÞ þ cTaðCÞ þ að0Þ þ d; (4)

where d � Nð0; r2
dÞ is independent of all other terms in the model.

Logistic :Y � BernoulliðpÞ;
logitðpÞ ¼ xTaðXÞ þmTaðMÞ þ cTaðCÞ þ að0Þ;

(5)

Cox proportional hazards: The failure time Y is assumed to fol-
low a hazard function model:

hðyjx;m; cÞ ¼ h0ðyÞex
TaðXÞþmTaðmÞþcTaðCÞ ; (6)

where h0 is the unspecified baseline hazard.

2.4 Estimation and computation of effects
For linear models, the direct, indirect and total effects have simple
definitions in terms of path coefficients from the probability models
in Section 2.3. For non-linear models, we estimate model coeffi-
cients and then numerically approximate indirect and direct effect
integrals in expressions derived in Section 2.2. In high-dimensional
settings, regularized linear, logistic and Cox proportional hazards
models with ridge penalties are incorporated in the model fitting
steps to estimate the path coefficients. The tuning parameters were
selected using cross-validation, minimizing the mean-squared error
(Friedman et al., 2010; Simon et al., 2011). In the forthcoming sub-
sections, we describe estimations of direct and indirect effects that
are applicable to both non-regularized and regularized parameter
estimates by numerical integration.

2.4.1 Mean difference and odds scale

Both the mean difference and odds scale require estimates of three
quantities: eðx00; x00Þ; eðx0;x00Þ; eðx0; x0Þ. We discuss estimation of
eðx0; x00Þ. The algorithms for eðx00; x00Þ and eðx0; x0Þ are nearly identi-
cal. Recall

eðx0; x00Þ �
Ð
E½YjXi ¼ x00;x�i;m; c�pðmjXi ¼ x0; x�i; cÞ

�pðx�i; cÞdx�idmdc:

We plug estimates into unknown quantities in the integrand and
use Monte Carlo sampling to approximate the integral. The quantity
pðmjXi ¼ x0; x�i; cÞpðx�i; cÞ is a distribution on m; x�i; c. We use the
observed data samples x�i;l and cl for l ¼ 1; . . . ;n as a draw from

pðx�i; cÞ. We then draw m l � p̂ðmjXi ¼ x0; x�i;l; clÞ. The bar in m l

denotes the fact that this is the data we simulate, not the actual
observed mediator for sample l. The Monte Carlo approximation is

êðx0; x00Þ ¼ 1

n

Xn
l¼1

Ê½YjXi ¼ x00; x�i;l;m l; cl�:

We specify estimates Ê½Yjx;m; c� using response models in
Equations (4) and (5)

Linear : Ê½Yjx;m; c� ¼ xT âðXÞ þmT âðMÞ þ cT âðCÞ þ âð0Þ;

Logistic : Ê½Yjx;m; c� ¼ p̂ðY ¼ 1jx;m; cÞ

¼ 1

1 þ e�xT âðXÞ�mT âðMÞ�cT âðCÞ�â ð0Þ :

For p̂ðmjx; cÞ, recall by Equation (3) that

mjx; c � NðbðXÞxþ bðCÞcþ bð0Þ;R�Þ:

The m l are simulated from the plug-in-based measure p̂ðmjXi ¼
x0;x�i;l; clÞ. We estimate R� using the sample covariance of the

regression residuals r l ¼ ml � ðb̂ðXÞ
xl þ b̂

ðCÞ
cl þ b̂

ð0ÞÞ.

2.4.2 Restricted mean scale

On the restricted mean scale, the quantities of interest are
eRðx00;x00Þ; eRðx0;x00Þ; eRðx0;x0Þ. These are nearly identical to the terms
for mean difference and odds scales with the exception that Y is
replaced by minðY;LÞ within the expectation. Thus, the numerical ap-
proximation to the integral follows the procedure in Section 2.4.1. The
numerical approximation to the integral can be accomplished by deriv-
ing estimates for the survival function Sðyjx;m; cÞ ¼ PðY > yjx;m; cÞ.
An estimator for the restricted mean is

Ê½minðY;LÞjx;m; c� ¼
ðL

0

Ŝðyjx;m; cÞdy;

with estimates from the Cox proportional hazards model in
Equation (6)

Ŝðyjx;m; cÞ ¼ e

�
�
Ð y

0
ĥ0ðtÞdt

�
ex

T âðXÞþmT âðMÞþcT âðCÞ

;

where ĥ is an estimate of the baseline hazard function and

âðXÞ; âðMÞ; âðCÞ are coefficient estimates.

2.5 Bootstrap confidence intervals and hypothesis tests
There are several existing approaches for creating confidence inter-
vals and performing hypothesis tests in mediation analysis. The
problem of hypothesis testing for the existence of an indirect effect
has generated particular interest because it is practically important
and challenging, due to the composite nature of the null hypothesis
(Barfield et al., 2017). In univariate linear models, the null hypothesis
of no indirect effect is H0 : bðXÞaðMÞ ¼ 0. Thus, the null can be true if
either there is no exposure–mediator causal effect or if there is no medi-
ator–response causal effect. Delta method-based approximations to the
sampling distribution are not valid due to the non-normality of

b̂
ðXÞ

âðMÞ under the null hypothesis. The joint significance test proposes

computing P-values for the tests H0 : bðXÞ ¼ 0 and H0 : aðMÞ ¼ 0. The
maximum of these P-values controls type I errors. This control is con-
servative in the case where both the exposure–mediator and mediator–

response relations are null, that is, bðxÞ ¼ aðmÞ ¼ 0.
We propose computing confidence intervals and hypothesis tests

using bootstrap sampling quantiles. Suppose B bootstrap samples of

the data are taken. Let ÎE
ðbÞ
Xi
ðx0;x00Þ be the estimated indirect effect

when changing xi from x0 to x00 in bootstrap sample b ¼ 1; . . . ;B.
Then, a ð1 � aÞ100% confidence interval for IEXi

ðx0; x00Þ has end-

points at the a=2 and 1 � a=2 quantiles of the ÎE
ðbÞ
Xi
ðx0; x00Þ distribu-

tion. For testing the hypothesis
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H0 : IEXi
ðx0;x00Þ ¼ D; HA : IEXi

ðx0;x00Þ 6¼ D; (7)

let pL and pU be the proportion of bootstrap samples below and

above D, respectively. Specifically, pL ¼ B�1
PB

b¼1 1
ÎE

ðbÞ
Xi

ðx0 ;x00 Þ<D
and

pU ¼ B�1
PB

b¼1 1
ÎE

ðbÞ
Xi

ðx0;x00 Þ>D
. Then, the P-value for hypothesis test

(7) is 2minðpL; pUÞ. Similar procedures can be used to construct con-
fidence intervals and test for direct effects. Following Efron and
Tibshirani (1994, Chapter 13), we compute B ¼ 1000 bootstrap
samples for making confidence intervals. Along the same line, we
can make inference on partial correlation to gain insight into the
mediator–mediator interaction (see Supplementary Section S2.2 for
detail). Larger numbers of bootstrap samples could be used to
ensure that the quantiles of the bootstrap samples better approxi-
mate the bootstrap sampling distribution, at the cost of additional
computation time.

3 Simulations

3.1 Logistic models: bias
In the context of binary outcomes, we compare the performance of
our method with two approximation methods that exploit the rare
disease assumption (VanderWeele and Vansteelandt, 2010) and pro-
bit model (Gaynor et al., 2018). With the logistic model with uni-
variate mediator, if Pðy ¼ 1Þ � 0 then DEoðx0; x0 þ 1Þ � expðaðXÞÞ
and IEoðx0; x0 þ 1Þ � expðbðXÞaðMÞÞ. One can then estimate these
approximations via logistic regression estimates of aðXÞ and bðXÞ.
This estimator is increasingly accurate as the disease becomes more
rare, that is, Pðy ¼ 1Þ converges to 0 (Huang et al., 2014;
VanderWeele and Vansteelandt, 2010). Gaynor et al. (2018) relax
such assumption in the logistic outcome model by using a probit
outcome model to approximate the logistic model, and then they
also derive a closed-form expression of the direct and indirect
effects. The confidence interval is calculated by a multivariate Delta
method under the assumption of normality.

In the single mediator scenario, we compare the accuracy of
these two methods with our approach using the logistic outcome
model. We evaluate bias of direct and indirect effect estimators
across various levels of disease prevalence, rare to common disease
settings. Following Gaynor et al. (2018) (Section 3.1), we simulate

c � Nð0:12; 0:752Þ; x � Nð0:4;0:752Þ

mjx; c � Nð0:1 þ 0:5xþ 0:4c; 0:752Þ

logitðPðy ¼ 1jx;m; cÞÞ ¼ kþ 0:4xþ 0:5mþ 0:25c:

The constant k is varied to generate different prevalences
pðy ¼ 1Þ. At each level of k, we generate simulation data of sample
size n ¼ 500 and evaluate bias of indirect and direct effects based on
N ¼ 5000 replicate runs; the effect estimators are averaged across
the N ¼ 5000 runs and the bias of the estimator is computed
(Fig. 2).

Across all prevalence levels, our approach with numeric approxi-
mation consistently provides the lowest bias for both the direct and
indirect effects. At low prevalence levels, the model with the rare

disease assumption has lower bias than probit approximation for
the indirect effect, but higher bias for the direct effect. For common
diseases with prevalence around 0.5, the probit model performs
much better than the model with the rare disease assumption, which
is as expected.

3.2 Survival outcomes: Type 1 error and power
For survival outcomes, we evaluate type I error by varying the num-
ber of candidate mediators and sample sizes assuming that the true
indirect effect is 0. For a binary exposure with a prevalence prob-
ability of 0.5, we assume that there are five mediators that are corre-
lated with the exposure with R2 ¼ 0:2. We generate 0, 5, 15, 45,
and 95 additional mediators independently from standard normal
distributions that are uncorrelated with the exposure; the total num-
bers of candidate mediators of 5, 10, 20, 50, and 100 are considered
in this simulation. The time-to-event response follows an exponen-
tial model with a Cox proportional hazards model coefficient of 0.5
for the exposure direct effect with 50% censoring, and all the candi-
date mediators have coefficients of 0. In this way, the hazard func-
tion depends only on the exposure but not on any of the mediators.
This is because the true indirect effect is 0. We consider sample sizes
of 50, 100, 200, 400 and the results are summarized based on 500
runs. We estimate the path coefficients using both regularized and
non-regularized regressions, which are used for direct and indirect
effects computations following Section 2.4. With our inferential pro-
cedure in Section 2.5, we evaluate the type I error by coverage prob-
ability, which is the proportion of replications that the estimated
confidence interval covers the true indirect effect. In the null setting,
1� coverage probability is equivalent to a type I error.
Supplementary Table S1 summarizes the coverage probabilities of
estimators from both regularized and non-regularized regressions.
Overall, both the methods control type I error with coverage prob-
ability near or above the nominal level.

We then evaluate the power of our method under various effect
sizes. We keep the exposure–mediator and the exposure–outcome
relationships the same as the type I error evaluation. For the medi-
ator–outcome relationship, those five mediators correlated with the
exposures are assigned non-zero coefficients of 0.2 and 0.1 for simu-
lation settings with the strong and weak mediators in the power ana-
lysis, and the rest of the mediators are kept the same. Violin plots of
the non-regularized results with strong mediators across various
sample sizes are shown in Supplementary Figure S1. Empirically, the
point estimates appear to be converging to the true indirect effect of
�695 and �429 as samples sizes become larger for both strong and
weak mediators’ scenarios, respectively.

With the inference procedure in Section 2.5, we evaluate cover-
age probabilities and power controlling a type I error of 0.05
(Supplementary Table S2). Most coverage probabilities are at the
nominal level, except for those cases where the number of mediators
are relatively large compared with the sample size. Power summa-
rizes the proportion of replications for which that the confidence
interval does not include 0, which measures the ability to correctly
reject a null hypothesis that is indeed false. When sample sizes are
less than 100, the non-regularized estimation provides low power
across all numbers for mediators even when there are no noisy medi-
ators. Power increases as the sample size gets larger. At sample size
of 400, except for the case of weak mediators with 100 mediators,
our approach without regularization achieves proper power. In add-
ition, we evaluate the power using ridge penalties that can handle
more number of mediators than the sample size (Supplementary
Table S3 and Fig. 3). We observe favorable performance in terms of
power using regularization—except for cases of weak mediators
with sample size of 50 and number of mediators of 100, which are
the most challenging simulation setup. The computational time in
minutes is summarized in Supplementary Table S4 and detailed dis-
cussion is included in Supplementary Section S3.2. In a scenario
similar to our data application, with sample size of 400 and number
of mediators of 50, the computational times are around 1 and
12 minutes without and with using ridge regularization, respectively.
In conclusion, although employing ridge estimation into our infer-
ence procedure requires more computational time, it helps to

(a) (b)

Fig. 2. Comparison of methods for computing the (a) direct effect and (b) indirect ef-

fect with logistic models. Numeric approximation has lower bias than the rare dis-

ease approximation and the probit approximation
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improve in detection of non-zero indirect effects in the presence of
both weak and strong mediators.

4 Proteogenomic analyses in kidney cancer

TCGA studies have extensively investigated molecular changes in
cancer patients at the genomic, epigenomic, transcriptomic and
proteomic levels in relation to patients’ clinical data. KIRC is con-
sidered as the most common and lethal type of kidney cancer, and it
has increasingly been identified as a metabolic disease and metabolic
pathways are considered as therapeutic targets of intervention
(Rathmell et al., 2018). Among many other discoveries, TCGA
Research Network (2013) identified key genes and pathways in the
metabolic shifts in aggressive tumors, including TCA cycle, AMPK
gene complex and the PTEN gene, the pentose phosphate pathway
and PAS. (TCGA Research Network, 2013). We assess whether the
causal effect of changes in these key genes within pathways at the
mRNA level is mediated by changes at the protein expression level.
Since increased mRNA expression levels have the ability to increase
protein expression levels via translational mechanisms, it is sensible
to view protein expression levels as potential causal mediators of the
mRNA–survival relations. By exploiting the prior biologic know-
ledge of genes, we may have better chance to identify the genes and/
or proteins involved in cancer progression (Wang et al., 2010). In
addition to mRNA–survival relations, we also evaluate mutation–
survival relations (see Supplementary Section S4.1.2 for detail). A
mutation has not only the ability to regulate the level of protein
expressions but could also alter proteins’ function without altering
the expression levels. Therefore, it is reasonable to view a mutation
as a potential exposure and assess how much of its effect on survival
is mediated by proteins.

We downloaded mRNA expression, somatic mutation and
RPPA-based protein expression data using ‘Download
RNASeqData’, ‘DownloadSomaticMutationData’ and ‘Download
RPPAData’ functions, respectively, in the TCGA-assembler2 R
package (Wei et al., 2017). Pathways and the gene members
involved in a metabolic shift for aggressive tumors from TCGA
Research Network (2013) are summarized in Supplementary Table
S5. The clinical endpoints include OS, DSS and PFI based on defini-
tions in Liu et al. (2018) (Supplementary Fig. S2a–c). OS is defined
as the period from the date of initial diagnosis until death from any
cause. The censored time is from the date of initial diagnosis until
the date of last contact. The DSS event time is from the date of initial
diagnosis to the date of death from the disease and the censored
time is from the date of initial diagnosis to the date of last contact or
death from another cause. Noted that if a patient dies from a non-

disease-related cause, then such individual is considered as right-
censored sample. Hypothetically, a patient would experience a
disease-related event no earlier than the death from any cause (see
Supplementary Fig. S2a and b). PFI is defined as the period from the
date of initial diagnosis until the date of the first occurrence of a
new tumor event, which includes progression of the disease, locore-
gional recurrence, distant metastasis, new primary tumor or death
with tumor. The event time is the shortest period from initial diag-
nosis to any of the events. The censored time is from the date of ini-
tial diagnosis to the date of last contact or the date of death without
disease. Note that in this PFI definition, the events include death
with tumor, but they do not include deaths from other causes, which
is distinguished from the more often used endpoint progression-free
survival (PFS) that does contain death from other causes as an event.
The number of events related to these three outcomes is depicted in
Supplementary Figure S2b. By definition, DSS events are at the inter-
section of those of OS and PFI, and DSS has the longest survival
time among the three. Survival probabilities are estimated in
Kaplan–Meier curves in Supplementary Figure S2c. DSS does not
reach to its median survival time. The median survival time for OS
and PFI is 2564 days ([2190, NA) 95% CI) and 3250 days ([2386,
NA) 95% CI), respectively.

For each of the three endpoints, we aim to assess whether the
causal effect on survival of changes in these key genes within path-
ways (Supplementary Table S5) related to the metabolic process at
the mRNA level is mediated by changes at the protein expression
level. Simulation studies (Section 3) suggest that for relatively small
numbers of exposures and covariates compared with the sample
sizes, our method produces reasonable parameter estimates and
well-calibrated uncertainties. Using ridge penalty enables estimation
of effects for high-dimensional mediators and attains higher power
in detecting the presence of an indirect effect. We use restricted
mean survival truncated to 2000 days given that the estimated me-
dian follow-up time is 1731 days (95% CI, 1525–1871) since restric-
tion time up to median follow-up time is recommended in quality-
adjusted survival analyses (Goldhirsch et al., 1989; Martin and
Simes, 2013).

For each of the survival outcomes and each of the pathways, we
applied the following prescreening procedures: (1) we regressed the
survival outcome on each of the genes within such pathway using
the Cox model. Genes with marginal P < 0.01 were kept as candi-
date exposures. (2) Using the Cox model, we regressed the survival
outcome on each of the proteins, adjusted for all the selected genes
from step (1). Proteins with P < 0.01 were kept as candidate media-
tors. Supplementary Table S6 summarizes the number of exposures
and mediators for each of the mediation analysis. The number of
exposure(s) ranges from 1 to 12, and the number of mediators
ranges from 15 to 72 across the total number of 15 (5 pathways � 3
outcomes) mediation analyses. The Sankey diagram (Fig. 4a) illus-
trates the information flow of a mediation process from each gene to
each survival outcome mediated jointly by proteins that are sorted
by key protein signaling pathways (Akbani et al., 2014;
Bhattacharyya et al., 2020; Ha et al., 2018). The total effect of
mRNA on survival outcomes can be divided into two paths: one
path from mRNA to proteins and then to survival outcome (indirect
effect) and another path from mRNA to the survival outcome
through other biological processes other than those mediators (dir-
ect effect). Edge widths are proportional to absolute values of path
coefficients. The estimated effects and the 95% confidence intervals
are in Supplementary Tables S7–S9. We select genes that have sig-
nificant indirect effects using regularized regressions since it pro-
vides high power in detecting non-zero indirect effects (Section 3.2).

The direct effects of several genes have the same directions as
found in TCGA Research Network (2013). For example, fatty acid
synthase (FASN) in the fatty acid pathway has a significant direct ef-
fect on DSS at a ¼ 0:05. On average, while holding other variables
constant, one unit increase in the expression value in FASN is associ-
ated with 52 days less DSS time without being mediated by those
proteins during 2000 days of follow-up (Supplementary Table S9).
In addition, 6-phosphogluconolactonase (PGLS) in the pentose
phosphate pathway has a total effect of reducing the mean-restricted

Fig. 3. Power for simulation with strong mediators and weak mediators with ridge

penalties for 100 mediators. The true indirect effect is �695 for the strong media-

tors and the true indirect effect is �429 for the weak mediators
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lifetime of PFI by 129 days, and the effect appears to be primarily
direct (Supplementary Table S8).

Besides, PTEN has a significant indirect effect on PFI; however,
its direct effect is not significant (Supplementary Table S7). We fur-
ther identify mediation effects of proteins. From the Sankey diagram
(Fig. 4a), proteins in receptor tyrosine kinase (RTK) and phosphati-
dylinositol 3–kinase (PI3K)/protein kinase B (AKT) mediate PTEN’s
effect on PFI to a large extent. On the other hand, the effect of
PTEN on PFI does not pass through proteins in DNA damage re-
sponse. At a ¼ 0:05, significant mediators of the effect of PTEN on

PFI include several proteins in PI3K/AKT, tuberous sclerosis com-
plex (TSC)/mammalian target of rapamycin (mTOR), RAS/MAPK,
and RTK protein pathways (Supplementary Table S10). This result
is consistent with known biological mechanism that the tumor sup-
pressor PTEN is an upstream regulator of PI3K/AKT (Carracedo
and Pandolfi, 2008; Chu and Tarnawski, 2004; Kanehisa and Goto,
2000). Figure 4b presents the multilayer casual network for PTEN
gene on PFI mediated by translational mechanisms, and within-
mediator interactions. We find that proteins in PI3K/AKT pathways
are significantly correlated with several proteins in RAS/MAPK and

Fig. 4. (a) Sankey diagram illustrates the indirect and direct effects (in days) of mRNA expression on three clinical survival outcomes as mediated by protein expressions

(grouped into pathways). Nodes at the left are mRNA (colored coded by the pathways), cyan nodes at the middle are proteins (grouped into protein pathways), and nodes at

the right are three survival endpoints. Edges are color coded by each of the mediation analyses with edge widths proportional to estimated absolute value of coefficients in re-

gression without ridge penalties. Significant results in total/direct/indirect effect with ridge penalties are highlighted with a star that is in the color that indicates the correspond-

ing survival outcome. (b) Multilayered network of PTEN gene on PFI mediated by proteins. A path PTEN ! protein A ! PFI is connected if protein A is a significant mediator

and the magnitude of the product of the path coefficients is larger than 0.02. Within proteins, we connect two proteins if the P-value of its partial correlation is less than 0.001.

Red indicates positive coefficients and blue indicates negative coefficients
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TSC/mTOR pathways (Fig. 4b), which are known to be co-
expressed: the cross-talk between PI3K/AKT–TSC/mTOR signaling
pathways is a critical biological process regulating cell survival, pro-
liferation and motility (Carracedo and Pandolfi, 2008; Kanehisa and
Goto, 2000); and PI3K/AKT and RAS/MAPK signaling pathways
tightly regulate mammalian target of rapamycin complex 1
(mTORC1) and RTK (Carracedo et al., 2008; Kurtzeborn et al.,
2019; Mendoza et al., 2011).

Supplementary Table S11 and Supplementary Figure S4 summar-
ize the indirect, direct and total effects and 95% confidence intervals
(in days) of a mutation as mediated by protein expression for PFI in
KIRC. BRCA1-associated protein 1 (BAP1) mutation has a signifi-
cant total effect on OS, PFI and DSS, which has the same direction
as reported in TCGA Research Network (2013). It is associated
with worse survival outcomes (Supplementary Table S11). BAP1
also has a significant indirect effect on OS and DSS. Proteins that
significantly mediate the mutation’s effect on survival are summar-
ized in Supplementary Table S12. On average, BAP1 mutation has a
total effect of reducing mean-restricted lifetime in OS by 300 days,
with 234 days explained by changes in protein mediators, 78%
(234/300) of the total effect. Besides, it has a total effect of reducing
mean-restricted lifetime of DSS by 374 days, with 227 days
explained by changes in protein mediators, 61% (227/374) of the
total effect. Although BAP1 has been reported to be a predictive bio-
marker of tumor progression in several cancer types, its clinical role
remains unknown (Gulati et al., 2022; Kuznetsov et al., 2019).
Harbour et al. (2010) report that the loss of BAP1 is associated with
the mRNA expression level of catenin beta 1 (CTNNB1), which
plays a critical role in cell cycles (Li et al., 2009). It is reasonable
that CTNNB1 is a significant mediator of the BAP1 mutation on
survival (Supplementary Table S11 and Supplementary Fig. S4b and
e). Regarding mTOR mutation as exposure, its indirect effect signifi-
cantly reduces mean-restricted lifetime of OS by 154 days
(Supplementary Table S11). mTOR mutations are associated with
increased mTORC1/2 pathway activity (Grabiner et al., 2014). We
observe that MAPK1, MAPK3, ribosomal protein S6 kinase A1
(RPS6KA1) and Y-box binding protein 1 (YBX1) in the pathway
RAS/MAPK significantly mediate the effect of mTOR on OS, and
those proteins are also correlated with each other (Supplementary
Table S12 and Supplementary Figure S4c). This result is expected
since mTORC1 is upregulated by RAS/MAPK signaling pathways
(Carracedo et al., 2008; Kurtzeborn et al., 2019; Mendoza et al.,
2011).

5 Discussion

We proposed a general methodology of mediation analysis for data
observed from random variables that form a multilayered structure
where the layers are naturally ordered and unknown correlation
structures are present within layer. Our method can handle different
choices of outcomes such as continuous, binary and survival, and
measured on the mean, odds and restricted mean scales from linear,
logistic and Cox-proportional hazards models, respectively. The
proposed framework has advantages over existing approaches such
as not requiring assumptions on disease prevalence (rare or common
disease assumptions) in the case of binary outcomes and accommo-
dating continuous exposure variables (x), such as mRNA expres-
sion. The framework controls for confounders and accommodates
correlated mediators without requiring assumptions on the direction
of any mediator causal structure. Our mediateR package makes
these models easily accessible to users.

Bootstrap-based inferential procedure can be used to assess the
existence and likely ranges for the direct and indirect effects that are
evaluated from (non-)regularized regression models. Simulation
studies suggest that, for relatively small numbers of mediators com-
pared with the sample sizes, the models with non-regularized regres-
sion produce reasonable parameter estimates and well-calibrated
uncertainties. For high-dimensional mediators, shrinking the esti-
mated parameters toward 0 using the ridge penalty attains higher
power in detecting the presence of an indirect effect. In choosing the
ridge penalty, we hypothesize that there are many causal variants,

and each have a small contribution to the response (Boyle et al.,
2017; Goldstein, 2009). The ridge penalty provides similar coeffi-
cients for highly correlated predictors, rather than selecting a few
representative ones among a set of highly correlated predictors
(Friedman et al., 2010).

The causal interpretation of direct and indirect effects requires
strong causal assumptions in Supplementary Section S1, including
no unmeasured confounders. The RPPA platform quantifies protein
expression based on antibodies that target nearly 200 predefined
proteins (Li et al., 2013). If an unmeasured true protein mediates the
effect of exposure to the outcome, the effect of the indirect path
mRNA ! protein A ! response is added to the direct effect, which
is interpreted as the effect of unspecified causal mechanisms. Thus,
the mass spectrometry (MS)-based data that cover a wider spectrum
of protein quantifications will help to identify more insightful medi-
ating mechanisms. Besides, technical challenges may affect the qual-
ity of RPPA, including (1) the quality of reference antibodies and (2)
the spatial heterogeneity of sampled tumor regions (Boellner and
Becker, 2015). The presence of measurement error may weaken the
mediator–outcome effect and then lead to an underestimated indir-
ect effect. This may be a possible explanation for the cases where an
mRNA exhibits a significant direct effect even though the gene’s
protein product is considered as a mediator. To a limited extent,
these causal assumptions in Supplementary Section S1 can be
checked, and violations addressed, with additional modeling. For
example, sensitivity analyses can be used to test for unobserved pre-
exposure covariates (Imai et al., 2010b) and a mediator measure-
ment error which biases effect size estimates and can be corrected
via regression calibration (Valeri et al., 2014).
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