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Abstract

Deep learning methods for image segmentation and contouring are gaining prominence as an 

automated approach for delineating anatomical structures in medical images during radiation 

treatment planning. These contours are used to guide radiotherapy treatment planning, so it is 

important that contouring errors are flagged before they are used for planning. This creates a 

need for effective quality assurance methods to enable the clinical use of automated contours in 

radiotherapy. We propose a novel method for contour quality assurance that requires only shape 

features, making it independent of the platform used to obtain the images. Our method uses a 

random forest classifier to identify low-quality contours. On a dataset of 312 kidney contours, 

our method achieved a cross-validated area under the curve of 0.937 in identifying unacceptable 

contours. We applied our method to an unlabeled validation dataset of 36 kidney contours. We 

flagged 6 contours which were then reviewed by a cervix contour specialist, who found that 4 of 

the 6 contours contained errors. We used Shapley values to characterize the specific shape features 

that contributed to each contour being flagged, providing a starting point for characterizing the 

source of the contouring error. These promising results suggest our method is feasible for quality 

assurance of automated radiotherapy contours.
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1. Introduction

Segmenting anatomical structures in medical images is a critical step in radiation treatment 

planning, as treatment plans are optimized to achieve a high radiation dose to tumor while 

sparing nearby organs at risk. Recently, increasing effort has been put into automating the 

contouring process, as this would save clinicians time, reduce human error, and enhance 

access to radiation therapy in low-resource environments [1]. Deep learning methods like 

convolutional neural networks (CNN) have revolutionized the automation of contouring. 

While the results from these methods are promising, they provide no measures to indicate 

uncertainty or low confidence in challenging cases. Deep learning methods can make 

mistakes in image segmentation and contouring, particularly when faced with real data 

that do not resemble instances in their training data. It is of critical importance to avoid 

contouring errors in radiotherapy planning, as contouring mistakes could lead to overdosage 

of organs at risk. Currently, automatically generated contours must be manually reviewed for 

errors. Creating an automated contour review process to find and flag problematic contours 

would be a more objective and efficient approach.

Some approaches have been proposed to tackle this challenge. McIntosh et al. (2013) used a 

groupwise conditional random forest to detect contour errors based on imaging features [2], 

while Hui et al. (2018) showed that volumetric features of a set of contours can be used to 

fit univariate parametric distributions and find outliers on each feature [3]. Rhee et al. (2019) 

showed promising results using a second CNN-based model for flagging unacceptable 

contours [4]. However, relying on a similar approach for contouring and quality assurance 

may create redundancy, as similar methods may fail in similar ways.

We propose an orthogonal method for flagging unacceptable contours that only uses shape 

features of the contour without relying on deep learning methods or image features. 

This approach was chosen to allow our method to be applicable across various imaging 

systems, as image intensity and radiomic features depend heavily on the platform used for 

image acquisition. Our method accurately flags erroneous contours based on aspects of the 

resulting shapes, avoiding dependence on the imaging modality. Specifically, we trained a 

random forest classifier on shape features of kidney contours and compared its performance 

to alternative machine learning methods in correctly flagging unacceptable contours. We 

demonstrate its application to an external data set, where we identify potential contouring 

errors and characterize the shape features that informed these predictions.

2. Background

2.1 Shape features

Shape features are quantitative summaries that aim to characterize the geometric aspects 

of an object. Existing works on shape analysis, including Dryden [5] and Wirth [6], 

provide numerous examples of shape features that can be used to describe various geometric 

properties. Here, we rely on the features listed in Table 1.

Since several of these shape features require computing the convex hull of an object, we 

provide some additional discussion of the convex hull and its properties. The convex hull of 
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an object is the smallest convex shape that contains the object, as illustrated in Figure 1a. 

The area is the shaded portion, while the convex area is the portion within the convex hull, 

shown as a dotted outline. Furthermore, the perimeter of the shape is calculated from the 

outline of the shaded object, whereas the convex perimeter is calculated from the outline of 

the convex hull.

Additional features of interest include sphericity, which describes how closely the shape 

resembles a sphere (or circle in two dimensions) and is a ratio of the minimum radius to 

the maximum radius. Naturally, for a circle, the minimum and maximum radii are the same. 

Hence the farther this ratio deviates from 1, the less circular the shape. Figure 1b illustrates 

how the minimum and maximum radii used in computing this shape statistic would be 

calculated.

Finally, we include the shape features compactness, convexity, solidity, and roundness. 

These four shape features take values from 0 to 1, where a higher value indicates the shape 

is smoother and less spiky than lower values. In Figure 1c, we see the circle on the left 

would have the highest value on these four shape statistics, and the irregular shape on the 

right would have the lowest value.

3. Methods

3.1 Training dataset

Our training data was obtained from CT scans for cervix radiotherapy treatment planning. 

Here we focus on contouring of the kidney; since most patients have two kidneys, this yields 

two structures per patient plan. The contours were generated by the Radiation Plan Assistant 

(RPA) [7], using a deep learning model based on a CNN algorithm. In total, we obtained 260 

clinically acceptable contours using the RPA. A dosimetrist then manually created erroneous 

contours of several of the same kidney structures, yielding 52 unacceptable contours. Figure 

2 provides an illustrative example showing acceptable and unacceptable contours of a 

patient’s kidney. Typically, an organ at risk will be reflected in multiple image slices, where 

each slice captures a view of the patient’s anatomy for a given orientation and depth.

To extract the contour for downstream analysis, we created a mask for the organ on a 512 

by 512 voxel grid. The entries in the corresponding binary matrix representation were set to 

1 if the voxel coordinate was contained within the contour boundary, and otherwise set to 0. 

We repeated this for every axial slice in the plan until we had a complete three-dimensional 

array of the organ structure. The dimension of each voxel was 1.27mm × 1.27 mm × 2.5 

mm.

3.2 Extracting shape features

We now describe how the shape features described analytically in Table 1 were computed 

in practice. We extracted shape features from the contours using R by inputting the binary 

matrix representation of the contour mask into various functions. The functions assume there 

is a single, closed contour. The perimeter and compactness of a contour were calculated by 

counting the number of voxels on its edge. We relied on the EBImage package to calculate 

the minimum, mean, and maximum radii, by finding the midpoint of the contour and the 
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radii to each edge voxel [8]. With the radii values we calculated sphericity. We calculated 

the convex hull of a contour using the chull function in the grDevices package that returns 

coordinates of the convex hull [9]. We calculated the area and convex area of a contour 

using the concaveman package [10]. Finally, we relied on the shapes package to calculate 

the centroid size [11]. We captured these shape features for every slice in the patient’s 

radiotherapy treatment plan, resulting in a vector of values for each feature across slices.

3.3 Histogram and volumetric features

A challenge in treating these shape features as predictors in a model is that the organ 

structures vary in size across patients, resulting in vectors of different lengths. For example, 

some structures could be defined in 50 slices, while others could be defined in 100 slices. 

In addition, values from neighboring slices tend to be highly correlated. To construct a 

consistent set of summary features, we relied on histogram features which summarize the 

distribution of shape values for each organ.

Specifically, we take all the values from a specific shape feature, and we calculate the 

minimum, 1st quartile, median, mean, 3rd quartile, maximum, and standard deviation. Figure 

3 illustrates an unacceptable and an acceptable 3D structure, along with the shape feature 

distributions for area and convexity. Here, we can see a distinct difference in the shape 

feature distributions. We augmented our feature set by including volume, surface area, and 

the volume to surface area ratio. This resulted in a total of 80 features per structure.

3.4 Machine learning classifier

3.4.1 The random forest algorithm—Random forests are a popular machine learning 

algorithm that use an ensemble of decision trees [12]. Each tree casts a vote for the most 

popular class per input vector. The trees in the random forest are created by partitioning the 

feature space into rectangular regions on a randomly chosen set of features called nodes. 

Based on an optimization criterion, the tree splits at a particular value in the feature space. 

The decision trees created are “weak learners,” meaning a single tree alone would have poor 

accuracy in classification. However, together the trees break up the feature space uniquely 

and make powerful predictions. Random forests are robust to challenging settings, and can 

accommodate non-linear effects, interactions among features, and correlated predictors. In 

addition to strong predictive performance, random forests can provide insight on the relative 

importance of predictors through variable importance scores. To develop our random forest 

model, we used the randomForest package in R with 500 trees and 16 node splits per tree.

3.4.2 Comparators—To assess the performance of the random forest relative to that of 

other machine learning approaches, we applied other popular classifiers including logistic 

regression, lasso logistic regression [13], naïve Bayes [14], and extreme gradient boosting 

(XGBoost) [15].

3.4.3 Model training and performance metrics—To train the classifiers, we 

performed repeated 5-fold cross validation on all 312 kidney observations. For each fold 

we used roughly 80% of the data as a training set and 20% of the data as a test set. 

Performance metrics including the area under the curve (AUC) for the receiver operating 
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characteristic (ROC) and precision-recall (PR) curves were computed on each test set and 

averaged over folds and replicates. We also computed the sensitivity and specificity using a 

default threshold value of 0.5 and an optimized threshold obtained using Youden’s Index.

3.4.4 Shapley values—In a machine learning framework, the Shapley value can be 

used to explain model predictions by calculating each feature’s contribution in a particular 

instance [16]. The contribution for a given feature is calculated by removing that feature 

from the model and seeing how the prediction value changes. If removing a feature 

drastically changes the prediction, then that feature would have a large Shapley value. 

Importantly, unlike variable importance scores, which provide a single ranking of features 

for the entire data set, Shapley values are case-specific. Using the shapr package in R, we 

applied this framework to identify key features driving the model predictions [17]. The 

resulting Shapley values were plotted as a bar chart to provide a starting point for identifying 

why specific contours were flagged.

4. Results

In Table 2, we provide a summary of predictive performance in terms of the AUC for the 

ROC and PR curves, sensitivity and specificity using a threshold of 0.50, and sensitivity 

and specificity using an optimized threshold from Youden’s index (indicated by subscripts). 

The metrics in Table 2 reflect averages over 10 replicates of five-fold CV. The AUC for 

the ROC curve summarizes predictive performance in terms of sensitivity and specificity 

across a range of threshold values. The PR curve is like the ROC curve but focuses on the 

trade-off between precision (also known as positive predictive value) and recall (also known 

as sensitivity). The PR curve is particularly useful in characterizing classification accuracy 

for imbalanced data sets. The proposed random forest prediction model outperformed the 

other classifiers with a cross-validated AUCroc value of 0.937 and one of the highest AUCpr 

value of 0.828 (similar to the value achieved by lasso logistic regression). Figure 4 shows 

illustrative ROC and PR curves from one replicate of the five-fold CV. In Table 2, we also 

provide sensitivity and specificity for specific cut-off values, where an instance is considered 

as flagged if its predicted value is above the threshold. We considered 0.50 as a standard 

cut-off and an optimized cut-off obtained using Youden’s Index. In the radiation therapy 

quality assurance setting, a more sensitive classifier is preferred to ensure that concerning 

cases will get additional review. The random forest with Youden’s index performed very 

well in this regard, achieving a sensitivity of 0.889. To illustrate, figure 5 shows the 

probabilities of each contour from the random forest trained on the entire dataset. Contours 

with probabilities above the threshold values are flagged as unacceptable. Shape features and 

code to reproduce analysis provided at: https://github.com/wootz101/QA_Contours

5. Application to unlabeled data

Based on these results, the random forest prediction method performed well at discerning 

acceptable vs. unacceptable contours in a cross-validation setting. We then sought to assess 

the utility of this approach when applied to a new external data set. To do so, we first trained 

a final random forest model using the entire dataset of 312 kidney contours, using the same 

parameters as before. Training on the full dataset, the random forest performs well with a 
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total accuracy of 93.27% and an AUC value of 0.937, with a false positive rate of 1.9% and 

a false negative rate of 30.8%. Table 3 gives further information on the random forest’s error 

rates based on a 50% threshold.

5.1 Variable importance

The random forest is a useful classifier in this regard as it also provides a measure of feature 

importance. Table 4 shows the top ten variables of importance by their inclusion mean 

decrease in accuracy percent.

The shapr package in R is limited to 13 variables as the computation time increases 

exponentially with the number of variables. Therefore, we constructed a new random forest 

that only uses these top 10 shape histogram features to accommodate the software and 

hardware constraints. We used 500 trees and 8 node splits per tree as parameters. We 

lowered the node splits from 16 to 8 because we went from 80 to 10 input features. 

Trimming down the original model is an important step in order to use Shapely values to 

interpret why a contour gets flagged. Table 3 shows the performance of the random forest 

when we scale down from 80 features to the top 10. These results indicate the top 10 

variable random forest model performs similarly to the full 80 variable model. In fact, the 

top 10 model is slightly more sensitive in flagging unacceptable contours.

5.2 Unlabeled dataset

We obtained an external data set of 18 radiation treatment plans for cervical cancer 

radiotherapy. The voxel dimensions of these plans were 1.172 mm × 1.172 mm × 2.5 mm. 

From these plans, we extracted 36 kidney contours. These independent test contours were 

previously unseen and so were considered unlabeled data. We extracted the shape features 

as previously described and applied our trained random forest to obtain model predictions. 

Figure 6 shows the estimated probabilities of each contour being unacceptable for use in 

radiotherapy planning. A total of 6 contours were flagged with a probability > 0.5.

5.3 Shapley values of flagged contours

As would happen in the potential clinical application of our approach, an expert reviewer 

then inspected the flagged contours to simulate the clinical workflow. Of the 6 contours 

flagged, 4 were found to contain errors including over-contouring and under-contouring 

of the kidney region. Figure 7 shows the Shapley values of each variable for the flagged 

contours along with example images of the unacceptable kidney contours that were correctly 

flagged and the acceptable kidney contours that were incorrectly flagged. The errors in these 

contours are visually noticeable, with under-contouring being the most common error. Using 

the Shapley values, we can interpret how the deep learning contour erred. For instance, 

examining the Shapley value plot and corresponding contour for id: 1, we see the random 

forest model flagged the contour because the contour’s centroid size, perimeter, mean radius, 

and minimum radius had low standard deviations. The generated contour was indeed under-

contoured which explains its out of distribution metrics. For id: 2, the contour had minor 

errors as it didn’t contour the beginning of the kidney which resulted in a large mean solidity 

value. Hence, we see there is no contour in the medical image for id: 2 where there should 

be one. We see in id: 3 the Shapley value plots indicate that the maximum sphericity value 
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was too high. The kidney was over-contoured on this patient which led to a highly spherical 

shape that the random forest noticed and flagged. For id: 4 we see that the area standard 

deviation and perimeter standard deviation values for the contour were too low, causing it 

to be flagged. Low standard deviation of area and perimeter would indicate that the area 

and perimeter values varied less from slice to slice than they did for acceptable contours. 

This real data application highlights the feasibility of our approach for radiotherapy quality 

assurance.

Our method also has limitations and sometimes generates false positives. We see in id: 5 

the contour was flagged due to its high maximum sphericity value, however, there were 

no contouring errors found. This false positive is particularly interesting because it has the 

highest prediction value for being flagged. False positives are to be expected due to the 

inherent variation in human anatomy; our expert reviewer noted that in this instance the 

kidney structure was completely connected to a neighboring structure. The connectedness 

of the structure might lead to some variation in contouring. While this contour is safe for 

clinical use, it is challenging for both humans and machines to distinguish the ground truth 

border for this patient. For id: 6 the solidity mean value was too high which caused the 

contour to be flagged even though there were no errors.

6. Discussion

We have shown that training a random forest on shape features of contours is a viable 

method of contour quality assurance. Our method is novel and would be robust to 

differences in imaging platform or imaging processing steps in that it only requires shape 

features, and no imaging or radiomic features. Classification of contours using shape 

features could be useful in other contexts beyond radiation treatment planning; in particular, 

segmentation of the brain is a key task in the analysis of MRI data, while automatic 

detection of objects in images is a critical step in the development of automated driving 

systems. In both cases, critical structures identified using deep learning or other automated 

tools could potentially be distinguishable using shape features.

One of the limitations in this study is that the unacceptable contours used in the training 

data were created by hand. Since only acceptable contours are used in clinical radiotherapy 

treatment planning, real-world cases of unacceptable contours are difficult to obtain. 

Our method provides basic annotations to characterize which features drove the model 

predictions. More detailed information, including the spatial locations with potential errors, 

would enhance the interpretation of results. We plan to explore methods to enable location-

specific annotation within contours in future work. Furthermore, we plan to explore how this 

method performs across other imaging platforms.
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Fig 1. 
a) Shape with convex hull; b) Sphericity is the ratio of a shape’s minimum and maximum 

radii; c) Shapes decreasing in value from left to right for compactness, convexity, solidity, 

and roundness.
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Fig. 2. 
An axial view of a cervix radiation treatment plan with organ structures contoured
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Fig. 3. 
a) 3D rendering of the unacceptable (red) and acceptable (green) contours of the right 

kidney; b) distributions of the areas; c) distributions of convexity.
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Fig. 4. 
ROC and PR Curves of various classifiers

Wooten et al. Page 12

Pac Symp Biocomput. Author manuscript; available in PMC 2023 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 5. 
Random forest probabilities in blue with example thresholds in grey; the true class is marked 

in black, where acceptable contours have a value of 0 and unacceptable contours have 

a value of 1. The index range of 1–260 correspond to acceptable contours and 261–312 

correspond to unacceptable contours.
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Fig 6. 
Probability of unacceptable contours from unlabeled dataset
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Fig 7. 
Shapley values show the impact each feature has on the overall prediction for the 

corresponding contour, with dark blue increasing and light blue decreasing the prediction of 

an error. The id: 1–4 are correctly flagged and outlined in green, and id: 5–6 are incorrectly 

flagged and outlined in red.

Wooten et al. Page 15

Pac Symp Biocomput. Author manuscript; available in PMC 2023 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wooten et al. Page 16

Table 1.

Shape features and their descriptions

Shape Feature Description Formula

Area Number of pixels/voxels in a shape

Perimeter Length of number of pixels/voxels in the boundary of the object

Minimum Radius Shortest radius value from the center of shape to boundary

Mean Radius Average radius value from the center of shape to boundary

Max Radius Largest radius value from the center of shape to boundary

Centroid Size Square root of the sum of squared Euclidean distances from each landmark to the centroid [5] ∑i = 1
k (X)i − X 2

Compactness The ratio of the area of an object to the area of a circle with the same perimeter 4π * Area
(Perimeter)2

Sphericity The degree to which an object approaches the shape of a sphere Min Radius
Max Radius

Convexity The relative amount that an object differs from a convex object Convex Perimeter
Perimeter

Solidity The ratio of the area of an object to the area of a convex hull of the object Area
Convex Area

Roundness The ratio of the area of an object to the area of a circle with the same convex perimeter 4π * Area
(Convex Perimeter)2
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Table 2.

Performance metrics from 10 iterations of five-fold cross validation

Classifier Random Forest Logistic Regression Lasso Naive Bayes XGBoost

AUCroc 0.937 (± 0.008) 0.809 (± 0.013) 0.912 (± 0.009) 0.849 (± 0.008) 0.831 (± 0.020)

AUCpr 0.828 (± 0.022) 0.506 (± 0.033) 0.829 (± 0.011) 0.647 (± 0.018) 0.655 (± 0.067)

Specificity0.50 0.977 (± 0.005) 0.861 (± 0.014) 0.271 (± 0.019) 0.920 (± 0.004) 0.970 (± 0.011)

Sensitivity0.50 0.608 (± 0.016) 0.640 (± 0.060) 0.983 (± 0.014) 0.692 (± 0.013) 0.571 (± 0.044)

Specificityyi 0.883 (± 0.042) 0.817 (± 0.072) 0.902 (± 0.057) 0.878 (± 0.030) 0.879 (± 0.101)

Sensitivityyi 0.889 (± 0.053) 0.733 (± 0.076) 0.808 (± 0.043) 0.816 (± 0.062) 0.719 (± 0.103)
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Table 3.

Error Rates

Model Ground Truth Not Flagged Flagged Class Error

80 Variable Acceptable 255 5 1.9%

Unacceptable 16 36 30.8%

Top 10 Variable Acceptable 250 10 3.8%

Unacceptable 15 37 28.8%
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Table 4.

Importance measure

1st 2nd 3rd 4th 5th

Sphericity 
(Max) 
2.7%

Min Radius 
(Min) 
1.6%

Centroid (SD) 
1.2%

Min Radius 
(SD) 
1.2%

Area (SD) 
1.1%

6th 7th 8th 9th 10th

Perimeter (SD) 
1.1%

Mean Radius 
(SD) 
0.9%

Max Radius 
(Median) 

0.7%

Area (Min) 
0.6%

Solidity 
(Mean) 
0.6%
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