
Diet-derived metabolites and mucus link the gut microbiome to 
fever after cytotoxic cancer treatment

A full list of authors and affiliations appears at the end of the article.

Abstract

Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome 

may play a role. In a single-center study of patients undergoing hematopoietic cell transplant 

(n=119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 

patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased 

relative abundances of Akkermansia muciniphila, a species of mucin-degrading bacteria (P = 

0.006, corrected for multiple comparisons).
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Two therapies that induce neutropenia, irradiation and melphalan, similarly expanded A. 
muciniphila and additionally thinned the colonic mucus layer in mice. Caloric restriction of 

unirradiated mice also expanded A. muciniphila and thinned the colonic mucus layer. Antibiotic 

treatment to eradicate A. muciniphila before caloric restriction preserved colonic mucus, whereas 

A. muciniphila re-introduction restored mucus thinning.

Caloric restriction of unirradiated mice raised colonic luminal pH and reduced acetate, propionate, 

and butyrate. Culturing A. muciniphila in vitro with propionate reduced utilization of mucin 

as well as of fucose. Treating irradiated mice with an antibiotic targeting A. muciniphila or 

propionate preserved the mucus layer, suppressed translocation of flagellin, reduced inflammatory 

cytokines in the colon, and improved thermoregulation. These results suggest that diet, 

metabolites, and colonic mucus link the microbiome to neutropenic fever and may guide future 

microbiome-based preventive strategies.

Introduction

One of the most common and potentially serious complications of cancer therapy is 

neutropenia and subsequent infectious complications, with an estimated mortality of nearly 

10% (1) as well as 100,000 hospitalizations and over $2.7 billion in hospitalization 

costs annually in the United States (2). At particularly high risk are patients undergoing 

chemotherapy for hematological malignancies including acute leukemias and high-grade 

lymphomas, or receiving hematopoietic cell transplantation (HCT) after myeloablative 

conditioning (3).

The degree and duration of neutropenia has long been identified as a critical clinical 

parameter predicting infection (4). More recently, the role of the intestinal microbiome 

in neutropenia-related infections has been increasingly appreciated, with most documented 

bacterial infections arising from the gastrointestinal tract (5, 6). Most patients, however, will 

not have an infectious etiology identified, and it is not well-understood why only some 50% 

of patients with profound neutropenia become febrile. Observational studies on patients with 

acute myeloid leukemia (AML) have described alteration to the gut microbiome, known as 

dysbiosis, detected at the first episode of febrile neutropenia (7). Additionally, metabolic 

profiling has suggested a loss of microbiota-derived protective metabolites during episodes 

of febrile neutropenia (8). Similar studies in the pediatric patients undergoing HCT have 

linked the longer duration of febrile neutropenia to a higher degree of gut dysbiosis (9)). 

However, pathophysiology of the potential role played by typically nonpathogenic intestinal 

commensal bacteria has not been extensively studied. Herein we sought to gain insight into 

the contribution of the gut microbiome to the pathophysiology of neutropenic fever using a 

combination of human samples and experimental mouse models.

Results

The composition of intestinal bacteria at onset of neutropenia is associated with 
subsequent development of fever

We began with an examination for a potential relationship between the composition of 

intestinal bacteria and fever in patients who developed neutropenia in the setting of HCT. 
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We examined a cohort of 119 patients at the University of Texas MD Anderson Cancer 

Center who all developed neutropenia after HCT conditioning. Of these, 56 (47%) remained 

afebrile over the next 4 days, whereas 63 (53%) developed a fever, of which 7 were 

found to have a bloodstream infection, including 5 with Enterobacteriaceae and 2 with oral 

streptococci. The initial microbiome analyses described below include these 7 patients with 

bloodstream infections with those who developed fever. Prior to stool collection, patients 

were treated with prophylactic levofloxacin given daily per our institutional standard. 

Additional patient characteristics are provided in Table 1. Receiving either an autologous 

HCT or an HCT after a preparative regimen based on both busulfan and melphalan was 

associated with increased fever (Table 1), likely reflecting increased conditioning intensity.

We evaluated stool samples collected at the onset of neutropenia, which preceded potential 

development of fever in all eligible patients. In these samples we compared the microbiome 

between those patients who did or did not develop fever over the next 4 days, finding 

a significant difference in beta-diversity (P = 0.02, permutational MANOVA, Figure 1A). 

Patients who later developed fever had increased relative abundance of bacteria from the 

genus Akkermansia (P = 0.006, adjusted for multiple comparisons), as well as bacteria 

from the genus Bacteroides (P = 0.01), whereas bacteria from the class Bacilli and from 

the order Erysipelotrichales were increased in patients who were afebrile (Fig. 1B-D). 

Applying a relative abundance threshold of 0.1% to classify patients as having high or low 

abundances of Akkermansia showed a significant association between high Akkermansia 
with subsequent fever (Fisher’s test P=0.02), with 32% of afebrile patients having high 

Akkermansia in comparison to 54% of febrile patients. Similarly, an abundance threshold 

of 5% to classify patients as having high or low abundances of Bacteroides also showed 

a significant association between high Bacteroides with subsequent fever (Fisher’s test 

P=0.0009), with 37% of afebrile patients having high Bacteroides in comparison to 

68% of febrile patients. Bacterial taxa associated with bloodstream infections, including 

Enterobacteriales, Streptococcus, and Enterococcus (10), were not associated with fever.

The recently identified genus Akkermansia currently includes only one species present 

in the intestinal tract of mammals, Akkermansia muciniphila (A. muciniphila), whereas 

Bacteroides is quite diverse. A. muciniphila and several members of Bacteroides are known 

to have mucin-degrading capabilities (11), and so we asked if intestinal bacteria from 

patients with febrile neutropenia had an increased ability to degrade mucin glycans. We 

adapted an approach where certain carbohydrates including mucin glycans can be quantified 

from liquid samples using periodic acid-Schiff's reagent (fig. S1A-B) (12). We found 

that this method could quantify the concentrations of glycans derived from commercially 

available porcine gastric mucin in media. After a 48-hour culture we quantified a reduction 

in glycan concentration in media inoculated with isolates of A. muciniphila (ATCC 

BAA-835) or Bacteroides thetaiotaomicron (B. thetaiotaomicron, ATCC 29148), but glycan 

concentrations were not altered by an isolate of E. coli that does not degrade mucin despite 

abundant growth (ATCC 700926, fig. S1C). We applied this assay to aliquots of patient 

fecal samples from Figure 1 and found that samples from patients with higher combined 

relative abundances of Akkermansia and Bacteroides were more effective at consuming 

mucin glycans (Fig. 1E).
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We asked if introducing the flora of neutropenic patients who later developed fever to 

germ-free mice could mediate harm following cytotoxic therapy. We utilized total body 

radiotherapy (9 Gy RT) as a model of systemic cytotoxic therapy that induces neutropenia 

and non-invasively monitored ocular surface temperatures to quantify morbidity (13). In 

contrast to humans, mice develop hypothermia in response to exposure to inflammatory 

ligands such as LPS (14) as well as in models of sepsis (15), an observation attributed 

possibly to differences in body size. We found that, as expected, RT induced hypothermia 

in specific-pathogen-free (SPF) mice, with an approximately 2°C reduction seen on day 5, a 

time point chosen because some mice would often become moribund by days 6-7 (fig. S2A). 

We thus used hypothermia as a murine surrogate for studying morbidity after RT. Applying 

this model to patient avatar mice, we found that avatars of febrile and afebrile patients 

had similar degrees of hypothermia after RT (fig. S2B). In unirradiated mice, differences 

in the relative abundances of Akkermansia continued to be observed, demonstrating some 

compositional stability following introduction of patient fecal samples. However, following 

RT, afebrile avatar mice no longer showed a reduced relative abundances of Akkermansia 
compared to febrile avatar mice (fig. S2C-D). Together these results indicate that there 

was no impact of the introduced patient microbiome on radiation-induced hypothermia nor 

microbiome composition following cytotoxic therapy. Rather, RT itself led to compositional 

changes in mice resembling the microbiome profile of febrile patients.

We asked if, similarly to mice, cytotoxic therapy in patients could induce changes in relative 

abundances of bacteria of patients undergoing HCT. For most patients from our cohort (32 

of 56 without fever and 44 of 63 with fever), baseline stool samples were collected at least 4 

days prior to onset of neutropenia and available for comparison. We found that patients who 

later developed fever had significantly increased Akkermansia and reduced Bacilli at onset 

of neutropenia compared to baseline, whereas afebrile patients had no significant changes 

over time in any of the bacteria associated with fever (P = 0.003 and P = 0.037; Fig. 1F, 

fig. S2E). In summary, we identified an increase in the relative abundance of bacteria with 

mucolytic properties in neutropenic patients who later developed fever, and Akkermansia in 

particular was increased in patients who later developed fever.

Radiation or chemotherapy can change the composition of intestinal bacteria in mice 
leading to increases in Akkermansia and thinning of the dense colonic mucus layer

The fact that our previous analyses had been performed only in patients not receiving broad-

spectrum antibiotics suggested a non-antimicrobial mechanism was mediating the increased 

relative abundance of mucolytic bacteria. Our patient avatar results also suggested that 

cytotoxic therapy could modulate the composition of the microbiome into a profile similar 

to that of patients who develop fever. Thus, we sought to test the hypothesis that transplant 

conditioning could change the composition of the intestinal microbiome, beginning with 

total body radiotherapy. Normal SPF C57BL/6 mice were exposed to 9 Gy RT, and their 

stool samples were evaluated 6 days later by 16S rRNA gene sequencing. Similar to what 

we observed in afebrile avatar mice, the microbiome of SPF mice on day 6 after RT was 

changed compared to unirradiated mice (Fig. 2A). The profile was reminiscent of that seen 

in patients undergoing HCT who had febrile neutropenia, showing increases in the relative 

abundance of Akkermansia, and to a lesser degree, Bacteroides (Fig. 2B-D). Notably, we 
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did not observe compensatory reductions in Bacilli or Erysipelotrichales, as was observed 

in patients with febrile neutropenia. Rather, we found reductions in bacteria from the family 

Muribaculaceae, a recently named group of bacteria that is commonly found in high relative 

abundance in mice but is usually a minor contributor in the intestinal tract of humans (16). 

We asked if this change in bacterial composition was accompanied by functional changes 

and found that bacteria derived from stool samples of irradiated mice more efficiently 

degraded mucin glycans than bacteria from unirradiated mice in vitro (Fig. 2E). We then 

asked if the dense colonic mucus layer, which normally separates bacteria-rich luminal 

contents from the colonic epithelium, was affected by irradiation in mice. To evaluate this, 

colonic tissue samples were cut cross-sectionally and mucus layer thickness was averaged 

across 8 equally-spaced circumferential sites (fig. S3). We found that the mucus layer was 

significantly thinner in irradiated mice compared to normal mice (P = 0.003; Fig. 2F).

Myeloablative RT, a foundational pillar which made HCT possible, has been progressively 

replaced by chemotherapy, particularly alkylating agents (17). We thus evaluated treating 

mice with the alkylating agent melphalan and found that this led to significant changes in 

the microbiome, marked by an increase in the relative abundance of Akkermansia, similar to 

that seen after RT (P = 0.001; Fig. 2G-J). An expansion of Bacteroides was not statistically 

significant after correction for multiple comparisons, although a loss of Muribaculaceae, 

similar to that following RT, was observed. Histological analysis demonstrated that the 

mucus layer was significantly thinner in melphalan-treated mice, similar to that after RT (P 
= 0.01; Figure 2K).

We asked why the intestinal microbiome appeared to be impacted similarly in response 

to different cytotoxic therapies. We first evaluated for direct effects of RT on intestinal 

bacterial composition by irradiating mouse fecal pellets and cultivating bacteria on agar 

plates. We then swabbed all bacterial colonies that grew and evaluated their taxonomical 

composition by 16S rRNA gene sequencing. We found that exposure to irradiation resulted 

in no enrichment for Akkermansia or Bacteroides, though Akkermansia relative abundance 

was low due to its relatively slow growth rate in vitro (fig. S4A). We also introduced bacteria 

from irradiated fecal pellets orally to mice previously treated with an oral decontaminating 

antibiotic cocktail. We again found that exposure to irradiation had no discernible effect 

on the composition of bacterial populations, including no enrichment for Akkermansia or 

Bacteroides (fig. S4B).

Caloric restriction in mice is sufficient to produce changes in the composition of the 
intestinal bacteria similar to those seen after cytotoxic therapy

Diet is known to be a major determinant of intestinal microbiome composition. We asked 

if RT could be impacting the microbiome composition indirectly, by causing a reduction 

in intake of food in mice. We individually housed RT-treated mice in metabolic cages to 

quantify effects on food and water intake. We found that within 2 days after RT, mice had 

reduced their oral intake to approximately 2 grams a day, or a 50% reduction (Fig. 3A). To 

evaluate whether caloric restriction (CR) could impact intestinal microbiome composition 

and the colonic mucus layer, we took healthy, unirradiated mice, and limited their access 

of chow to 2 grams per mouse per day for 7 days. We found that caloric restriction 
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resulted in marked changes in the microbiome characterized primarily by expansion of 

Akkermansia and, to a lesser extent, an expansion of Bacteroides and loss of Bacilli (Fig. 

3B-E). Mucin glycan degradation was more robust after CR (Fig. 3F), and the colonic mucus 

layer was also significantly thinner (P < 0.0001; Fig. 3G). To evaluate if CR was impacting 

mucin production, we evaluated goblet cells, specialized epithelial cells that are the primary 

producers of mucin in the colon. Neither the numbers of goblet cells per crypt, nor the 

combined surface area of goblet cells in a cross section of colonic tissue, were impacted 

by CR (fig. S5A). RNA expression of the gene encoding the predominant mucin in the 

small and large intestine, Muc2, was not changed in colonic tissue homogenates from mice 

after CR (fig. S5B). Altogether, these results indicated that a reduction in oral nutrition was 

sufficient to produce a thinner colonic mucus layer, possibly through an increase in mucin 

degradation leading to increased consumption of mucin, whereas the production of mucin 

appeared to be intact.

Manipulating the intestinal bacteria of mice with different antibiotics and bacterial 
reintroduction indicates that Akkermansia is required for thinning of the colonic mucus 
layer with CR

Akkermansia is nearly universally found in fecal samples of commercially available mice 

(18). Germ-free mice are available but have been reported to have many derangements in 

mucosal immunity including an underdeveloped colonic mucus layer (19). We confirmed 

this to be the case, with germ-free mice having a poorly developed colonic mucus 

thickness. We additionally found that mono-associating mice with a murine isolate of A. 
muciniphila (MDA-JAX AM001) derived from the feces of C57BL/6 mice for two weeks 

was not sufficient to restore a normal-appearing colonic mucus layer (fig. S5C). Thus, to 

allow evaluation of the contribution of Akkermansia to mucus thinning during CR, we 

turned to narrow-spectrum antibiotics (Fig. 3H). Specifically, we evaluated streptomycin 

which we found depleted certain Gram-positive bacteria but spared both Akkermansia and 

Bacteroides; vancomycin, which depleted both Gram-positive bacteria and Bacteroides but 

spared Akkermansia; and azithromycin, which depleted Akkermansia as well as some 

Gram-positive populations but spared Bacteroides (Fig. 3I). Each of these antibiotics 

was administered continously in the drinking water of mice during CR. We found that 

neither streptomycin nor vancomycin had a significant effect on mucus thickness, whereas 

azithromycin treatment prevented thinning of the colonic mucus layer (P = 0.01; Fig. 

3J) indicating that Akkermansia could be required for increased mucolysis during caloric 

restriction.

To further assess the contribution of Akkermansia to colonic mucus loss during CR, we 

evaluated antibiotic strategies that could eradicate Akkermansia when administered as 

a course of therapy that is discontinued prior to starting CR. Although even high-dose 

administration of azithromycin was not effective at eradicating Akkermansia in mice (fig. 

S5D-E), we found that pre-treatment with a 3-week course of tetracycline was sufficient 

to eradicate Akkermansia, as had been reported previously (18), with relative abundances 

remaining undetectable after completing treatment even after CR (Fig. 4A-B). Tetracycline 

pre-treatment resulted in no appreciable thinning of colonic mucus following CR (Fig. 4C). 

Further, reintroducing Akkermansia to tetracycline pre-treated mice was sufficient to restore 
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mucus thinning after CR (Fig. 4B-C). Together these data indicate that the presence of 

Akkermansia is required and sufficient for increased mucolysis during CR.

Production of short-chain fatty acids is affected by CR

To identify potential mechanistic links between diet and microbiome composition, we 

hypothesized that CR was perturbing normal commensal bacterial metabolism in the 

intestinal lumen, and began by asking if metabolic substrates entering the colon were 

impacted by CR. To evalute this we performed bomb calorimetry on cecal contents of mice 

and found that restricted mice had fewer calories entering the colon (Fig. 5A). Among the 

most abundant products of intestinal bacterial metabolism are organic acids, and thus we 

quantified pH in the colonic lumen and found that caloric restriction resulted in a raised 

pH of approximately 7.2 compared to 6.5, indicating overall reduced metabolism (Fig. 5B). 

To better characterize this rise in pH, we quantified specific bacterial metabolites using 

ion-chromatography mass spectometry, and found that caloric restriction led to reduced 

concentrations of acetate, propionate and butyrate, and increased succinate (normalized 

results in Fig. 5C, raw results in fig. S6A). Succinate is a metabolic precursor of 

propionate (20), suggesting that caloric restriction could be inhibiting enzymatic conversion 

of succinate to propionate.

Acidity and propionate ceoncentrations inhibit mucin utilization by Akkermansia in vitro

We asked if CR-induced metabolic changes in the colonic lumen affected A. muciniphila 
behavior. To study this, we turned to our in vitro mucin glycan consumption assay. We 

introduced murine A. muciniphila to liquid media supplemented with porcine gastric mucin, 

and evaluated the effects of varying pH either alone or with physiological concentrations of 

acetate, propionate, and butyrate.We found that progressively lowering the pH conditions of 

bacterial media led to increased inhibition of A. muciniphila in terms of both growth and 

mucin glycan degradation (Fig. 5D). We also found that higher concentration of propionate 

had inhibitory effects on mucin glycan utilization by A. muciniphila (Fig. 5E) and led to 

growth delays (fig. S6B) whereas acetate and butyrate each had negligible effects on A. 
muciniphila behavior. We also evaluated the effects of acetate, propionate, and butyrate at 

concentrations beyond physiological concentration on A. muciniphila in pH 6.8 conditions. 

We found that propionate inhibited mucin consumption at a concentration of 10 mM, and 

further increasing the concentration led to increased inhibition of A. muciniphila growth, 

with complete growth inhibition occuring at 40 mM (Fig. 5F-G). Butyrate was less potent, 

with 40 mM required to suppress mucin consumption and concentration of 100 mM required 

to completely growth. Acetate, even at high concentrations, had only slightly suppressive 

effects on A. muciniphila mucin degradation and growth. Taken together, these results 

demonstrated that propionate, and to a lesser degree butyrate, as well as acidity, have 

suppressive effects on the utilization of mucin by A. muciniphila.

We asked if this finding that propionate can inhibit mucin glycan degradation by A. 
muciniphila was potentially true for other species of bacteria. To evaluate this we examined 

mucin utilization in vitro by strains of Bacteroides (21, 22), Parabacteroides (23), Alistipes 

(24), Bifidobacterium (25), and Ruminococcus (26-28). These data demonstrated that 
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propionate can suppress mucin utilization by Parabacteroides distasonis, but not that of 

other mucin degraders tested (fig. S7A).

Acidified propionate administration during CR prevents thinning of colonic mucus

To see if a combination of acidity and propionate could also suppress A. muciniphila in vivo, 

we supplemented mice during CR with acidified sodium propionate in the drinking water, 

and found that this reduced fecal pH (fig. S7B), mitigated expansion of Akkermansia (Fig. 

5H) and prevented thinning of the mucus layer (Fig. 5I). Similar treatment with acidified 

sodium acetate, despite lowering the pH in the colonic lumen, had no such preventative 

effect (Fig. 4H-I), whereas drinking water with sodium propionate at neutral pH was 

sufficient to prevent mucus thinning (fig. S7C-D). Altogether, these results indicate that 

a reduced concentrations of propionate following CR and a higher pH together support 

increased mucolytic activity.

CR or cultivation in ambient propionate produces transcriptomic changes in Akkermansia

To explore how CR can modulate mucin utilization by A. muciniphila, we profiled the 

A. muciniphila transcriptome in stool samples collected from mice that were or were not 

undergoing caloric restriction. We determined the circularized genomic sequence of our 

murine A. muciniphila isolate (MDA-JAX AM001) and identified 1757 putative proteins 

(fig. S8A), including 1373 that were not annotated as “hypothetical proteins”. We then 

performed RNA sequencing on stool samples from mice and considered reads that aligned to 

the A. muciniphila genome to quantify the relative abundance of individual gene transcripts 

expressed by A. muciniphila. Focusing on the 100 most variable genes not annotated 

as “hypothetical”, we found that 38 genes were significantly modulated by CR in vivo 

(DESeq2 test with Benjamini-Hochberg adjustment, P < 0.05, Fig. 6A).

We note that two adjacent genes (136 and 137) encoding fucose utilization proteins were 

both significantly upregulated in calorie-restricted mice (P =0.0004 and P = 0.008). One is 

predicted to be an L-fucose transporter, whereas the other encodes an L-fucose isomerase, 

which converts fucose to fucolose in the first step of bacterial fucose metabolism (29). 

Mucins are proteins decorated by extensive glycan chains that are predominantly capped by 

fucose and sialic acid residues at their branching terminals. The ATCC type strain of A. 
muciniphila has previously been reported to be capable of utilizing fucose as a carbohydrate 

source (30). Because we had found that propionate is reduced with caloric restriction and 

that propionate can directly suppress mucin glycan utilization by A. muciniphila, we asked 

if propionate was sufficient to impact on expression of these fucose-utilization genes in 

vitro. We cultivated murine A. muciniphila with varying concentrations of propionate and 

performed RNA sequencing. This approach demonstrated that both genes 136 and 137 

negatively correlated with ambient propionate concentrations (Fig. 6B), consistent with our 

in vivo results. We also globally evaluated the correlation of effect sizes in the in vivo and 

in vitro settings and found that propionate-related effects observed in vitro only explained 

changes seen in CR at a proportion of 0.05, though the slope was significantly non-zero 

(P < 0.0001, fig. S8B). Representations of gene expression with respect to the genome are 

depicted in Figure S8C and relative gene abundances of all in vivo and in vitro samples are 

provided in data file S1.
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Cultivation in ambient propionate reduces expression of L-fucose isomerase by 
Akkermansia

These results led us to ask if propionate could affect fucose utilization by A. muciniphilia. 

We first evaluated the growth of A. muciniphilia in carbohydrate-poor media supplemented 

with fucose and found that our murine isolate exhibited better growth in the presence of 

fucose (Fig. 6C). We also found that the addition of 10 or 20 mM propionate resulted in 

dose-dependent delays in growth on fucose, as well as reduced consumption of fucose by 

A. muciniphilia, whereas the same concentrations of acetate or butyrate had no appreciable 

effects (Fig. 6D-E).

Next, we focused on quantifying the effects of propionate on expression of L-fucose 

isomerase. We prepared lysates of A. muciniphilia that had been cultivated with mucin 

in varying concentrations of propionate. These lysates were then incubated with fresh 

L-fucose, and resulting concentrations of both L-fucose and L-fuculose were quantified. 

Lysates prepared from A. muciniphilia grown in the absence of propionate were able to 

convert L-fucose to generate L-fuculose. Lysates from A. muciniphilia cultivated in the 

presence of propionate, however, did not efficiently catalyze this reaction, resulting in 

significantly less L-fuculose and higher concentrations of preserved L-fucose (P < 0.0001; 

Fig. 6F). Together, these results indicate that propionate can suppress the utilization and 

enzymatic metabolism of L-fucose by A. muciniphilia, potentially accounting for its reduced 

ability to consume mucin.

Administration of azithromycin or acidified propionate prevents colonic mucus thinning, 
colonic inflammation, and hypothermia in mice after radiation

Last, we asked if either of the two strategies that we had identified as effective in 

preventing loss of colonic mucin during caloric restriction, azithromycin or propionate, 

could also mediate a clinical benefit following cytotoxic therapy. To evaluate this, we 

returned to our RT model and tested the addition of azithromycin or propionate. We found 

that whereas azithromycin was effective at preventing outgrowth of Akkermansia in mice 

following RT, propionate was not (Fig. 7A). Both approaches, however, led to improved 

preservation of colonic mucus layer thickness (Fig. 7B). Because a thinned mucus layer 

quantified from fixed tissue does not necessarily imply a compromised barrier, we also 

characterized the effects of our interventions on intestinal barrier function after RT. We 

quantified serum concentration of the bacterial product flagellin, which can serve as a 

measure of compromised gut barrier integrity (31, 32). We found that RT resulted in a 

significant increase of serum flagellin that could be blocked by the addition of azithromycin 

or propionate treatment (P < 0.0001; Fig. 7C).

These results suggested that strategies to inhibit mucolytic activity of A. muciniphila might 

be effective at reducing inflammation in irradiated mice. To explore this, we characterized 

inflammation severity in colonic tissues by quantifying the concentration of a panel of 

cytokines (Fig. 7D). We found that IL-1β, CCL2, CCL7, IL-22, CXCL1, and CXCL10 

were all elevated in colonic tissues of mice after RT but were reduced with the addition 

of azithromycin treatment. Propionate treatment also prevented elevation of each of these 
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cytokines, except for CXCL1 which remained elevated. We did not observe elevations of 

TNF after RT, nor effects of azithromycin or propionate on TNF concentrations.

We asked if strategies to inhibit mucolytic activity of A. muciniphila, which we had 

originally identified to be associated with development of fever in neutropenic patients, 

could potentially help to prevent fever. We thus evaluated for an impact on RT-induced 

hypothermia by monitoring surface ocular temperatures. We found that after RT, mice 

developed hypothermia as expected. The temperatures of irradiated mice supplemented with 

azithromycin or propionate, however, were substantially less depressed at day 6 (Fig. 7E). 

Ocular temperatures of mice across all experimental groups showed an inverse correlation 

with serum flagellin concentrations, (r = −0.56, P =0.0009; Fig. 7F).

Altogether, results from interventional experiments in mice after RT indicated that 

azithromycin therapy was effective at eliminating intestinal Akkermansia, preserving colonic 

mucus and epithelial integrity, and preventing colonic inflammation and hypothermia, 

whereas propionate therapy was less effective but nevertheless prevented colonic mucus 

thinning, improved epithelial integrity, largely abrogated much of the colonic inflammation 

that occurred after RT, and substantially prevented hypothermia.

Discussion

We found that bacteria with mucin-degrading capabilities, especially Akkermansia, were 

enriched in neutropenic patients who later developed fever, with 32% of afebrile patients 

having an Akkermansia relative abundance greater than 0.1% in comparison to 54% of 

febrile patients. Mucus degraders, however, have been previously implicated in other disease 

settings, including inflammatory bowel disease (28, 33), graft-versus-host disease (34) and 

colonic epithelial carcinogenesis (35). A. muciniphila, identified in 2004 as a specialized 

intestinal mucin-degrading commensal (36), has in particular been associated with increased 

colitis (37) and colonic graft-versus-host disease (34) in mouse models. Other mucin 

degraders include members of the genus Bacteroides, which have been associated with 

murine colitis (38) and are particularly well-studied due to the availability of methods to 

manipulate genetically tractable Bacteroides isolates (39). Ruminococcus gnavus is another 

mucin-degrading species that has been well-studied (40) and has been clinically associated 

with inflammatory bowel disease (41).

In other clinical settings, A. muciniphila is associated with potentially beneficial health 

effects. Loss of A. muciniphila has been observed in individuals with metabolic conditions, 

including obesity and Type 2 diabetes, and supplementation with A. muciniphila may 

mediate a clinical improvement (42). Increased A. muciniphila has also been associated with 

enhanced responses to PD1 blockade immunotherapy in patients with lung and urothelial 

cancers, and superior tumor responses in mice (43).

We observed that the relative abundance of A. muciniphila increased following cytotoxic 

chemotherapy in some patients undergoing HCT, reaching as high as 76.6% in some patients 

who later developed fever. We speculate that this may have been due to poor diet as well as 

possibly receiving antibiotics prior to transplant hospitalization, as any patients administered 
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antibiotics during transplant hospitalization were excluded from the study. One limitation of 

this study is that the abundance of A. muciniphila was highly heterogeneous in both afebrile 

and febrile patients and does not by itself perfectly predict who will or will not develop 

neutropenic fever. An important question that remains to be answered is whether there 

are functional strain differences within the microbiome of individual patients, as has been 

observed in other human cohorts (44), and whether particular subclades of A. muciniphila 
are more or less strongly associated with developing neutropenic fever.

Radiotherapy or melphalan therapy also produced increases in the relative abundance of A. 
muciniphila in mice, and we found that this was likely driven by reductions in oral dietary 

intake. A link between restrictions in diet and A. muciniphila has been observed before, 

including in subjects after Islamic fasting (45) or after as little as three days of deliberate 

underfeeding in the context of a clinical trial (46), and has been recently systematically 

reviewed (47). In mice, intermittent 16 hour fasting for one month resulted in increased 

abundance of A. muciniphila (48), as did 4 days after switching from oral to parenteral 

nutrition delivered following internal jugular vein catheterization (49). Mice consuming a 

fiber-depleted diet were previously found to have expansions of A. muciniphila and mucin-

degrading Bacteroides as well as compromise of colonic mucus, and this led to increased 

susceptibility to colitis secondary to Citrobacter rodentium (30), findings that likely have 

shared mechanisms with our findings in calorie-restricted mice.

Why diet and A. muciniphila are closely linked is not as well understood. We found that 

propionate concentrations in the intestinal lumen were reduced with caloric restriction, 

and that propionate mediated suppressive effects on utilization of mucin glycans by A. 
muciniphila. In addition to A. muciniphila, Staphylococcus aureus has also been shown 

to be inhibited by propionate, whereas acetate and butyrate were not effective (50). 

A. muciniphila has been reported to produce propionate following metabolism of mucin-

derived carbohydrates (51, 52), and thus the presence of propionate, as a metabolic end 

product, may serve as a feedback mechanism to suppress excessive utilization of mucin 

glycans. Inhibition of A. muciniphila by propionate was more pronounced at lower pH 

settings, which could be due to better penetration of propionate through bacterial cell 

membranes in its protonated state, as has been recently observed for acetate uptake by 

Enterobacteriaceae (53). The mechanism by which propionate suppresses mucin utilization 

by A. muciniphila, however, remains unclear and is a limitation of our study. Additionally, 

whether other colonic lumen metabolites besides SCFAs could additionally mediate 

suppression remains an unanswered question.

In our study we focused on intestinal bacteria, especially Akkermansia, and effects mediated 

by propionate on Akkermansia. It is important to acknowledge, however, that propionate 

likely has effects on other intestinal commensal bacteria and is also known to have an 

impact on a variety of host cell types, including epithelial and immune cells. Propionate 

has been demonstrated to mediate these effects through several signaling pathways and 

epigenetic mechanisms. For example, in ileal organoids, propionate has been found to 

modulate the expression of proteins involved in cell cycle control, adipocyte function, and 

lipid metabolism (54). Propionate has also been shown to inhibit histone deacetylases and 
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activate G protein-coupled receptor 43 and STAT3 to modulate intestinal epithelial cell 

migration both in vitro and in vivo (55).

In this study, we presented data indicating that two antibiotics that can suppress relative 

abundances of Akkermansia, azithromycin and tetracycline, may mediate protection against 

toxicities arising from systemic cytotoxic cancer therapy including total body radiotherapy. 

Fluoroquinolones have been best studied as prophylaxis and are recommended by guidelines 

(5) but are not active against most isolates of A. muciniphila (56). Recommending 

azithromycin as prophylaxis, however, can be problematic. In 2018, the U.S. Food and 

Drug Administration (FDA) released a warning regarding a potential increased risk of cancer 

relapse and death with azithromycin use after allogeneic HCT based on the ALLOZITHRO 

randomized clinical trial, a trial which was stopped early due to an imbalance in relapsed 

disease (57). Although subsequent retrospective studies have not reproduced this association 

(58), identifying antibiotics besides azithromycin that have activity against Akkermansia and 

other mucin-degrading bacteria could be a translational strategy to minimize risk for fever in 

neutropenic patients.

In summary, we found that the intestinal microbiome of patients who developed fever in the 

setting of neutropenia was enriched in mucin-degrading bacteria. Further experimentation 

in mice identified interrelated aspects of diet, metabolites, and intestinal mucus. These 

results suggest that development of novel approaches, including dietary, metabolite, pH and 

antibacterial strategies, can potentially better prevent fevers in the setting of neutropenia 

following cancer therapy.

Materials and Methods

Study design

This study aimed to investigate the role of the gut microbiome and diet-derived metabolites 

in developing neutropenic fever among cancer patients in the setting of radiation and 

chemotherapy. We first examined a link between the gut microbiome and fever in a cohort 

of 119 patients who had undergone HCT at MD Anderson Cancer Center. To further 

understand the mechanism of the pathophysiology of neutropenic fever and to develop 

potential therapy, we used preclinical mouse models of irradiation, chemotherapy, and 

calorie restriction. Towards this, we conducted in vivo (SPF mice and Germ-free mice) and 

in vitro experiments using different approaches. Informed consent was obtained with MD 

Anderson Cancer Center Institutional Review Board approval (PA17-0035). The institutional 

Animal Care and Use Committees (IACUCs) at MD Anderson Cancer Center approved 

all the animal studies (IACUC 1705). More details can be found in the supplementary 

materials.

Human samples

Stool biospecimen collection from patients was approved by the University of Texas 

MD Anderson's Institutional Review Board and signed informed consent was provided 

by all study participants. Samples were collected from patients undergoing stem cell 

transplantation and stored at 4°C for up to 48 hours before they were aliquoted for long-term 
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storage at −80°C. Neutropenia was defined as a total white blood cell count less than 500 

per microliter of blood. Neutropenic onset stool samples collected between day −2 to day 

+2 relative to the first day of neutropenia were eligible for inclusion in the study. Patients 

who received antibiotics other than standard bacterial prophylaxis with levofloxacin during 

the hospitalization prior to collection of neutropenic onset stool samples were excluded. 

Fever was defined as an oral temperature greater than 38.0°C within 4 days of neutropenic 

onset stool sample collection. For paired microbiome analyses, baseline stool samples were 

collected between 16 and 4 days (median 5.5 days) prior to neutropenic onset samples.

Mice

Studies in animal models conformed to the Guide for the Care and Use of Laboratory 

Animals Published by the US National Institutes of Health and was approved by the 

Institutional Animal Care and Use Committee. Six- to eight-week-old female C57BL/6 

mice were obtained from the Jackson Laboratory. Six- to eight-week-old female C57BL/6 

germ-free mice for murine studies were provided by the gnotobiotic facility of Baylor 

College of Medicine (Houston, TX).

Total body radiotherapy

Mice were exposed to a single myeloablative dose of total body radiotherapy (9 Gy RT) 

using a Shepherd Mark I, Model 30, 137Cs irradiator.

Murine temperature monitoring

Ocular temperatures were measured using an infrared FLIR E60 camera (FLIR) as 

previously described (9). Briefly, a 20mm lens was attached to the front of the camera using 

a 3D printed lens holder without any modifications to the camera for close-up imaging. 

Ocular temperatures were acquired with a 56 mm focal distance perpendicular to the eye 

being assessed. Data were analyzed by FLIR Tools+ software.

Patient avatar mice

Patient stool samples were suspended at a concentration of 50 mg of stool per mL anaerobic 

PBS, strained through a 100 μm cell strainer and introduced to germ-free mice by gavage 

(200 μL) 14 days prior to RT.

A. muciniphila mono-associated mice

All animal procedures were conducted in compliance with Baylor College of Medicine 

IACUC approved protocols. Germ-free C57BL/6J mice, 9-12 weeks of age, were housed in 

sterile flexible film isolators. Germ-free status was confirmed by fecal collection prior to 

starting the study. Some mice were transferred to a new isolator and treated with oral gavage 

of 108 CFU of Akkermansia muciniphila (MDA-JAX AM001) in 0.2 mL PBS. After 14 

days, both groups of mice were euthanized via inhaled carbon dioxide.

Statistical analysis

Data were checked for normality and similar variances between groups and Student’s t-tests 

and Pearson’s correlation were used when appropriate. Mann-Whitney U tests and Spearman 
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correlation were used to compare data between two groups when the data did not follow 

a normal distribution. Analyses were performed using R software version 3.6.0 and Prism 

version 7.0 (GraphPad Software P values < 0.05 were considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mucin-degrading intestinal bacteria are associated with development of fever after 
onset of post-HCT neutropenia.
Intestinal microbiome parameters at neutropenia onset and subsequent fever were evaluated 

in a cohort of patients undergoing HCT. Stool samples were collected at onset of 

neutropenia (+/− 2 days), and fever outcome was determined by inpatient monitoring 

every 4 hours in the subsequent 4 days after collection. A) Principal Coordinates of 

Analysis (PCoA) was performed on weighted UniFrac distances based on 16S rRNA gene 

sequencing. Statistical significance was determined by permutational MANOVA testing. 

B) Volcano plot of bacterial taxa that were differentially abundant in A). Taxa above the 

green line have a p value less than 0.05; p values were adjusted for multiple comparisons 

using the Benjamini-Hochberg method. C) Relative abundances of bacteria at the genus 

level in samples from A) are indicated in stacked bar graphs. D) Relative abundances of 

bacteria of the indicated taxa are depicted for samples from A); p values were adjusted for 

multiple comparisons. E) Mucin glycan consumption by frozen aliquots of stool samples 

in A) was assayed. Fecal bacteria were cultivated in liquid media supplemented with 

porcine gastric mucin as the predominant source of carbon, followed by quantification of 

remaining mucin glycans after 48 hours. Samples were stratified by median sum relative 

abundance of Akkermansia and Bacteroides. Statistical significance was determined by the 

Mann-Whitney U test. F) In the subset of patients who later developed neutropenic fever, 

relative abundances of bacteria from the indicated taxa in stool samples collected at onset 
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of neutropenia were compared to results of a baseline stool sample collected earlier in the 

hospitalization, using the Wilcoxon signed-rank test.
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Figure 2. Systemic cytotoxic therapy increases the relative abundance of mucin-degrading 
intestinal bacteria in mice.
Evaluation of intestinal microbiome parameters was performed in adult C57BL/6 female 

mice 6 days after total body radiotherapy (9 Gy RT, panels A-E) or 6 days after 

melphalan therapy (20 mg/kg, panels G-K). A) After 9 Gy RT, PCoA was performed on 

weighted UniFrac distances; combined results of 3 experiments. Statistical significance was 

determined by permutational MANOVA testing. B) Volcano plot of bacterial taxa that were 

differentially abundant in A); p values were adjusted for multiple comparisons using the 

Benjamini-Hochberg method. C) Heatmap of scaled relative bacterial relative abundances 

of the indicated taxa are depicted for samples from A). D) Relative abundances of bacteria 

at the genus level in samples from A) are indicated in stacked bar graphs. E) Bacteria 

from frozen stool samples collected from mice in A) were evaluated for mucin glycan 

consumption; combined results of 2 experiments. Statistical significance was determined 

by the Mann-Whitney U test. F) Thickness of the dense inner colonic mucus layer was 

evaluated histologically in mice in A). Representative images are provided with combined 

results of 3 experiments. Statistical significance was determined by the Mann-Whitney U 

test. G) After melphalan therapy, PCoA was performed on weighted UniFrac distances; 

combined results of 3 experiments. Statistical significance was determined by permutational 

MANOVA testing. H) Volcano plot of bacterial taxa that were differentially abundant in G); 

p values were adjusted for multiple comparisons using the Benjamini-Hochberg method. I) 
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Heat map of scaled relative bacterial relative abundances of the indicated taxa are depicted 

for samples from G). J) Relative abundances of bacteria at the genus level in samples 

from G) are indicated in stacked bar graphs. K) Thickness of the dense inner colonic 

mucus layer was evaluated histologically in mice in G). Representative images are provided 

with combined results of 2 experiments. Statistical significance was determined by the 

Mann-Whitney U test.
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Figure 3. Caloric restriction increases the relative abundance of mucin-degrading intestinal 
bacteria in mice.
A) After 9 Gy RT, mice were individually housed in metabolic cages and monitored 

daily for food consumption, water consumption, and weight. Statistical significance was 

determined by the Mann-Whitney U test. B) Intestinal microbiome parameters were 

evaluated in normal mice after undergoing caloric restriction (2 g/mouse/day) for one week. 

PCoA was performed on weighted UniFrac distances; combined results of 3 experiments. 

Statistical significance was determined by permutational MANOVA testing. C) Volcano 

plot of bacterial taxa that were differentially abundant in B); p values were adjusted for 

multiple comparisons using the Benjamini-Hochberg method. D) Heat map of scaled relative 

bacterial relative abundances of the indicated taxa are depicted for samples from B). E) 

Relative abundances of bacteria at the genus level in samples from A) are indicated in 

stacked bar graphs. F) Bacteria from frozen stool samples collected from mice in B) were 

evaluated for mucin glycan consumption; combined results of 2 experiments. Statistical 

significance was determined by the Mann-Whitney U test. G) Thickness of the dense inner 

colonic mucus layer was evaluated histologically in mice in B). Representative images are 

provided with combined results of 3 experiments. Statistical significance was determined by 

the Mann-Whitney U test. H) Experimental schema. Mice underwent caloric restriction as 

in B), with the addition of narrow-spectrum antibiotics administered in the drinking water 

starting 5 days prior to onset of restriction. I) Relative abundances of bacteria at the genus 
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level in samples are indicated in stacked bar graphs; combined results of 2 experiments. J) 

Thickness of the dense inner colonic mucus layer was evaluated histologically in mice in 

I). Representative images are provided with combined results of 2 experiments. Statistical 

significance was determined by the Mann-Whitney U test.
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Figure 4. A) Experimental schema.
Mice were pre-treated with tetracycline administered in the drinking water for 21 days to 

clear the intestines of A. muciniphilia. A murine isolate of A. muciniphila (MDA-JAX 

AM001) was re-introduced 5 days before the onset of restriction. B) Relative abundances of 

Akkermansia on day 7 after CR was quantified by 16S rRNA gene sequencing. Combined 

results of 4 experiments. Statistical significance was determined by the Mann-Whitney U 

test. C) Thickness of the dense inner colonic mucus layer was evaluated histologically in 

mice in B). Statistical significance was determined by the Mann-Whitney U test.
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Figure 5. Bacterial metabolites link caloric restriction to mucolytic bacteria.
A) In mice that underwent one week of caloric restriction, cecal luminal contents were 

assessed for caloric content by bomb calorimetry; combined results of 2 experiments. B) 

Colonic luminal contents were assessed for pH in mice after one week of caloric restriction; 

combined results of 3 experiments. C) Metabolites from samples in B) were quantified 

using ion chromatography-mass spectrometry (IC-MS); combined results of 2 experiments. 

D) Murine A. muciniphila (MDA-JAX AM001) was cultivated under anaerobic conditions 

of varying pH in 4 replicates, and growth and mucin glycan consumption were quantified 

after 48 hours of culture; results of one of two experiments with similar results. p < 0.0001, 

growth of A. muciniphila at pH 5.0 vs. pH 6.75; p = 0.03, mucin degradation at pH 5.0 vs. 

pH 6.75. E) Murine A. muciniphila (MDA-JAX AM001) was cultivated under varying pH 

and varying concentrations of sodium acetate, sodium propionate, and sodium butyrate in 4 

replicates, and mucin glycan consumption was quantified after 48 hours of culture; results 

of one of two experiments with similar results. pH 6.8: P = 0.03, 0 mM vs. 5 & 10 mM 

propionate; P = NS, 0 mM vs. 2.5 mM propionate; P = NS, 0 mM vs. 2.5, 5, and 10 mM 

acetate and butyrate. F) Murine A. muciniphila (MDA-JAX AM001) was cultivated with 

varying concentrations of sodium acetate, sodium propionate, and sodium butyrate. Mucin 

glycan consumption was quantified after 24 hours of culture. Values are shown as averages; 

results of 3 experiments. P = 0.002, 0 mM vs. 10- and 20-mM propionate; P = NS, 0 mM vs. 

10 and 20 mM acetate and butyrate. G) Murine A. muciniphila was cultivated with SCFAs 
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as in F). Growth was monitored continuously up to 48 hours. Values are shown as averages; 

results of one of two experiments with similar results; H) Normal mice received one week 

of caloric restriction, as well as supplementation with sodium acetate or sodium propionate 

in the drinking water, acidified to pH3. Relative abundances of Akkermansia was quantified 

by 16S rRNA gene sequencing; combined results of 3 experiments. I) Thickness of the dense 

inner colonic mucus layer was evaluated histologically in mice in F). Representative images 

are provided with combined results of 3 experiments.
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Figure 6. 
Propionate suppresses L-fucose utilization by A. muciniphilia. A) Transcriptomic profiling 

identifies A. muciniphila (MDA-JAX AM001) genes similarly regulated by diet in vivo and 

propionate in vitro. RNA sequencing was performed on murine A. muciniphila cultivated 

at pH 6.8 with varying concentrations of sodium propionate (as in Figure 5E) in 3 

replicates (left panel), and on fecal pellets from mice after one week of dietary restriction 

(n=5, right panel). Sequences aligning with the genome of murine A. muciniphila were 

quantified, and the scaled abundances of the subset of genes similarly regulated by diet 

and propionate are depicted in the heat map, along with annotations obtained using both 

the CAZy and NCBI RefSeq Protein databases. B) Relative abundance of fucose isomerase 

gene (A) and MFS transporter gene obtained by RNA sequencing performed on murine 

A. muciniphila cultivated at pH 6.8 with varying concentrations of sodium propionate. 

C) Murine A. muciniphila was cultivated in carbohydrate-poor BYEM10 media with and 

without L-fucose supplementation. Growth was monitored continuously up to 72 hours. D) 

Murine A. muciniphila was cultivated with fucose and varying concentrations of sodium 

acetate, sodium propionate, and sodium butyrate. Growth was monitored continuously 

up to 72 hours. Values are shown as averages; results from 3 experiments. E) Murine 

A. muciniphila was cultivated with fucose and varying concentrations of sodium acetate, 

sodium propionate, and sodium butyrate. Fucose remaining was quantified after 40 hours 
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of culture. Values are shown as averages; results of 3 experiments. F) Schematic diagram 

for the conversion of L-fucose to L-fuculose mediated by L-fucose isomerase (Left panel). 

(Center and right panel) In vitro enzymatic activity of L-fucose isomerase from murine 

A. muciniphila grown in mucin with or without propionate. L-fucose remaining and L-

fuculose generated was quantified after a 1-hour incubation. Values are shown as averages; 

results of 3 experiments. L-fuculose concentrations were normalized to median L-fuculose 

concentration of the Akkermansia lysate group. Statistical significance for each graphical 

data set was determined by the Mann-Whitney U test.

Schwabkey et al. Page 32

Sci Transl Med. Author manuscript; available in PMC 2023 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Strategies targeting mucolytic bacteria in mice receiving RT preserve colonic mucus, 
reduce hypothermia, and reduce colonic inflammation.
In the setting of 9 Gy RT, mice were treated with azithromycin or sodium propionate. 

A) Relative abundances of Akkermansia on day 6 after RT was quantified by 16S rRNA 

gene sequencing. Combined results of 3 experiments. Statistical significance was determined 

by the Mann-Whitney U test. B) Thickness of the dense inner colonic mucus layer was 

evaluated histologically. Representative images are provided with combined results of 2 

experiments. Statistical significance was determined by the Mann-Whitney U test. C) Serum 

flagellin concentrations were quantified on day 6 after RT. Statistical significance was 

determined by the Mann-Whitney U test. D) On day 6 after RT, mice were harvested, 

and colonic tissues were processed to quantify concentrations of cytokines. Combined 

results of 3 experiments. Statistical significance was determined by the Mann-Whitney 

U test. E) Ocular temperatures were monitored daily. Representative images 6 days after 

RT are provided with combined results of 2 experiments. Statistical significance was 

determined by the Mann-Whitney U test. F) Quantification of the correlation between 

flagellin concentrations and ocular temperature on day 6 after RT by Pearson coefficient.
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Table 1.

Patient characteristics

Combined No fever Fever p value

Total patients n=119 n=56 n=63

Median age (range) 58 years (23-80) 62 years (23-80) 56 years (23-75) 0.12

Gender

 Female n=49 (41.2%) n=22 (39.3%) n=27 (42.9%)
0.69

 Male n=70 (58.8%) n=34 (60.7%) n=36 (57.1%)

Graft type

 Autologous HCT n=62 (52.1%) n=22 (39.3%) n=40 (63.5%)
0.008

 Allogeneic HCT n=57 (47.9%) n=34 (60.7%) n=23 (36.5%)

Nentropenia depth

 WBC 100-500/∝L n=34 (28.6%) n=15 (26.8%) n=19 (30.2%)
0.84

 WBC <100/∝L n=85 (71.4%) n=41 (73.2%) n=44 (60.8%)

Disease

 Multiple myeloma/PCD n=43 (36.1%) n=16 (28.6%) n=27 (42.9%) 0.11

 Acute myeloid leukemia n=23 (19.3%) n=12 (21.4%) n=11 (17.5%) 0.58

 Non-Hodgkin lymphoma n=20 (16.8%) n=9 (16.1%) n=11 (17.5%) 0.84

 MDS/MPN/MF n=12 (10.1%) n=8 (14.3%) n=4 (6.3%) 0.22

 Acute lymphocytic leukemia n=11 (9.2%) n=7 (12.5%) n=4 (6.3%) 0.34

 Hodgkin lymphoma n=4 (3.4%) n=0 (0%) n=4 (6.3%) 0.12

 Olher n=6 (5%) n=4 (7.1%) n=2 (3.2%) 0.42

Conditioning regimen

 Busulfan-based n=33 (27.7%) n=18 (32.1%) n=15 (23.8%) 0.41

 Melphalan-based n=64 (53.8%) n=32 (57.1%) n=32 (50.8%) 0.58

 Busulfan and melphalan-based n=17 (14.3%) n=2 (3.6%) n=15 (23.8%) 0.0015

 Other n=5 (4.2%) n=4 (7.1%) n=1 (1.6%) 0.19

Conditioning intensity

 Myeloablative n=101 (84.9%) n=44 (78.6%) n=57 (90.5%)
0.08

 Nonmyeloablative n=18 (15.1%) n=12 (21.4%) n=6 (9.5%)

Abbreviations: HCT (hematopoietic cell transplantation), WBC (white blood cell), PCD (plasma cell disorder), MDS (myelodysplastic 
syndrome), MPN (myeloproliferative neoplasm), MF (myelofibrosis). “Other” includes blastic plasmacytoid dendritic cell neoplasm (n=2), chronic 
myelogenous leukemia (n=1), germ-cell tumor (n=1), systemic sclerosis (n=1), and T-cell-prolymphocytic leukemia (n=1).
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