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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) has been widely used to decompose complex tissues into
functionally distinct cell types. The first and usually the most important step of scRNA-seq data analysis is to accur-
ately annotate the cell labels. In recent years, many supervised annotation methods have been developed and
shown to be more convenient and accurate than unsupervised cell clustering. One challenge faced by all the super-
vised annotation methods is the identification of the novel cell type, which is defined as the cell type that is not pre-
sent in the training data, only exists in the testing data. Existing methods usually label the cells simply based on the
correlation coefficients or confidence scores, which sometimes results in an excessive number of unlabeled cells.

Results: We developed a straightforward yet effective method combining autoencoder with iterative feature selec-
tion to automatically identify novel cells from scRNA-seq data. Our method trains an autoencoder with the labeled
training data and applies the autoencoder to the testing data to obtain reconstruction errors. By iteratively selecting
features that demonstrate a bi-modal pattern and reclustering the cells using the selected feature, our method can
accurately identify novel cells that are not present in the training data. We further combined this approach with a
support vector machine to provide a complete solution for annotating the full range of cell types. Extensive numeric-
al experiments using five real scRNA-seq datasets demonstrated favorable performance of the proposed method
over existing methods serving similar purposes.

Availability and implementation: Our R software package CAMLU is publicly available through the Zenodo reposi-
tory (https://doi.org/10.5281/zenodo.7054422) or GitHub repository (https://github.com/ziyili20/CAMLU).

Contact: zli16@mdanderson.org or kimdo@mdanderson.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The emergence of single-cell RNA sequencing (scRNA-seq) enabled
researchers to investigate the cellular compositions and the tran-
scriptomic profiles of human tissues with an unprecedented preci-
sion and accuracy (Brouzes et al., 2009). This technology also
allows researchers and clinicians to investigate cellular composition
changes, identify cell type-specific differential genes and quantify
within and across cell type heterogeneity in many human diseases
(De Micheli et al., 2020; Soneson and Robinson, 2018). In the past
decade, scRNA-seq has been applied to the research of Alzheimer’s
disease (Mathys et al., 2019), colorectal cancer (Li et al., 2017),

autism (Velmeshev et al., 2019), glioblastoma (Patel et al., 2014),
leukemia (Petti et al., 2018) and many more. Given the raw data
from a scRNA-seq experiment, after pre-processing and quality con-
trol steps, a typical analysis pipeline starts with clustering and label-
ing the different cell types (Luecken and Theis, 2019). Then, based
on the research objectives, researchers will perform other down-
stream analyses such as differential analysis (Soneson and Robinson,
2018), trajectory inference (Herring et al., 2018), compositional
analysis (Haber et al., 2017) and cell–cell communication inference
(Jin et al., 2021).

As the first step, annotating cells and assigning cell type labels is
one of the most important steps since most of the downstream
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analyses rely on the accuracy of the cell labels. The traditional way
of annotating cells is to apply unsupervised clustering and label the
cell types based on the cluster-specific markers (Duò et al., 2018). A
series of mature methods have been developed to cluster cells using
a variety of techniques, including k-means (Grün et al., 2015;
Kiselev et al., 2017), hierarchical clustering (Lin et al., 2017; Yau
et al., 2016), community detection (Satija et al., 2015; Wolf et al.,
2018) and model-based approach (Ji and Ji, 2016). Although the
clustering methods are well developed, the marker-based annotation
often poses great challenges in the data analysis. The annotation
procedure is labor intensive and time consuming (Clarke et al.,
2021). Moreover, the reproducibility of the annotation results usual-
ly cannot be guaranteed due to the variation in the understanding of
cell type markers among different researchers.

Recently, with the rapid collection of labeled scRNA-seq data,
supervised cell annotation methods have been developed to quickly
and reproducibly assign cell labels for the new datasets (Abdelaal
et al., 2019). These methods can be grouped into two categories de-
pending on the information required. The first group of methods
needs the input of cell type marker information, examples include
DigitalCellSorter (Domanskyi et al., 2019), Garnett (Pliner et al.,
2019), CellAssign (Zhang et al., 2019a), SCINA (Zhang et al.,
2019c) and others. The second group of methods requires pre-
labeled scRNA-seq to train a machine learning classifier and apply
this classifier to the new data to get labels, such as scmap (Kiselev
et al., 2018), CHETAH (de Kanter et al., 2019), scPred (Alquicira-
Hernandez et al., 2019) and others. Compared with unsupervised
methods, supervised approaches are generally faster and more con-
venient. The review paper by Abdelaal et al. (2019) compared a
total of 26 supervised methods and concluded that support vector
machine, scmap-cluster and scPred are among the top, most accur-
ate methods of all the existing methods for annotating cells. Some
recent review papers also comprehensively summarized different
strategies to establish references for the supervised annotation meth-
ods (Ma et al., 2021).

Although multiple supervised methods provide various solutions
for annotating cells, one big challenge in all supervised methods is to
differentiate the novel (or unknown) cell type from the known cell
types. The novel cell type is defined as the cell type that is not pre-
sent in the training data, only exists in the testing data. Most of the
conventional machine learning classification methods can only iden-
tify cell types that exist in the training data. When novel cells exist,
current methods usually use a cutoff for correlation coefficients be-
tween the training and testing data or confidence scores to separate
cells with higher confident labels from those with lower confidence
(de Kanter et al., 2019; Kiselev et al., 2018). The cells with lower
confidence or correlations are usually annotated as ‘unassigned’.
However, such unassigned cells can be a mixture of novel cells,
which are cell types not presenting in the training data, and uncer-
tain cells, which are cell types included in the training data that are
difficult to assign due to the high similarities between cell types.
Such an unknown-cell-identification strategy may not be ideal, as it
usually leads to an excessive number of unlabeled cells.

In this work, we developed a new two-step approach to automat-
ically label scRNA-seq data that contain novel cells. We call it Cell
Annotation using a Machine Learning-based method for the pres-
ence of Unknown cells (CAMLU). CAMLU was inspired by the
applications of autoencoder to detect data outliers in other fields
such as computer science (Kieu et al., 2019; Wan et al., 2019) and fi-
nance (Demestichas et al., 2021). In the first step, CAMLU uses a
combination of autoencoder and iterative feature selection to distin-
guish known cell types from the novel cell type. The intuition behind
this step is that, after training the autoencoder with the training
data, the autoencoder will contain the information from all the
known cell types. Applying this autoencoder to the testing data will
generate reconstruction errors for all the genes. As the cells are a
mixture of known and unknown cell types, a few “informative”
genes will have a bi-modal distribution in their reconstruction
errors, representing their different levels of similarity with the
known cell types. Through iterative feature selection, CAMLU can
select a smaller set of informative features that have expression

differences in the known and unknown cell populations, and finally
distinguish novel cells from known cell types. We then can re-cluster
the cells based on these informative genes and identify the novel
cells. Removing the novel cells identified in the first step, CAMLU
uses a support vector machine to exhaustively annotate the rest of
the cells in the second step. In the following sections, we first present
the technical details of CAMLU. We then evaluate the proposal
through a series of extensive numerical experiments using five real
datasets. Compared with existing supervised methods, CAMLU
demonstrates favorable accuracy in identifying the novel cells and in
annotating all the cell types.

2 Materials and methods

Figure 1 illustrates the schematic pipeline of how CAMLU works.
Denote the scRNA-seq expression matrix of the training data by Y0

and the corresponding cell labels as Btrain, where Y0 is a p by n0 ma-
trix with p being the total number of measured genes and n0 is the
number of cells, Btrain is an n0 by 1 vector. Similarly, denote the test-
ing data by Y1, which has dimensions p by n1. The first step of
CAMLU is to normalize Y0 and Y1 using scater (McCarthy et al.,
2017). We select the top 3000 most variable genes from Y0 and the
same set of features from Y1. For simplicity, we still use Y0 and Y1

to represent the normalized training and testing datasets after fea-
ture selection. We train an autoencoder model with one input layer,
one output layer, and five hidden layers:

Ŷ 0 ¼ gðzoutWout þ boutÞ
zout ¼ gðz5W5 þ b5Þ
� � �
z2 ¼ gðz1W1 þ b1Þ
z1 ¼ gðY0W0 þ b0Þ:

The parameter set H ¼ fW0;W1; . . . ;W5; b0;b1; . . . ; b5;Wout;
boutg is to be estimated during the training process. And zl, for
l ¼ 1; . . . ; 5, are the hidden neurons with corresponding weight W l

and bias bl. gð�Þ is the activation function, which can be a sigmoid, a
rectified linear unit (ReLU), rectifiers, or a hyperbolic tangent. As
neural networks based on a ReLU function are generally easier to
train and can avoid the vanishing gradient problem during optimiza-
tion (Eckle and Schmidt-Hieber, 2019), we choose to use ReLU,
gReLUðzÞ ¼ maxðz;0Þ, as the activation function in all of our experi-
ments. The model is trained using a stochastic gradient descent-
based algorithm with the mean squared error loss function
LðY0; Ŷ 0Þ ¼ jjY0 � Ŷ 0jj2: We use Adam as the optimization algo-
rithm (Wang et al., 2019) and the mini-batch training strategy (Li
et al., 2014), which randomly trains a small proportion of samples
in each iteration to improve training efficiency. The number of neu-
rons in the five hidden layers are selected as 256, 128, 64, 128 and
256. We used this structure throughout the experiments and also in
our R package implementation.

After the autoencoder has been established, we apply the trained
model to the testing data Y1 to obtain the reconstruction Ŷ 1. The

Fig. 1. The working pipeline of CAMLU
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reconstruction error is defined as REtest ¼ jY1 � Ŷ 1j and the sum of
squared reconstruction errors is SSEtest ¼ jY1 � Ŷ 1j2. We design the
following iterative feature selection procedure to choose the top in-
formative features for identifying the unknown cells. Denote the
clustering results for the testing data at step t by CðtÞ

test. The conver-
gence criterion in Algorithm 1 is defined as the difference between
the clustering outcome vectors CðtÞ

test and Cðt�1Þ
test (i.e. jCðtÞ

test � Cðt�1Þ
test j)

smaller than 2 or the number of iterations greater than 10. The clus-
ter with a smaller Pearson’s correlation between the mean profile of
the cluster-specific cells and the training known cells is defined as
the novel cluster. If the algorithm is not converged in 10 iterations
or the labels CðtÞ

test consist of only one group in the middle of the iter-
ation, the major reason is that not enough informative features can
be selected. A deeper explanation is that the novel cells (if existing)
may be too similar to the known cells. In this situation, the algo-
rithm fails to distinguish them. When this happens, we recommend
using traditional biomarker-based annotation to achieve more ac-
curate results. More along this topic is provided in the discussion
section.After the unknown cells have been selected, we put them

aside from the testing dataset. Denote the labels for the selected
novel cells as BNovel

test . We train a support vector machine with linear
kernel using the training data Y0 and the labels Btrain. Then we apply
the trained model to the rest of the cells in the testing data to obtain
the cell labels BKnown

test . The union set fBNovel
test ;BKnown

test g contains the
full annotation labels from CAMLU. In our current applications, we
select the top 3000 variable genes in the initial feature selection step
and the top 500 genes in the autoencoder reconstruction error calcu-
lation step. Other numbers are evaluated later in simulation studies
and the selection have minimum impacts on the detection accuracy
as long as a reason number is selected, e.g. more than 3000 genes in
the initial selection and top 300–600 genes in the autoencoder re-
construction error calculation step (Supplementary Fig. S14).

3 Results

3.1 Monte Carlo numerical experiments
To extensively evaluate the performance of CAMLU, we designed
three Monte Carlo numerical experiments based on real datasets.
We compared CAMLU with four popular cell annotation methods
that are able to identify unknown cells using the ‘unassigned’ label:
CHETAH (de Kanter et al., 2019), scPred (Alquicira-Hernandez
et al., 2019), scmap-cluster and scmap-cell (Kiselev et al., 2018).
When the unknown cell type is the tumor cell, like in our first ex-
periment, we also compared CAMLU with copyKAT, a method spe-
cifically designed to identify malignant cells based on copy number
karyotyping. Note that copyKAT only applies when the unknown
cells are aneuploid, and thus it is not applicable to the situations
when the novel cells are diploid, e.g. designs of our second and third

numerical experiments. The evaluation criteria include classification
accuracy and adjusted rand index (ARI) (Santos and Embrechts,
2009). For each method, we evaluate both criteria for distinguishing
novel cells from known cell types (aAccuracy, ARI) and for assign-
ing the full spectrum of labels (Accuracy-full, ARI-full). For the first
two scenarios, we also present the precision and recall for each cell
type. An example simulation implementation can be found in the
Github repository https://github.com/yizhuo-wang/CAMLU_
Simulation.

3.1.1 Numerical experiments with PBMC and HNCC cell line

We obtained the single-cell datasets for peripheral blood mono-
nuclear cells (PBMC) (Zheng et al., 2017) and the head and neck
cancer cell line (HNCC) (Kinker et al., 2020). Both data were
sequenced by the 10� chromium scRNA-seq technology. The
PBMC data has more than 60 000 sorted cells from eight immune
cell types. The HNCC has 4632 cancer cells in total. For each ex-
periment, we randomly selected n1 cells per cell type from the
PBMC data and n2 cancer cells from the HNCC data. We consid-
ered three settings with the normal cell sample size n1 ¼
300;400; 500 (i.e. 2400, 3100 and 3800 cells in the training data),
corresponding to the small, medium and large in Figure 2. The can-
cer cell number holds constant at n2 ¼ 300 in all settings. In each ex-
periment, we randomly split the selected normal cells into two parts.
One part will be used as the training data. The other part will be
mixed with the cancer cells and used as the testing data. For all the
methods (except copyKAT), we provided the training data to train
the classifier and then test the classifier on the testing data for its
ability to identify novel cells, as well as assigning other cell labels.

Figure 2 summarized the numerical experiments over 100 Monte
Carlo experiments. Compared with existing methods, CAMLU has
the highest accuracy in distinguishing the cancer cells from the novel
cells and in labeling the full spectrum of cell types. CopyKAT is the
second best in identifying cancer cells in the upper panel of Figure 2.
Since it cannot assign the full list of labels, copyKAT is not presented
in the lower panel of Figure 2. Among other existing methods,
scmap-cluster and CHETAH also work well in assigning the correct
labels with slightly lower accuracy and ARI, followed by scPred.
Scmap-cell has the lowest accuracy for both tasks, probably due to
the large number of ‘unassigned’ labels generated by the method.

The precision and recall results of each cell type were presented
in Supplementary Figures S2 and S3. We observed that the proposed
method generally has both high precision and recall in either the
novel cell identification task or the full cell-type annotation task.
Compared to the proposed method, all existing methods have high
precision for the known cell types, but low precision in the novel cell
type. Scmap-cluster achieves similar recall for both cell types as the
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Fig. 2. Results of the numerical experiments using the mixtures of PBMC data and

cancer cell line data. The cancer cell line cells are treated as the novel cell type. The

upper two panels show the accuracy (left) and ARI (right) of using CAMLU and

other existing methods to distinguish known cell types from novel cell types. The

lower two panels show the accuracy (left) and ARI (right) of identifying all cell types

(CD4T, CD8T, etc.). Results are summarized over 100 Monte Carlo experiments
Algorithm 1: Iterative feature selection procedure

Data: REtest and SSEtest

Result: Ctest

Initialize Cð0Þ
test by K-means clustering of SSEtest, K¼2;

Initialize t¼1;

while Convergence criterion do not meet do

Perform genewise t test using colttestðÞ function using

REtest with two groups defined in Cðt�1Þ
test ;

Identify the top 500 significant genes based on the testing
p-values;

Update CðtÞ
test by hierarchical clustering using the selected

500 features, K¼2;

end
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proposed method. All other methods have a lower recall in the
known cell type and even lower in the novel cell type. When we look
into the full spectrum of cell types, we found that all methods have
reasonably well precision and recall in a few cell types (B cells,
CD45 NK) but worse results in other cell types, especially the T cell
subtypes.

3.1.1 Numerical experiments with PBMC

Next, we designed a numerical experiment with PBMC data only to
mimic the situation when the unknown cells are not aneuploid. We
treated monocytes as the ‘novel’ cell type and all other seven cell
types as the known cell types. Similar to the first experiment, we
randomly selected n1 cells per cell type for the rest of the seven cell
types and n2 cells from monocytes. We again considered three set-
tings with different sizes of known cell types n1 ¼ 300;400; 500 and
n2 ¼ 300 for monocyte. We randomly split the selected known cells
into two parts, one as the training data and the other one mixing
with the selected monocytes as the testing data. Since monocytes are
not aneuploid, we only compared CAMLU with the four general
annotation methods and excluded copyKAT in this comparison.

The accuracies of CAMLU and the existing methods are
summarized in Figure 3A. CAMLU has the highest accuracy in iden-
tifying the monocytes from the testing data and in assigning all
labels. We find scmap-cluster is the second-best method in both
tasks, followed by CHETAH and scPred with similar performance.
The accuracy by CAMLU drops a little compared to the first numer-
ical experiment, possibly because the current setting is harder. With
the increase of training sample size, all methods have slightly
improved performance. CAMLU has good accuracy even with the
smallest training size. The ARI results in Supplementary Figure S1
have similar conclusions. Figure 3B and C demonstrate the novel
cell identification results from a single experiment for true and esti-
mated labels, which may shed light on the differences between
CAMLU and the existing method. CAMLU has almost perfect ac-
curacy of distinguishing monocytes from the known cells, while the
existing methods, especially scmap-cell, tend to label a lot of known
cells as ‘unassigned’. We also presented the precision and recall
results in Supplementary Figures S4 and S5. Similarly, we observed
that the proposed method achieves the highest precision and recall
in most of the cell types while existing methods tend to have much

lower precision for unknown cell type and lower recall for T cell
subtypes.

Using this setting, we also evaluated the impact of fewer novel
cells in the testing data on the performance. We considered reason-
ably large training data (�3000 cells) and a large number of normal
cells in the testing data (�3000 cells). We considered the number of
unknown cells ranging from smaller numbers (10, 18, 37, 50, 100)
to larger numbers (200, 300, 500, 700). The results from 20 Monte
Carlo simulations are summarized in Supplementary Figures S10
and S11. We found that the proposed method has comparable per-
formance with existing methods when the novel cell type is very
rare, e.g. < 1%, and stays stable when the novel cell type is equal to
or more than 1% of the total data. In most of the cases, scmap-
cluster and scmap-cell have a similarly stable pattern but with lower
accuracies. In contrast, CHETAH and scPred have worse accuracy
in all the scenarios.

In real-world scenarios, it is possible that the training data contain
a small number of novel or unknown cells. To evaluate the robustness
of the proposed method and existing methods, we modified the current
simulation setting by including some ‘novel’ cells in the training dataset
and evaluating the annotation accuracy in the testing data. We gener-
ated the training and testing data with 500 cells per cell type, and 500
unknown cells in the testing data. Additionally, we added some novel
cells (n¼10, 50, 100, 200) to the training data to evaluate the robust-
ness of the methods. Supplementary Figure S12 showed the results of
including different numbers of unknown cells in the training data. We
found that the proposed method is generally robust to including differ-
ent numbers of novel cells in the training data. Scmap-cluster and
scmap-cell also have stable performance when unknown cells are pre-
sent in the training data. In comparison, both CHETAH and scPred
have worse accuracy with the increased number of unknown cells in
the training set.

3.1.3 Numerical experiments with pancreas data

In addition to the PBMC data, we also obtained a pancreas scRNA-
seq dataset (Muraro et al., 2016) to further evaluate the methods
under settings when novel cells are diploid. The dataset was down-
loaded from Gene Expression Omnibus (GEO) with accession num-
ber GSE85241. It contains a total of 2126 single-cell measurements
with nine annotated cell types. We designed the experiments by
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treating mesenchymal as the unknown cell type. For each simula-
tion, we randomly drew 500 cells from the ‘known’ cell types that
are not mesenchymal and used the data from these cells as the train-
ing data. The rest of the ‘known’ cells were combined with the mes-
enchymal cells as the testing data. The number of mesenchymal cells
in the data is 80, and the total number of cells in the training data is
1626. This could be a good experiment to evaluate the ability of all
the methods in identifying a small number of novel cells.

We summarized the results from 100 Monte Carlo experiments
in Figure 4. In Figure 4A, we find that CAMLU has a much higher
identification accuracy compared to other existing methods with an
average increase of 5–10% in accuracy. In Supplementary Figure S2
and Figure 4B, we visualized the novel cell type and overall anno-
tated cell labels of CAMLU and other methods in comparison to the
true labels from one experiment. CAMLU stands out in both tasks
and demonstrates high accuracy in distinguishing a very small num-
ber of novel cells (<5% of the test data). CHETAH also has good
performance in this setting with scmap-cell ranking the third. Both
scmap-cluster and scPred fail to identify the novel cells.

3.2 Applications to two real cancer datasets
Lastly, we examined the performance of all the methods in a differ-
ent setting, cross-subject cell annotation. In all the previous numeric-
al experiments, the cells were from one subject. Or if the cells were
from multiple subjects, we mixed the cells and treated them as if
they were from the same subject. Due to the big biological variations
across different people subject effects sometimes can mix with batch
effects and have big impacts on the cell clustering and annotation. In
this experiment, we obtained one scRNA-seq dataset including five
triple negative breast cancer (TNBC) patients and another dataset
including five anaplastic thyroid cancer (ATC) patients. Both the
TNBC and ATC datasets were obtained from GEO with accession
number GSE148673 (Gao et al., 2021). The normal/malignant
labels were provided from the original study (Gao et al., 2021)
based on the inferred aneuploid/diploid status of the cells. To evalu-
ate CAMLU and the existing methods, we took out the normal cells
from one patient and used those as the training data. We then pre-
dicted the normal/malignant status, as well as the full cell labels of
the cells from another patient, i.e. the testing data. This experiment
design mimics the situation where we use the tumor-adjacent normal
tissue from one patient as the training data to predict the cell anno-
tation of the tumor tissue from another patient. The original study

(Gao et al., 2021) only provided the normal/malignant status of the
cells, not the full annotation. For the cell types other than malignant
cells, we used a combination of marker-based annotation (Zhang
et al., 2019b) and a reference-based automatic cell annotation meth-
ods (Hao et al., 2021) to obtain the benchmark labels.

We first evaluated the accuracy of all the methods in identifying
malignant cells from the testing data. In Figure 5B, the cross-subject
cell annotation introduces extra noise to the analysis and all the
methods have lower accuracies compared with the previous settings.
Among all the methods, CAMLU is still the most accurate one for
the task, with a mean accuracy around 0.9. The second-best per-
forming method is scmap-cluster in the TNBC dataset and scPred in
the ATC dataset. In the TNBC data, scmap-cluster has an accuracy
of around 0.80 and all other methods have mean accuracy lower
than 0.6. For ATC, all the existing methods have accuracy
around0.5–0.6. The advantages of CAMLU also hold if we consider
the accuracy in assigning all the cell labels (Supplementary Fig. S3).

As our method assumes that the selected features have different
patterns of reconstruction errors in known versus novel cells, it is
helpful to examine the distributions of the top features to better
understand the proposed methods. In Figure 5B, we illustrated the
distribution of the reconstruction errors for four top genes in normal
(blue bars) and malignant cells (red bars). For example, COL6A2
encodes one of the three alpha chains of type VI collagen and has
been reported to promote tumor progression by affecting both
tumor and stromal cells (Chen et al., 2013). We find that COL6A2
has much higher reconstruction error in malignant cells compared
with in normal cells, indicating that COL6A2 could be a differential
gene between the two cell groups.

Figure 5C shows the most significant Hallmark terms using the
top 200 selected features from CAMLU using TNBC and ATC data.
We find that a few disease-associated terms have been identified in
the results. For example, in TNBC, TNF-a signaling via NF-jB path-
way is the most significant Hallmark term. Numerous existing stud-
ies have reported the promotion effect of the inflammatory factor
TNF-a on the growth of breast cancer (Bauer et al., 2017; Cho
et al., 2009). Similarly, the top term in the ATC results, epithelial–
mesenchymal transition is an important mechanism related with epi-
thelial tumor progression, local invasion and metastasis. Several
studies have reported the strong correlation of epithelial–mesenchy-
mal transition and the progression of ATC (Shakib et al., 2019;
Yang et al., 2015).
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To evaluate the performance of the proposed method in the scen-
ario when the training and testing data are from different sources, we
identified an external TNBC scRNA-seq dataset (GEO accession num-
ber 176078; Wu et al., 2021). This study collected the scRNA-seq data
from 26 primary tumors of three major breast cancer subtypes, 11 es-
trogen receptor positive, 6 human epidermal growth factor receptor 2
(HER2) positive and 10 TNBC patients. We took out the data from
the 10 TNBC subjects and used the annotated normal cells as the train-
ing data to predict the tumor cells in the TNBC scRNA-seq dataset
(GSE148673) that analyzed above. Supplementary Figure S8 showed
the performance of our proposed method versus other existing meth-
ods. We found that even with outside training data, our method still
can achieve an accuracy of around 0.8–0.9. We also presented the pre-
cision and recall results from this experiment in Supplementary Figure
S9. We found that most methods have a reasonable precision in normal
cells but very low precision for identifying tumor cells.

4 Discussion

In this work, we developed a novel machine learning-based method
for identifying unknown cells from scRNA-seq data. Our pipeline
utilizes a combination of autoencoder and iterative feature selection
to identify the novel cells based on the reconstruction errors of in-
formative features. After identifying the ‘unknown’ cells, the rest of
the cells are annotated using a support vector machine. Compared
with most of the existing methods that label cells with low correla-
tions or low confidence scores as the novel cells, the proposed
method innovatively separates the unknown cell selection and the
existing cell type annotation. The autoencoder and iterative feature
selection method can more accurately identify the novel cells, while
the support vector machine-based annotation assigns the cells in an
exhaustive way and reduces the number of ‘uncertain’ cells. As
shown in our experiments, the proposed method can achieve higher
accuracy in identifying the novel cells in the testing data and then
improve the overall assignment accuracy over existing methods.

The proposed method has a few advantages. First, our method
does not rely on the aneuploid/diploid cell status. As a result, our
method can be applied to identify aneuploid or diploid novel cells,
which may imply possibilities of wider application compared to
some existing methods. Second, our method can apply to identify

different sizes of novel cells. For example, in the pancreas experi-
ment, there are only 80 novel cells out of the more than 1000 cells in
the testing data. Our proposed method is able to accurately identify
the novel cells while some of the existing methods fail to find the en-
tire cluster. Third, although cross-subject prediction introduces add-
itional noise to the problem and lowers the accuracy in all the
methods, our results show that the proposed method still achieves
higher performance than existing methods serving similar purposes.

Autoencoder is a widely used machine learning method that has
been applied to speech denoising (Lu et al., 2013), representation
learning (Tschannen et al., 2018), feature selection (Meng et al.,
2017) and many other research areas. Many recent methods for
single-cell data analyses are also based on autoencoder for denois-
ing, clustering and other purposes (Lopez et al., 2018; Eraslan et al.,
2019; Tran et al., 2021; Lotfollahi et al., 2022). Our proposal is
among the first methods applying autoencoder in single-cell data
analysis for novel/unknown cell identification. Similar to other
machine-learning and deep-learning methods, there are a few
parameters that can be selected and tuned to further improve the
results, including the number of hidden layers, number of nodes per
layer, different normalization methods, different activation function,
etc. In the current experiments, we only presented the results using
one set of selections and the current results already demonstrate
advantages over existing methods. It is possible that the model can
be further tuned to improve performance. We will continue to ex-
plore other possible model formulation and parameter selections in
our future works.

A common concern associated with applying deep learning
methods in single-cell data is the computational performance. We
comprehensively evaluated the computation performance of the pro-
posed method and existing methods on a desktop with 8-Core Intel
i9 processor and 32 Gb memory. The autoencoder was computed on
the CPU of the computer and we didn’t use GPU for this evaluation.
We considered different numbers of cells in the training data (3000,
5000, 8000, 10 000, 15 000 and 20 000) when the testing data are
fixed at 1000, and different numbers of cells in the testing data
(500, 800, 1000, 1500, 2000 and 3000) when the training data are
fixed at 5000. The computational time of our proposed method and
other existing methods are presented in the Supplementary Figure
S15. We found that the size of the training dataset is closely
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associated with the computational time of the proposed method.
With a training dataset with less than 10000 cells, the computation-
al cost of CAMLU is quite small (�5 min). When the number of cells
in the training data increases to 20 000, CAMLU takes about 25
min, which is still less than the time required by scPred (>1 h).
Overall, the proposed method has a satisfactory computational
performance.

The fact that the proposed method does not rely on any biologic-
al knowledge is a double-edged sword. On one hand, it is easier to
apply and can be used in situations with aneuploid or diploid novel
cells. On the other hand, the ability of identifying novel cell type
could be limited by the underlying differences between the novel and
known cell types. For example, we found that our method may not
perform as desired in settings when the novel cells are very similar to
the known cell types. For the second numerical experiments using
the PBMC data, we tried using B cells as the novel cell type.
Compared with monocytes, B cells are more similar to the known
cell types (e.g. CD4T and CD8T). The results in Supplementary
Figure S13 show that CAMLU has comparable performance to
existing methods but larger variation than the results using
Monocytes as novel cells (Fig. 3). Based on these observations, we
suggest users obtain biological insights before and after applying the
proposed method. When the novel cells are highly similar to the nor-
mal cells, it may be helpful to incorporate additional biological
knowledge (e.g. genotyping and cytogenetics information) in the
data analysis (van Galen et al., 2019). It is also important to validate
the results using biological biomarkers and interpretations.

In reality, researchers may not know whether the data contain
novel cell type or not in many situations. It is helpful to be aware of
the method outcome when the data have no novel cells. There are
two possible signs for such a scenario, one is failure to converge
with the warning ‘Cannot detect any novel cells! Returning potential
cluster based on the last iteration’, and the other one is that a known
cell type is picked up by the proposed method. The reported known
cell type tends to be the most different one among all the cell types.
We evaluated CAMLU in the PBMC-based simulation study with no
novel cells in the testing data. Among 20 Monte Carlo iterations,
CAMLU reported failure to detect novel cells in 5 datasets and iden-
tify CD56NK as the novel cell in the rest of 15 datasets. As the
known cell types are already well understood, it is straightforward
to identify the true cell identity (i.e. CD56NK) of these ‘novel’ cells.
As a result, we emphasize the importance of validating the results
from CAMLU using biological knowledge in collaboration with do-
main experts.

There are a few directions in which future works can be consid-
ered and explored. First, we will continue to explore the selection of
different parameters to improve the sensitivity and robustness of the
method. For example, different complexity of cell type structure
may need larger or smaller autoencoder models. The number of fea-
tures selected can also be associated with the problem of interest.
Adaptive procedures can be designed to automatically select these
factors in the model construction. Second, one can consider to better
tailor the tool for different disease settings by incorporating add-
itional biological knowledge into the framework. In our current fea-
ture selection setting, we select the top features merely based on the
reconstruction distributions. It is possible that combining the bi-
modal features with disease-associated features can achieve even
better performance.
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