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M O L E C U L A R  B I O L O G Y

3D chromatin architecture, BRD4, and Mediator have 
distinct roles in regulating genome-wide transcriptional 
bursting and gene network
Pawel Trzaskoma1*†, SeolKyoung Jung1†, Aleksandra Pękowska1,2†, Christopher H. Bohrer3, 
Xiang Wang1‡, Faiza Naz1, Stefania Dell’Orso1, Wendy D. Dubois3, Ana Olivera4, Supriya V. Vartak1, 
Yongbing Zhao1, Subhashree Nayak1, Andrew Overmiller1, Maria I. Morasso1, Vittorio Sartorelli1, 
Daniel R. Larson3, Carson C. Chow5*, Rafael Casellas1, John J. O’Shea1*

Discontinuous transcription is evolutionarily conserved and a fundamental feature of gene regulation; yet, the 
exact mechanisms underlying transcriptional bursting are unresolved. Analyses of bursting transcriptome-wide 
have focused on the role of cis-regulatory elements, but other factors that regulate this process remain elusive. We 
applied mathematical modeling to single-cell RNA sequencing data to infer bursting dynamics transcriptome-wide 
under multiple conditions to identify possible molecular mechanisms. We found that Mediator complex subunit 
26 (MED26) primarily regulates frequency, MYC regulates burst size, while cohesin and Bromodomain-containing 
protein 4 (BRD4) can modulate both. Despite comparable effects on RNA levels among these perturbations, acute 
depletion of MED26 had the most profound impact on the entire gene regulatory network, acting downstream of 
chromatin spatial architecture and without affecting TATA box–binding protein (TBP) recruitment. These results 
indicate that later steps in the initiation of transcriptional bursts are primary nodes for integrating gene networks 
in single cells.

INTRODUCTION
Prokaryote to human gene transcription occurs in bursts of RNA 
synthesis manifested by sporadic periods of gene activity punctuat-
ed by periods of apparent inactivity (1–3). Recognized since the 
1970s as discontinuous transcription (1), transcriptional bursting is 
an important aspect of gene regulation although the precise mecha-
nisms are largely obscured (4, 5). This dynamic process reflects both 
upstream regulatory processes and the mechanisms of transcrip-
tional activation and repression, which occur on timescales of 
seconds to days (6–9). Numerous investigations have delved into 
the mechanisms influencing transcriptional bursting. For example, 
steroids (10), local nucleosome rearrangements (11), and chromatin-
modifying drugs altering chromatin dynamics (12) have been iden-
tified as regulators of burst frequency. Conversely, the levels of 
transcription factors (TFs) and MYC have been implicated in mod-
ulating burst size (13, 14). Furthermore, certain regulators exhibit 
the capacity to influence both burst frequency and size (15–17). Yet, 
the larger implications for coordination of gene expression in single 
cells have not been studied.

Most of our understanding of transcriptional bursting comes 
from imaging in both fixed and living cells (7, 18, 19). Live-cell 

imaging provides real-time dynamics of transcription on all tim-
escales (7), and smRNA-FISH (single-molecule RNA fluores-
cence in  situ hybridization) studies have identified a role of 
enhancers and cohesin in modulating burst frequency (20–23). 
Even though these approaches have enabled tremendous prog-
ress, they can only be used to study selected genes at once. To 
overcome this limitation, a transcriptome-wide approach has re-
cently been deployed to infer burst size and frequency by fitting 
a two-state mathematical model of transcription to single-cell 
RNA sequencing (scRNA-seq) data (24, 25). This approach com-
plements recent advances in large-scale single-molecule RNA 
FISH (26). scRNA-seq is more widely accessible and can examine 
transcripts and cell types that may not be accessible to imaging. 
Using this approach, Larsson et al. (24) proposed that enhancers 
encode bursting frequency, while TATA-containing promoters 
affect burst size. In addition, Ochiai et al. (25) showed that ac-
cumulation of transcription elongation factors correlates with 
frequency of bursting.

Thus far however, no transcriptome-wide study has attempted to 
integrate wide-ranging perturbations into a comprehensive frame-
work for transcriptional activation that includes nuclear architec-
ture, sequence-specific TFs, chromatin modifications, preinitiation 
complex (PIC) assembly, and elongation regulation. Doing so re-
quires overcoming challenges to the mathematical modeling com-
ponent. Quantifying parameter uncertainty is an area of active 
research in systems biology (27–33). Bayesian inference and model 
comparison are classic ways to address these problems but are non-
trivial to implement and computationally expensive (30, 33, 34). 
Any method used to estimate parameters must be scalable to mul-
tiple datasets of tens of thousands of genes. Fast standard parameter 
optimization methods are reliant on initial starting points and 
can be confounded by local minima. Such approaches also do not 
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adequately quantify the uncertainty of the estimated parameters or 
the suitability of the proposed models. Thus, it would be difficult to 
assess whether changes in parameters were due to the perturbation 
or simply that a wide range of parameters work equally well. Last, it 
is also not clear whether the prevailing two-state “telegraph” model 
is adequate to describe all the complexities of transcription. Rather, 
previous live-cell imaging has shown that more complicated models 
are often more appropriate (7).

Here, we develop an approach for fitting of single-cell sequencing 
data that, when coupled with experimental perturbations, reveals 
dynamic principles of transcriptional regulation. We developed a 
computationally efficient software suite called StochasticGene that 
performs Bayesian inference and analysis of arbitrary model architec-
tures for a wide range of data types including scRNA-seq. The model 
produces posterior distributions of the parameters, which provides a 
quantification of the range over which parameters could vary without 
substantially affecting the fit to the data. We used this computational 
approach to interrogate the roles of key transcriptional regulators. 
That is, the MYC oncogene, cell type–specific enhancers, cohesin 
complex, CTCF (CCCTC-binding factor), BRD4 (Bromodomain-
containing protein 4) and MED26 (Mediator subunit 26), which 
docks elongation factors (35). We find that these factors work through 
different kinetic mechanisms but that Mediator subunit 26 plays a 
unique role in coordinating gene expression in single cells.

RESULTS
Mathematical modeling infers transcriptional 
kinetics genome-wide
Transcriptional bursting was modeled as a series of transitions be-
tween a finite number of states (7, 17, 36–39). One of the states 
is considered active or “ON” from which mRNA is emitted and 
then decays. The classic example is the two-state telegraph model 
(Fig. 1A), although bursting of some genes is better explained by 
models with more states (7, 39). We used a Markov chain Monte 
Carlo (MCMC) algorithm to compute Bayesian posteriors of one-, 
two- and three-state models on scRNA-seq data acquired with a high-
throughput platform capable of capturing thousands of cells (40). For 
stationary data, such as the scRNA distribution, no timescale can be 
specified, and rates are usually given with respect to the mRNA decay 
time. We specified the absolute timescale of the rates by fixing the 
mRNA decay time using mRNA half-lives measured in various cell 
lines, including HCT-116 (human colorectal carcinoma) and mouse 
natural killer cells, as well as mouse primary cells such as activated B, 
skin, and mast cells (fig. S1). We applied quality control filtering steps 
on the raw scRNA-seq data and computed the Bayesian posterior 
estimates of the model rates (fig. S2). Standard Bayesian model 
comparison measurements (e.g., Akaike Information Criterion and 
Watanabe-Akaike Information Criterion), which balance fit to data 
with the number of parameters, found that the two-state model was 
better for most genes compared to a one-state or three-state model 
given the data. In HCT-116 cells, none of the genes with the one-state 
model as a winner passed quality control. Only 0.78% (replicate 1, n = 
18) and 1.57% (replicate 2, n  =  29) had model 3 as the winner 
(data S1).

Consequently, we used a two-state model for all conditions, 
which has three free parameters (kon, koff, and keject) and a fixed 
mRNA decay rate (kdecay). Unless otherwise specified, we used 

the median of the Bayesian posterior to represent the rates. Of-
ten, koff and keject are combined into a dimensionless number 
(keject/koff), which can be construed as a burst size (number of 
mRNA produced while the gene is in the ON state). A major issue 
with fitting models to scRNA data is that not all mRNAs are cap-
tured (data S2 and S3). We addressed this deficiency by compar-
ing the rates inferred from the scRNA-seq 10x platform to that 
inferred from smRNA-FISH and found that the most correlated 
measures between the two methods were kon and burst size 
(keject/koff) (Fig.  1B). We focused our analysis on the inverse of 
kon, which corresponds to the burst frequency or OFF duration 
(time between bursts in minutes), and the burst size (number of 
mRNA molecules produced per burst), which serves as a proxy 
value, as it depends on the yield of scRNA-seq. We also validated 
the rates by repeating experiments, which showed a high correla-
tion between replicates (Fig. 1C) and cells in different stages of 
the cell cycle (fig. S3, A to D). Furthermore, to validate Stochas-
ticGene, we fit scRNA-seq data from Johnsson et  al. (41) and 
compared our respective rate estimates. We observed a high cor-
relation between kon and burst size (fig. S4, A to C).

Transcriptome-wide analysis reveals contrasting bursting 
kinetics of regulatory and housekeeping genes
Prior work has revealed that housekeeping (HK) genes encode 
mRNA characterized by lower decay rates than mRNA of regula-
tory genes encoding TFs (42). However, it remained unclear whether 
high abundance of HK transcripts could be explained solely by 
their low decay. After confirming reproducibility of our method, 
we analyzed transcriptional bursting of HK and TF genes. For 
steady-state HCT-116 cells, we found that HK had higher expres-
sion (Fig. 2A) and produced mRNA with a lower decay rate com-
pared to TF regulatory genes, with mRNA half-lives of 8.22 hours 
versus 2.35 hours, respectively (Fig.  2B). Our global analysis of 
scRNA-seq revealed that HK genes burst less frequently than TF 
genes (Fig.  2C). However, HK genes produced more mRNA per 
burst (Fig. 2D). Two representative examples are shown in Fig. 2E: 
a TF gene: SMAD3, a TF involved in transforming growth factor–β 
signaling versus a HK gene, POLR2K, which encodes one of 
RNA polymerase II (RNAP2) subunits; both exhibit the distinctive 
bursting behavior seen in their respective family of genes. Thus, 
HK genes exhibit lower mRNA decay rates and larger burst sizes 
despite a lower frequency of bursting compared to TF genes.

MYC modulates burst size
MYC is a canonical proto-oncogene that regulates many genes by 
functioning as a “global amplifier” of transcription (43, 44). Recently, 
it was demonstrated with an optogenetic system and single RNA im-
aging that overexpression of MYC modulates burst duration and size, 
while not affecting burst frequency (14). Using activated primary 
Myc-deficient B cells (Fig. 3A) (45), we found smaller burst size and 
only a slight effect on OFF duration of down-regulated genes in MYC-
depleted cells (Fig. 3, B and C), which validates that MYC modulates 
the amplitude rather than the frequency of transcription.

Cell type–specific enhancers increase expression mostly 
through bursting frequency
Previously, it has been shown that distinct promoter-enhancer (P-E) 
contacts drive cell type–specific gene expression in pluripotent mouse 
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embryonic stem cells (ESCs) and activated B cells (46). In contrast to 
globally acting MYC, we speculated, on the basis of imaging (20, 21) 
and sequencing data (24), that enhancers gained during cell develop-
ment should primarily drive the frequency of bursting. We thus com-
pared bursting in ESCs and differentiated cells. One notable example 
was the Pim1 gene, which showed differential enhancer usage in ESCs 

compared to B cells (46). This gene, regulated by the Janus kinase 
(JAK)–signal transducer and activator of transcription (STAT) (JAK/
STAT) signaling pathway, encodes a Ser/Thr protein kinase (47) and 
has higher expression in activated B cells compared to ESCs. We 
found that higher Pim1 expression can be explained by shorter OFF 
duration (log2FC = −2.92) and a smaller increase in normalized burst 
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size (log2FC = 1.78) (Fig. 3D). To examine the relation of Pim1 ex-
pression with OFF time and burst size across various cell types, in 
addition to mouse ESCs and activated B cells, we performed normal-
ization of expression and burst size. This normalization accounts for 
differences in sequencing depth across cell types, which affect the 
yield and, consequently, the eject rate used to compute burst size 
(fig. S5A). We examined primary B220+ bone marrow cells, splenic 
resting and activated B cells, ES cells, mast cells, skin cells, immortal-
ized natural killer cells, and the mouse B cell tumor CH12 cells (n = 8 
cell types). We conducted regression analyses and found that Pim1 
expression across cell types significantly explains the variability of 
OFF time (P = 0.02), with burst size showing a weaker association 
(P = 0.1) (Fig. 3, E and F).

To further investigate how cell type–specific enhancers regulate 
transcriptional bursting, we analyzed the scRNA-seq data for other 
chromatin interaction analysis with paired-end tags (ChIA-PET)–
identified ESC and B cell type–specific enhancers (46) (fig. S5, B to 
D). We compared fold change (FC)–normalized expression (B cells/
ESCs), OFF duration, and normalized burst size in both genes that 
gained enhancer activity and genes that lost enhancer activity during 
development (46). Gained enhancers were observed in B cells but 
were absent in ESCs, while lost ones were present only in ESCs. After 
filtering, we retained 29 genes that gained two or more enhancers dur-
ing development and 62 genes that lost two or more cell-specific en-
hancers. As expected, genes that gained enhancers showed higher 
expression in activated B cells. They had shorter OFF duration and to 
a lesser extent larger burst sizes (fig. S5C). When we applied a more 

stringent threshold (four or more enhancers gained or lost), we found 
that B cell type–specific genes linked to B cell enhancers were charac-
terized by shorter OFF duration, but the burst size was not signifi-
cantly different from genes with lost enhancers (fig. S5D). Thus, the 
accumulation of cell-specific enhancers during development corre-
lates with a decrease in transcription OFF duration. Together, our 
study of the role of MYC and enhancers in transcriptional bursting 
validates our transcriptome-wide approach as a tool that can be ap-
plied to perturbed systems.

The perturbations of cohesin, BRD4, and MED26 have 
distinct effects on transcriptional bursting
Cohesin, bromodomain-containing protein BRD4, and Mediator 
exert critical and distinct functions in transcriptional regulation. 
The cohesin complex plays a key role in three-dimensional (3D) 
chromatin architecture by facilitating the formation of topologi-
cally associating domains through loop extrusion (48–50), which 
is halted by CTCF (51, 52). Many down-regulated genes upon co-
hesin loss are located near super-enhancers (SEs) (52) that colo-
calize with Mediator and BRD4 (53). To investigate the effects of 
these perturbations on transcriptional kinetics while avoiding 
secondary effects, we used an auxin-induced degron system to 
deplete the cohesin subunit RAD21 (54) and MED26 (55). In ad-
dition, to displace transcriptional coactivator BRD4 (56), we ex-
posed cells to JQ1 (500 nM) (fig. S6, A and B). All treatments were 
conducted under the same conditions: HCT-116 cells were starved 
and serum activated for 2 hours before harvesting (Fig. 4A). Using 
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bulk mRNA-seq, we observed a similar impact of these perturba-
tions on RNA levels of significantly down-regulated genes, a cate-
gory that was applied to the following analyses of transcriptional 
kinetics (fig. S7).

Our transcriptome-wide analysis revealed that down-regulated 
genes (fig. S7, A to D) exhibited significantly increased OFF dura-
tion for all three perturbations [log2FC = 0.2 (RAD21 degron), 0.66 
(JQ1 treatment), and 0.74 (MED26 degron)] (Fig. 4B), but the effect 
on burst size was not universal. RAD21 loss induced the largest ef-
fect on burst size for down-regulated genes (log2FC = −0.57), JQ1 
had a weaker impact (log2FC  =  −0.25), and MED26 loss had no 
significant impact on median burst size (Fig. 4C). Conversely, other 
genes showed almost no changes in parameters upon RAD21 loss 
and JQ1 treatment. On the other hand, upon MED26 loss, these 
genes had bigger burst sizes with longer OFF duration, suggesting 
compensatory mechanisms (57) (Fig. 4, B and C). To evaluate the 
global impact of MED26 depletion on the transcriptome, we per-
formed spike-in normalized mRNA-seq and observed a global but 
mild down-regulation, consistent with previous reports (57, 58) 
(fig.  S8, A and B). This control indicates that the compensatory 
mechanism is only partial.

To eliminate the possibility that differences in mRNA decay in-
duced by the treatments could affect the interpretation of our re-
sults, we conducted RNA-seq following these perturbations and 
transcription inhibition with actinomycin D to determine mRNA 

half-lives (fig.  S9). However, it is important to note that, despite 
incorporating spike-ins as a control to address technical noise, not 
only the correlation may be relatively low but also many values 
could potentially shift between replicates (59). This introduces ad-
ditional noise into the bursting analysis. We found that the correla-
tion of mRNA half-lives in control and perturbed samples was 
comparable to that between replicates under perturbations (fig. S9, 
A and B). Nevertheless, to ensure that changes in half-lives did not 
affect the inferred rates, we refitted the data using half-lives mea-
sured under control and perturbations (fig. S9, C and D). Consis-
tently, we observed that all perturbations similarly affected the OFF 
time and burst size of down-regulated genes when applying the 
same decay rates to both control and perturbation conditions (Fig. 4, 
B and C). Similarly, for other genes, bursting parameters remained 
almost unchanged upon RAD21 loss. The OFF time was longer and 
burst size bigger upon MED26 loss; however, the OFF time was also 
longer under JQ1 treatment (fig. S9, C and D), but we cannot rule 
out the possibility that it might be the effect of noise associated with 
mRNA decay interference. Together, we found that although all 
three perturbations affected OFF duration (i.e., burst frequency), 
they had different impacts on burst size.

To assess the distinct impact of cohesin loss on burst size, we 
used complementary approaches and compared smRNA-FISH and 
scRNA-seq inferred bursting parameters in seven genes following 
cohesin perturbation. To evaluate the direction and magnitude of 
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FCs [−RAD21/dimethyl sulfoxide (DMSO)] of parameters from the 
two methods, we performed linear regression (Fig. 4D). We analyzed 
two genes that, based on bulk mRNA-seq, remained unaffected by 
this perturbation (PPM1G and PSMD14), three down-regulated 
genes (SOX9, MYC, and ERRFI1), and two up-regulated genes 
(HMMR and KIF2C). Both methods exhibited good agreement for 
expression changes. While we observed discrepancies in the magni-
tude of OFF time changes for two down-regulated genes (MYC and 
SOX9), the directions of changes for these gene were in agreement 
between the two methods. For one down-regulated gene, ERRFI1, de-
spite consistently showing longer OFF times, we observed an incon-
sistency in burst size, possibly due to a disparity in down-regulation 
magnitude between the two methods. However, despite this inconsis-
tency, we also observed good agreement for burst size FCs inferred 
from smRNA-FISH and scRNA-seq. Together, this comparison con-
firmed the impact of cohesin loss on OFF time and burst size (Fig. 4D). 
We also analyzed bursting kinetics upon cohesin loss 30 min after re-
lease from fetal bovine serum (FBS) starvation, and in serum-starved 
HCT-116 cells. In both cases, we observed a higher correlation of ex-
pression change (−RAD21/DMSO) with burst size change (fig. S10, A 
and B). To evaluate whether the results observed in HCT-116 cells 
could be generalized to other cell types, we induced auxin-mediated 
RAD21 degradation in mouse ESCs (60) and confirmed that tran-
scriptional output of this perturbation is dictated mostly by change in 
burst size (fig. S10C). To further investigate how genome architecture 
affects transcriptional bursting, we depleted CTCF with an auxin-
based approach in ESCs (61) (fig. S10D). Although burst size was still 
the most affected parameter, we observed a bigger impact of CTCF 
removal on OFF duration (fig. S10, C and D). Together, we observed 
that factors shaping the 3D chromatin architecture and BRD4 regu-
lated bursting frequency and burst size of down-regulated genes, 
whereas MED26 modulated bursting frequency.

MED26 has the most profound impact on the gene network
The preceding analyses treat all genes independently and individu-
ally, but scRNA-seq is inherently multidimensional. Intrigued by the 
debate surrounding the association between cohesin, BRD4, and 
Mediator (52, 58, 62–64), we further investigated down-regulated 
genes following these perturbations and found that only 50 genes 
were commonly affected by these perturbations suggesting a dis-
tinct mechanism of action (Fig. 5A and data S4 to S7). Hence, we 
aimed to investigate whether MED26, given its distinct influence on 
bursting, exerts varying effects on the gene network. We hypothe-
sized that changes in transcriptional bursting in individual cells 
would affect the coordination of expression between genes. We 
measured the underlying gene network by calculating the correla-
tions between pairs of genes at the single-cell level. Here, when we 
refer to the gene network, we are referring to the underlying pro-
cesses that dictate the correlated expression of pairs of genes in indi-
vidual cells. To quantify the effect of a specific perturbation, we 
quantified the change in the correlation coefficient with each pertur-
bation and compared the change to a control (the change in correla-
tion for each pair genes in replicates). Using this approach, we found 
a consistent spread for correlation changes and with a similar 
amount of variability except for the MED26 perturbation, which 
had higher variability in terms of absolute correlation coefficient 
changes (Fig. 5B). To highlight this result, we show the median ab-
solute deviation (MAD) of each distribution in Fig. 5B and further 
show that the results are consistent across multiple repeats in fig. S11 

(A and B). We confirmed that the distinctiveness of the MED26 
perturbation was not due to differences in gene expression levels 
(fig. S11, C and D). Overall, the analysis suggests that MED26 plays 
a more profound role in dictating the coexpression of genes at the 
single-cell level when compared to the other factors.

MED26 regulates gene network via BRD4 and RNAP2 
pause release
On the basis of our findings regarding MED26, we attempted to elu-
cidate how this factor affects transcription at a stage distinct from 
other examined regulators. We focused on TBP (TATA box–binding 
protein), a component of the transcription PIC (65). We found that 
RAD21 and BRD4 act upstream of the PIC formation, as indicated by 
lower TBP binding at promoters of down-regulated genes (Fig. 5C). 
In contrast, we did not observe notable differences of TBP binding at 
promoters of genes down-regulated by acute MED26 loss compared 
to other genes. MED14 has been shown to act downstream of the 
spatial chromatin structure driven by cohesin (58). Consistent with 
this finding, we observed minimal impact on RAD21 binding upon 
MED26 loss (fig. S12A), implying that MED26 also functions down-
stream of the 3D chromatin structure.

Subsequently, we performed RNAP2 chromatin immunoprecipi-
tation sequencing (ChIP-seq) under cohesin, BRD4 (JQ1 treatment) 
and MED26 perturbations. Our analyses of bursting revealed that 
under all three perturbations, there was an increase in the OFF dura-
tion between transcriptional bursts. However, it was only MED26 
that specifically affected the OFF duration of the bursts without alter-
ing the median burst size of down-regulated genes (Fig. 4, B and C). 
When comparing RNAP2 binding at down-regulated genes follow-
ing MED26 loss, we observed reduced RNAP2 occupancy at the 
transcription start site but negligible changes in the gene body com-
pared to other perturbations (fig.  S13). This suggests that RNAP2 
recruitment is likely affected by the degradation of MED26. We also 
observed that the RNAP2 signal varies under DMSO treatment at 
genes affected by all three perturbations (fig. S13). This finding indi-
cates that the regulation of RNAP2 initiation and proximal pause 
release is controlled in a gene-specific manner by cohesin, BRD4, 
and MED26 (fig. S13). In addition to RNAP2 ChIP-seq, to assess the 
impact of MED26 perturbation on transcriptionally engaged RNA 
polymerases, we performed precision nuclear run-on sequencing 
(PRO-seq) (66). As a control, we also conducted PRO-seq upon JQ1 
treatment and found that both treatments decreased levels of RNA 
polymerases at the gene body and promoter region in the case of 
MED26 loss (Fig.  5D). These findings further support the role of 
MED26 as a regulatory switch for transcription.

To explore potential downstream mechanisms following PIC for-
mation, we next turned to BRD4, which is known to coordinate 
elongation (67). We hypothesized that MED26 could tune bursting 
kinetics by interacting with BRD4 at the promoter region. We found 
affected BRD4 binding at promoter regions upon acute loss of this 
Mediator subunit (fig.  S12B). Consistently, we observed changed 
BRD4 occupancy at promoters of down-regulated genes compared 
to up-regulated ones following perturbations (fig. S12C).

Last, using PRO-seq data, we computed a pausing index, which 
is the ratio of promoter-proximal to gene-body RNA polymerase 
density (68) (Fig. 5E). We observed that down-regulated genes ex-
hibited increased FCs (JQ1/DMSO) in pausing compared to other 
genes, consistent with previous studies (69) (Fig.  5F). Similarly, 
we observed increased pausing indices of down-regulated genes 
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relative to other genes upon MED26 depletion (Fig. 5F). However, 
we noted that the FCs (−MED26/DMSO) of pausing indices had 
lower values than after JQ1 treatment. This supports our RNAP2 
ChIP-seq findings, which revealed affected binding of RNA poly-
merases upon perturbation of this subunit (Fig. 5F and fig. S13).

Our results highlight the distinct roles of cohesin, BRD4, and 
MED26 in modulating transcriptional bursting. Moreover, we dem-
onstrate that these modulators act at different stages of transcription, 
with MED26 exerting a higher impact on gene network regulation. 
Our findings also suggest that MED26, in conjunction with BRD4, 
acts as a binary ON/OFF switch of transcription.

DISCUSSION
scRNA-seq combined with computational approaches provides a use-
ful tool to investigate the heterogeneity of transcription across thou-
sands of genes. These distributions can be used to infer dynamic 
regulation. In contrast, imaging of mRNA in live or fixed cells can 
only be used to study selected genes. We used our transcriptome-wide 
approach to investigate the kinetics of transcription across the ge-
nome under a wide range of conditions to learn their impact on tran-
scriptional bursting and gene coexpression at the single-cell level.

One limitation of using smRNA-FISH or scRNA-seq as input for 
a mathematical model of transcription is the challenge in accurately 
capturing the timescale for the steady-state mRNA distributions ob-
tained with both methods. However, smRNA-FISH has been ap-
plied to capture dynamic changes over time in response to various 
stimuli, such as serum induction (16) or cytokine stimulation (37). 
To address this limitation, we measured genome-wide mRNA half-
lives for several cell types and used this information to estimate the 
OFF duration. Another limitation is the loss of RNA because 
scRNA-seq only captures a fraction of the mRNA (data S2). More-
over, although adequate given the resolution of scRNA-seq, the 
telegraph model is known to be a simplification of transcription dy-
namics. While live-cell imaging shows that three gene states (one 
active and two inactive states) are usually justified in fitting the data, 
this is rarely the case for scRNA data (data S1), because of the lower 
yield. As a result, there are fewer parameters in the two-state model 
used in this paper compared to the models used in the live imaging 
studies (7, 39). This ambiguity obscures the relationship between the 
parameters for different models as the parameters of the smaller 
model will be amalgamations of the parameters of the larger model. 
Therefore, bursting parameters inferred using the two-state model 
can differ from live imaging using the MS2/PP7 system or smRNA-
FISH. Our data indicated that the OFF time, in steady-state HCT116 
cells, for the presented genes lasts hours (Fig. 2), and the median 
OFF time for all genes was about 6 hours. These times are in agree-
ment with other studies using scRNA-seq to infer the frequency of 
bursting, which showed that the time between bursts can last 4 to 
6 hours (24, 41). This is also in line with imaging data of thousands of 
genomic loci that revealed that OFF time lasts 2 to 4 hours (15) and 
live imaging using the MS2/PP7 system that reveals that the TFF1 
gene can be inactive for more than 10 hours (7). Modeling of this 
data predicts that TFF1 can be inactive on the timescale of days (7). 
For an additional 10 genes, live-cell imaging using the MS2/PP7 sys-
tems showed that the time of inactivity is gene dependent and lasts 
up to ~90  min (39). Nevertheless, the limitations of scRNA-seq 
may result in some discrepancies between high-resolution single-
gene imaging (smRNA-FISH and live imaging using the MS2/PP7 

system) and high-throughput inference of bursting parameters us-
ing data with lower resolution, like scRNA-seq. To compensate for 
this bias, we compared scRNA-seq to the gold-standard method: 
smRNA-FISH. It can be shown theoretically that if the fraction cap-
tured by scRNA is completely random, then only the eject rate will 
be affected (see Materials and Methods). We validated that rate pa-
rameters inferred from scRNA-seq were correlated with those from 
smRNA-FISH and thus scRNA-seq can provide reliable estimates of 
OFF duration and burst size in perturbed samples. Genes with an 
insufficient number of mRNA counts were removed during our 
quality control filtering.

In this study, we demonstrated the utility of our approach in 
comparing the transcriptional kinetics of genes with different func-
tions. HK genes are often referred to as constitutive genes (70, 71), 
but it remains unclear whether the high abundance of HK tran-
scripts depends solely on their long mRNA half-lives, as previously 
shown (42), or on their distinct transcriptional kinetics. If HK genes 
were transcribed constitutively, we might expect a higher bursting 
frequency of HK genes compared to TF genes. However, contrary to 
this expectation, we observed that mRNA half-lives and, unexpect-
edly, burst size mainly determine the high expression of HK genes, 
rather than frequency. Our model indicates that their OFF time is 
even longer than that of TF genes. Therefore, HK genes, by produc-
ing mRNA with low decay, may not require such frequent bursting. 
We also note that our analysis of these gene parameters was con-
ducted in steady-state cells, and it is possible that regulatory TF 
genes, which have a smaller burst size than HK genes, could in-
crease burst size upon cell activation. Gene expression can be en-
hanced upon stimulation through an even higher frequency of 
bursting and, additionally, by an increase in burst size. It has been 
demonstrated that TF concentration could modulate the frequency 
of bursting. Further increases in expression could occur through 
the modulation of TF binding duration and, consequently, burst 
duration (16).

Our genome-wide approach also allowed us to identify regula-
tors of transcriptional bursting. We focused on the effect of cohesin, 
BRD4, and the Mediator complex subunit MED26 in serum-activated 
HCT-116 cells. All perturbations affected frequency of bursting, 
whereas cohesin loss and BRD4 perturbation also had an impact on 
burst size. Previous studies based on imaging of selected genes have 
revealed that JQ1 treatment can affect both the frequency and size of 
bursting depending on the gene in murine G1E cells (17). Our result 
is also consistent with previous findings in murine activated macro-
phages and steady-state HCT-116 cells that show that cohesin 
regulates frequency (22, 23). The finding that smRNA-FISH spot 
intensities (22) or volumes (23) were almost unchanged upon cohe-
sin loss in those experiments does not contradict our finding that 
burst size was decreased because the fluorescence intensity is a mea-
sure of nascent RNA density, while our burst size measures the 
number of mRNA molecules produced per burst and thus carries 
information about the duration of the transcriptional event. The ef-
fect on burst size along with OFF duration across down-regulated 
genes upon cohesin loss suggests that this complex might also play a 
role other than bringing together promoters and enhancers. If cohe-
sin exclusively affected P-E contacts, then it would only affect OFF 
duration and not burst size because enhancers primarily modulate 
OFF duration [Fig.  3 and (21, 24, 72)]. This agrees with a recent 
study (73), which finds a weak impact of cohesin depletion on P-E 
contacts. By contrast, we found that MYC governs burst size across 
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the genome in murine activated B cells, in agreement with imaging 
in live human cells (14).

The role of the Mediator complex in bursting had not been stud-
ied on a genome-wide scale until now. It was not clear whether Me-
diator regulates burst size or the frequency of bursting. We used a 
transcriptome-wide approach and found that genes down-regulated 
by MED26 loss exhibited a lower frequency of bursting, but the me-
dian FC of burst size was not affected. Unexpectedly, we also found 
that genes not significantly down-regulated upon MED26 loss had 
lower frequency and bigger burst size. Our spike-in normalized 
bulk mRNA-seq proved that even acute MED26 loss induced a glob-
al but mild down-regulation of expression, in accordance with pre-
vious results (57, 58). The increased burst size might partially 
compensate for the longer OFF time. A compensatory mechanism 
upon Mediator loss was previously observed by Jaeger et al. (57). In 
their study, the authors perturbed the MED14 subunit of the Media-
tor complex, affecting the initiation of transcription, and observed a 
compensatory mechanism through the activation of positive tran-
scription elongation factor (P-TEFb) (57). We also observed a slight 
increase in RNAP2 binding at the gene body of genes other than 
those down-regulated, specifically after MED26 depletion but not 
JQ1 treatment (fig. S14, A and B). Notably, there was a greater in-
crease in burst size upon MED26 loss compared to the effects of 
other treatments (Fig. 4D), suggesting a compensatory mechanism 
in response to MED26 perturbation through an increase in burst 
size and RNAP2 binding at the gene body. However, we acknowl-
edge that this increase is subtle. Consequently, this mechanism may 
only partially compensate for MED26 loss, as we observed a mild 
but global down-regulation when analyzing spike-in normalized 
bulk mRNA-seq (fig. S8B). Because MED26 was shown to interact 
with P-TEFb (35), the mechanism upon MED26 loss might differ 
from MED14 perturbation or may be gene dependent. Together, the 
possible compensatory mechanism requires further investigation to 
be fully understood.

While much is gained in analyzing single genes in isolation, 
scRNA-seq provides the ability to examine correlations between 
genes in single cells, which could help to explain how cells main-
tain cellular identity through transcriptional regulation. Several 
factors could obscure the significance of these correlation chang-
es (74), including RNA detection noise, RNA persistence from 
preperturbation exposure, and variations in RNA degradation. 
Given this context, our analysis revealed that JQ1 treatment and 
perturbations in 3D chromatin architecture only had weak effects 
on the correlation between expressed genes. However, MED26 
depletion had a greater effect on gene-gene correlation along 
with distinct effects on bursting. Although the network analysis 
was performed separately from the bursting, we speculate that 
changes in transcriptional kinetics, particularly an increase in 
OFF time resulting in a significant down-regulation of affected 
genes, can influence the temporal expression of other genes. The 
basis of this proposal is that this influence may occur through 
cobursting—a phenomenon where genes tend to burst together 
more often if they are localized closer in spatial, though not 
necessarily genomic, scale (74). However, the phenomenon of 
cobursting is not fully understood. For instance, it has been dem-
onstrated that glucocorticoids can activate not only proximal but 
also distal genes through cobursting (75), potentially influencing 
cellular identity and the gene network. Therefore, MED26 deple-
tion could affect the gene network by increasing the OFF time of 

specific genes and, consequently, perturbing the coexpression of 
specific gene pairs.

In search for a molecular mechanism and the reason for a dis-
tinct role of MED26 in regulating transcriptional bursting and gene 
coexpression, we performed ChIP-seq for TBP, which is involved in 
the formation of the transcription PIC (76). We found that although 
loss of cohesin and perturbation of BRD4 affected TBP binding 
genome-wide, MED26 did not. Also, Takahashi et al. (35) showed 
that MED26 knockdown has no major effect on TBP occupancy at 
c-MYC and HSP70 promoters. Together, it suggests that MED26 
acts downstream of TBP recruitment. To explore potential mecha-
nisms, we turned our attention to BRD4, which has been shown to 
coordinate recruitment of pause release factor (67). Our genome-
wide analysis revealed that MED26 depletion affects BRD4 binding 
at promoters to a greater extent than SEs, in contrast to the effects of 
JQ1 treatment. In addition, we observed altered BRD4 binding at 
promoters of differentially expressed genes upon MED26 loss. These 
findings suggest that MED26 regulates the release of stalled RNAP2, 
possibly through its interaction with BRD4. Our PRO-seq analysis 
revealed that genes down-regulated by both JQ1 treatment and 
MED26 perturbations have higher RNA polymerase pausing indi-
ces compared to other genes. However, we observed that MED26 
perturbation likely affects RNAP2 binding, as reflected in RNAP2 
ChIP-seq and the negative values of log2 FC of pausing indices upon 
MED26 loss. Notably, MED26 has been demonstrated to interact 
with RNAP2 (35). In addition, other studies have shown interac-
tions between certain subunits of the Mediator complex and BRD4 
(77–81). However, it remains to be elucidated whether the interac-
tion between MED26 and BRD4 is direct or indirect. Previously, it 
had been also found that MED26 can act as a molecular switch 
docking first transcription initiation factors, and then exchange 
them for complexes involved in elongation, such as P-TEFb (35). 
Together, our data suggest that MED26 is part of a rate-limiting step 
in transcriptional bursting, likely working through the binding and 
release of RNAP2, and this late step in the transcription cycle is a 
critical factor in regulating the gene network.

Overall, our findings underscore the intricacy of transcriptional 
regulation, enhancing our understanding of how cellular identity is 
maintained through complex transcriptional networks. Applying 
the proposed strategy to other perturbations could shed light on the 
robustness of the network, providing a deeper insight into cellular 
strategies that maintain gene expression homeostasis by modulat-
ing transcriptional bursting dynamics. Combining rapidly evolving 
single-cell imaging and sequencing methods (82) alongside micros-
copy super-resolution techniques and innovating new computa-
tional tools (7, 83, 84) will further enhance our ability to unravel the 
complexities of transcriptional regulation.

MATERIALS AND METHODS
Cell culture
HCT-116 degron cell lines: RAD21- mAID-mClover (54) and HCT116-
OsTIR1-MED26-AID (55) were cultured in McCoy’s 5A medium 
supplemented with l-glutamine (Gibco), 10% FBS (Gemini), peni-
cillin (100 U/ml), and streptomycin (100 μg/ml) (Gibco), at 37°C 
and 5% CO2. Starvation: Cells were FBS depleted for 14 hours, fol-
lowed by an additional incubation with FBS-free medium for an-
other 6 hours in the presence of DMSO (control), 500  μM auxin 
[indole-3-acetic acid (IAA)] (Sigma-Aldrich) for degradation of the 
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auxin-inducible degron (AID)–tagged RAD21 and MED26 or 500 nM 
JQ1 (Sigma-Aldrich) for BRD4 displacement. Cells were analyzed af-
ter addition of FBS in the presence of DMSO or drugs at time points: 
0  hours (RAD21 degron), 0.5  hour (RAD21 degron), and 2  hours 
(RAD21 and MED26 degron, JQ1 treatment).

ES (E14) RAD21 (60) and CTCF degron (61) cell lines were 
cultured in knockout (KO) Dulbecco’s modified Eagle’s medium 
(Gibco), ES cell–qualified FBS (American Type Culture Collection), 
1:100 Glutamax (Gibco), 1:100 sodium pyruvate (Gibco), 1:100 
nonessential amino acids (NEAA) (Gibco), penicillin (100 U/ml) 
and streptomycin (100 μg/ml) (Gibco), 1:1000 2-mercaptoethanol 
(Gibco), and 1:10,000 leukemia inhibitory factor (10,000×) on 0.1% 
gelatin-coated dishes at 37°C; 5% CO2. For the AID-tagged proteins, 
500 μM auxin (IAA) (Sigma-Aldrich) was added for 6 hours (RAD21) 
or 24 hours (CTCF). CH12 B lymphoma cells were cultured in RPMI 
1640 media (Gibco) supplemented with 10% FBS (Gemini), peni-
cillin (100 U/ml) and streptomycin (100 μg/ml; Gibco), 1:1000 
2-mercaptoethanol (Gibco), at 37°C; 5% CO2. NK (cell line) cells were 
cultured in RPMI 1640 media (Gibco) supplemented with 10% FBS 
(Gemini), 1:100 Glutamax (Gibco), penicillin (100 U/ml) and strep-
tomycin (100 μg/ml; Gibco), 10 mM Hepes, 1:100 NEAA (Gibco), 
1:100 sodium pyruvate (Gibco), 1:1000 2-mercaptoethanol (Gibco), 
and interleukin-2 (IL-2) (200 IU/ml; Sigma-Aldrich).

Primary cells were derived from male and female mice of strains 
as follows: Primary wild-type (WT) and Myc KO B cells were de-
rived from Myc flox/flox mice (WT) or RosaCreERTam/Myc flox/
flox mice (KO) treated with tamoxifen (Sigma-Aldrich) (three times 
of intraperitoneal 1 mg per mouse at 4, 3, and 1 day before sacrifice). 
The deletion of floxed allele was checked as previously (45) with 
polymerase chain reaction or intracellular staining of MYC protein. 
B cells were isolated from spleen of WT and KO mice, enriched with 
EasySep Mouse B Cell Isolation KIT (STEMCELL Technologies) 
and activated for 4 hours with lipopolysaccharide (LPS) (50 mg/ml) 
and IL-4 (2.5 ng/ml) in RPMI 1640 medium (Gibco) supplemented 
with 10% FBS (Gemini), 1:100 Glutamax (Gibco), 1:100 sodium py-
ruvate (Gibco), 1:100 NEAA (Gibco), penicillin (100 U/ml) and 
streptomycin (100 μg/ml; Gibco), 1:1000 2-mercaptoethanol (Gib-
co) and Hepes (Gibco), at 37°C and 5% CO2. B220-positive primary 
bone marrow B cells were derived from C57BL/6 J WT mice, en-
riched with the CD45R (B220) MicroBeads Kit (Miltenyi Biotec) 
and the Dead Cell Removal Kit (Miltenyi Biotec).

Splenic B cells were derived from C57BL/6 J WT mice immu-
nized with a keyhole limpet hemocyanin (KLH; 25 μg per footpad, 
Sigma-Aldrich) in the presence of 10% Freund’s complete adjuvant 
(Sigma-Aldrich). After 5 days, B cells were isolated from spleen, en-
riched with the EasySep Mouse B Cell Isolation KIT (STEMCELL 
Technologies), and activated for 72 hours with LPS (50 mg/ml), IL-4 
(2.5 ng/ml), and anti-CD180 in RPMI 1640 medium (Gibco) sup-
plemented with 10% FBS (Gemini), 1:100 Glutamax (Gibco), 1:100 
sodium pyruvate (Gibco), 1:100 NEAA (Gibco), penicillin (100 U/
ml) and streptomycin (100 μg/ml; Gibco), 1:1000 2-mercaptoethanol 
(Gibco), and Hepes (Gibco), at 37°C and 5% CO2. To measure 
mRNA half-lives in activated B cells, actinomycin D was added after 
2 days of stimulation with LPS, IL-4, and anti-CD180 (more details: 
mRNA half-lives estimation).

Skin cells for scRNA-seq: whole epidermis from mouse neo-
nates. Keratinocytes were isolated from Fvb neonate (P0-P2) skin 
(n = 2) as described by Lichti et al. (85). Cells were subjected to 
the MACS Dead Cell Removal Kit (Miltenyi Biotech) using the 

manufacturer’s protocol. Skin cells for mRNA half-lives estima-
tion: primary keratinocyte. Skins from a pool of Fvb neonatal 
mice were collected at P0-P2 and incubated overnight in Dispase 
II (2.0 U/ml; Sigma-Aldrich) in KBM-Gold (Lonza) on an end-
over-end rotator. The following day, skins were washed twice in 
1× phosphate-buffered saline (PBS) (Sigma-Aldrich), and epider-
mises were separated from dermises. Epidermises were placed 
basal side down and floated in prewarmed 0.25% trypsin-EDTA 
(Thermo Fisher Scientific) for 20 min on an orbital shaker at room 
temperature. An equal volume of prewarmed Soybean Trypsin In-
hibitor (2.5 mg/ml; Thermo Fisher Scientific) was added to finish 
trypsinization, and epidermises were rubbed vigorously against 
bottom of plate using curved forceps to dislodge keratinocytes. 
Dislodged cells were pooled into a tube on ice in KBM-Gold. 
Pooled cells were pipetted ~40 times with a 10-ml serological pi-
pette and strained with a 100-μm filter before pelleting cells at 
300g for 10 min at 4°C. Cells were resuspended in 4.5 ml of KBM-
Gold per epidermis, and cell count was obtained using Cellometer 
ViaStain AOPI Solution (Sigma-Aldrich). The cells were subjected 
to Percoll (GE LifeSciences; ratio of 10× PBS:Percoll:KBM-Gold 
media was 1:4:5, where the cells were at a concentration of 1 mil-
lion per milliliter of final volume) gradient ultracentrifugation us-
ing a swinging bucket rotor (42 min at 4°C) to separate the basal 
and suprabasal fractions. The cells at the top band were supra-
basal cells and separated from the pellet at the bottom of the tube, 
which were basal cells. The basal cell sample was carefully pipet-
ted out, washed twice with 4°C 1× PBS, seeded onto collagen-
coated (Collage Type I; Corning) six-well plates at 1 × 106 cells 
per well, and incubated at 37°C overnight to allow cells to attach 
to the plate before proceeding with experiments. To estimate 
mRNA half-lives in skin cells we used basal cells.

Mast cells: Mouse bone marrow–derived mast cells were differen-
tiated from the marrow of tibias and femurs of C57/BL6 mice and 
cultured for 8 weeks in RPMI 1640 containing 10% FBS, 25 mM 
Hepes (Gibco), penicillin (100 U/ml), streptomycin (100 μg/ml; Gibco), 
2.5 mM L-glutamine, (Gibco), 1 mM sodium pyruvate (Gibco), non-
essential amino acids (Gibco), 50 μM 2-mercaptoethanol, IL-3 (20 ng/
ml), and stem cell factor (SCF) (20 ng/ml).The purity of mast cells 
was monitored by assessing the expression of the receptors for SCF 
(CD117) and for immunoglobulin E (FcεRI) by flow cytometry. By 
the end of 6 to 8 weeks in culture, more than 98% of the cultured 
population was FcεRI+/CD117+ double-positive mast cells.

All animals were housed in the Association for Assessment and 
Accreditation of Laboratory Animal Care International–accredited 
animal housing facilities at the National Institutes of Health (NIH). 
All animal studies were performed according to the NIH guidelines 
for the use and care of live animals and were approved by the Institu-
tional Animal Care and Use Committee of National Institute of Ar-
thritis and Musculoskeletal and Skin Diseases (NIAMS) and National 
Institute of Allergy and Infectious Diseases (NIAID) (A021-03-04).

HK and TF genes
Human HK genes were identified through literature search and selec-
tion of genes reported in two independent genome-wide studies (86, 
87). A list of human TF genes was obtained from Lambert et al. (88).

RNA sequencing
Cells (0.5 M) were harvested and lysed in 100 μl of lysis solution 
(RNAqueous-Micro Total RNA Isolation Kit from Invitrogen). 
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RNA was isolated and deoxyribonuclease treated according to the 
manufacturer’s protocol. High RNA quality was confirmed using 
the Agilent TapeStation system before library preparation. mRNA 
polyA purification, reverse transcription, and library preparation 
were performed using the NEBNext Poly(A) mRNA Magnetic Iso-
lation Module and the NEBNext Ultra II Directional RNA Library 
Prep Kit for Illumina (New England Biolabs). For spike-in control, 
ERCC RNA Spike-In Mix (Invitrogen) was added before RNA iso-
lation. Single 50 cycles of sequencing data were acquired on Next-
Seq 2000, NextSeq 550, HiSeq 3000, NovaSeq 6000, or NovaSeq X 
Plus (Illumina). RNA-seq was performed in three replicates.

Chromatin immunoprecipitation sequencing
Cells were fixed with 1% formaldehyde (Sigma-Aldrich) for 10 min 
at 37°C, treated with 1/20 volume of 2.5 M glycine, washed with 
PBS, snap frozen on dry ice, and stored at −80°C until further 
processing. After thawing, cells were resuspended in radioimmu-
noprecipitation assay (RIPA) buffer [10 mM tris (pH 7.6), 1 mM 
EDTA, 0.1% SDS, 0.1% sodium deoxycholate, and 1% Triton X-
100] supplemented with Complete Mini EDTA free proteinase 
inhibitor (Roche) and sonicated using ultrasonicator (Covaris) 
in 1-ml AFA tubes (Covaris): duration (seconds): 1200, peak 
power: 75, duty % factor: 15, cycles per burst: 1000. Sonicated 
chromatin was precleared with Dynabeads and incubated over-
night at 4°C with rotation with following antibodies: RAD21: 
ab992 (Abcam); MED26: 13641S (Cell Signaling Technology); 
TATA-binding protein TBP: ab28175 (Abcam); BRD4: ab128874 
(Abcam); and RNA Pol II: ab26721 (Abcam). The next day, sam-
ples were washed (10 min at 4°C with rotation): 2× with RIPA 
buffer, 2× with RIPA buffer +0.3 M NaCl, 2× with 1 ml of LiCl 
buffer (0.25 M LiCl, 0.5% Igepal CA-630, and 0.5% NaDOC, 
stored at 4°C), 1× with 1 ml of Tris-EDTA (TE) + 0.2% Triton 
X-100, and 1× with 1 ml of TE. After washes, beads were resus-
pended with 100 ul of TE, followed by addition of 3 μl of 10% 
SDS and 5 μl of Proteinase K (20 mg/ml) and incubated at 65°C 
for 4 hours. After decross-linking, DNA was purified on columns 
using a ChIP DNA Clean & Concentrator kit (Zymo Research). 
In the next step, DNA was quantified using a Qubit system (Invi-
trogen), and library was prepared using Ovation Ultralow Sys-
tem V2 (Tecan) according to the manufacturer’s protocol. Before 
sequencing high quality was confirmed using the Agilent TapeS-
tation system. Single 50 cycles of sequencing data were acquired 
on NextSeq 550 or NovaSeq 6000 (Illumina). ChIP-seq experi-
ments were performed in two replicates.

mRNA half-life estimation
Cells were treated with actinomycin D (5 μg/ml; Sigma-Aldrich) and 
harvested (0.5 M cells) at time point 0 hours and up to 24 hours: at 1-, 
2-, 4-, 8-, 12-, and 24-hour time points (89). After each time point, 
the viability of cells was checked with fluorescence-activated cell 
sorting or a Nexcelom cell counter after staining with acridine or-
ange/propidium iodide (Nexcelom Bioscience). Some cell types did 
not survive longer actinomycin D treatment than 12 hours, so the last 
collected time point was determined on the basis of cell type viability 
(details in fig. S1A). To determine mRNA half-lives upon perturba-
tions, cells were treated with 500 μM auxin (IAA) (Sigma-Aldrich) 
for 12 hours to induce the degradation of AID-tagged RAD21 and 
MED26, or with 500 nM JQ1 (Sigma-Aldrich). Following the 12-
hour treatment, actinomycin D (5 μg/ml; Sigma-Aldrich) was added, 

and cell pellets were collected. Pellets were lysed in 100 μl of the lysis 
solution (RNAqueous-Micro Total RNA Isolation Kit from Invitro-
gen), ERCC RNA Spike-In Mix (Invitrogen) was added, RNA was 
isolated (RNAqueous-Micro Total RNA Isolation Kit from Invitro-
gen), and RNA-seq was performed using the NEBNext Poly(A) 
mRNA Magnetic Isolation Module and NEBNext Ultra II Direction-
al RNA Library Prep Kit for Illumina (New England Biolabs). To es-
timate half-lives genome-wide, we used our custom code that uses 
RNA-seq data as an input. After calculating the concentration of 
mRNA transcript of each gene from ERCC spike-in information, we 
estimate the decay rate constant (kdecay) by fitting the exponential 
curve on concentration changes upon time points using SSasymp R 
function. From the decay constant, we calculated the mRNA half-
lives using the following equation: ln(2)/kdecay. For ES cells, we used 
published mRNA half-lives (42).

Single-molecule RNA fluorescence in situ hybridization
Cells were detached by Accutase treatment (Gibco), washed three 
times with Hanks’ balanced salt solution (Gibco), and fixed in pellet 
with 4% paraformaldehyde (Electron Microscopy Sciences) in 1× 
PBS (Gibco) for 10  min. After fixation, cells were washed three 
times with 1× PBS and spun down onto a coverslip using a cytocen-
trifuge. Next, cells were permeabilized in 70% ethanol for 1 hour, 
washed once for 10 min with 1× PBS, washed once for 5 min with 
10% formamide (Invitrogen)/2× SSC (Invitrogen), and hybridiza-
tion with exonic probes (0.5 μl 12.5 μM Cy3- and 0.5 μl 12.5 μM 
Cy5-labeled) (Stellaris) in 50 μl of hybridization buffer (10% dex-
tran sulfate (Millipore)/10% formamide/2× (SSC) was performed 
for 4 hours at 37°C. After hybridization, cells were washed twice for 
30 min with prewarmed to 37°C 10% formamide/2× SSC followed 
by wash with 2× SCC for 5 min and 1× PBS for 5 min. At the end, 
samples were mounted with ProLong Diamond Antifade Mountant 
with 4,6-diamidino-2-phenylindole dihydrochloride (Invitrogen). 
Details about used probes can be found in data S8. smRNA-FISH 
was performed in two replicates.

Microscopy and smRNA-FISH analysis
smRNA-FISH samples were imaged using a custom microscope: 
“RAMM” Rapid Automated Modular Microscope (ASI Imaging) 
equipped with 40×/1.4 numerical aperture oil immersion objec-
tive (Zeiss) [details in the study of Patange et  al. (14)]. Z-stacks 
with a 0.5-μm step size were acquired to capture whole cells. 
The stacks of images were converted into a maximum intensity 
projection. Next, segmentation of cells and nuclei was done using 
CellProfiler software (90), and spots were counted using Localize 
and FishAuxiliary software (LarsonLab GitHub).

Single-cell RNA sequencing
Cells were washed twice with 1× PBS containing 0.04% weight/vol-
ume bovine serum albumin, resuspended in the same buffer, and 
encapsulated into droplets using 10x Genomics system. Libraries 
were prepared using Chromium Single Cell 3′ Reagent Kits (10x Ge-
nomics) according to the manufacturer’s protocol. With double 10-
bp index cycles, 28 forward and 90 reverse cycles were run on a 
NovaSeq 6000 machine (Illumina) or HiSeq 3000 (Illumina).

Quality control of scRNA-seq data (first quality control step)
We used a 10x Genomics CellRanger pipeline (v3.0.2) and bcl2fastq 
(v2.20) to generate and align fastq files to the human (hg19) and 
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mouse (mm10) genomes. The filtered gene-barcode matrix data 
from the Cell Ranger served as an input for Seurat R package (91). 
To eliminate low-quality cells, empty droplets, doublets/multiplets 
or dying cells from the scRNA-seq data, we assessed the distribu-
tions of (i) number of unique genes detected in each cells (feature 
count), (ii) total number of molecules detected (RNA count) in 
each cell, and (iii) the percentage of reads that map to the mito-
chondrial genome. We applied stringent filtering to exclude cells 
located in the extreme tails of each distribution, retaining cells 
primarily within approximately 90% of the distribution centered 
around the middle. These filtering parameters were adjusted on the 
basis of the cell type and sequencing depth. Furthermore, we ex-
cluded unhealthy cells by analyzing only those with mitochondrial 
counts below 5 to 7.5%.

Model used to infer bursting kinetics
We fit the classic two-state stochastic telegraph model to the scRNA-
seq data for each gene. The model consists of transitions between an 
OFF state and ON state, where mRNA are created and emitted in 
the ON state and then disappear. Each transition is entirely stochas-
tic with a transition rate parameter. There are four total parameters, 
which we call the ON rate, kon (OFF to ON transition), OFF rate, koff 
(ON to OFF transition), eject rate, keject (mRNA creation rate), and 
decay rate, kdecay (mRNA disappearance rate). From these rates, we 
also compute the “burst size,” keject/koff, which corresponds to the 
mean number of mRNA produced while in the ON state. We note 
that this burst size does not necessarily correspond to what is mea-
sured in live-cell recordings because it does not account for the sto-
chastic nature of the pre-RNA kinetics (7, 39). Perhaps confusingly, 
in the two-state telegraph model, the mean time the gene is OFF is 
given by 1/kon (because the OFF duration is the time it takes to turn 
on), while the mean ON duration is 1/koff. The OFF duration is also 
called the burst frequency. As a control, we also fit one-state (no 
OFF states) and three-state models (two OFF states).

The probability distribution of the system is governed by the chemi-
cal master equation (CME). We assume that the scRNA count 
histograms are in steady state that can be compared to the scRNA 
probability distribution from solving the CME. This is difficult to do in 
general because there are a countably infinite number of mRNA states. 
We make this problem tractable by noting that the probability distribu-
tion is concentrated at low values and truncate the infinite dimensional 
system. This reduces the problem to finding the null space of a finite-
sized transition matrix, which can be solved quickly using QR decom-
position. The advantage of solving the CME directly rather than using 
the Beta-Poisson representation is that the same algorithm can be used 
for any discrete stochastic Markov process. For example, the same algo-
rithm was used to solve generalized multistate telegraph models as well 
as models that include elongation and splicing steps (7, 39).

We estimate the posterior distributions for the rate parameters 
using a Bayesian Metropolis-Hastings MCMC algorithm. The estimation 
is confounded by three important issues. The first is that the steady-
state mRNA distribution has no timescale and is thus only defined 
by three of the four rate parameters of the telegraph model. In the 
past, this has often been handled by fixing the decay rate and thus 
estimating the other three rates in terms of the decay rate. We re-
solve this issue by using independently measured half-lives of each 
gene as a prior of the scRNA decay rate. The second issue is that only 
a small fraction of the mRNA (which we call the yield) is captured 
by the scRNA measurement. We estimate the yield by comparing 

scRNA to FISH for a number of genes. We find that the yield can 
vary between genes and, and when averaged over, our measured 
genes was approximately 5%. It can be proven for any generalized 
telegraph model with an arbitrary number of states that if the ex-
perimental collection of mRNA is completely random and governed 
by a binomial or Poisson distribution, then the yield only affects the 
eject rate (see below for proof). The third issue is that genes usually 
have more than one allele transcribing the gene simultaneously. In 
the computations, we assumed the alleles are uncorrelated and then 
computed the multiallele probability density by convolving the sin-
gle allele density. We used Hi-C data to determine the number of 
alleles in immortalized cell lines: HCT-116 (52) and CH12 cells (58). 
To do this, we used HiNT package (92), a tool designed to predict 
copy numbers using Hi-C contact matrix data. In all other cases, we 
assumed the presence of two alleles.

We assume that each mRNA count value per cell is indepen-
dent, and thus, the likelihood function is the product of the pre-
dicted probability at the values of all the data points. The log of the 
likelihood function is thus identical to the cross entropy between 
the predicted distribution and the scRNA count histogram. All 
rate units were taken to be in minutes. We use broad priors for the 
three parameters (and fix the decay rate at the measured value) 
using values from previous fits to live-cell data. Specifically, the 
priors are log normal distributions with means 0.01 for the ON 
rate, 0.1 for the OFF rate, and 0.05 (equivalent to 1 times the yield 
prior) for the eject rate. We used a coefficient of variation of 10 as 
the prior variances.

The MCMC was run as two to eight chains (usually four) for up 
to 10 million samples. We monitored convergence by using r̂ (93). 
After an initial run, genes that had r̂  far from one were rerun until 
they neared one. All computations were performed in a Julia soft-
ware package we created called StochasticGene.jl, which can be 
installed directly from Julia. The code is open source and available 
with documentation at (https://github.com/nih-niddk-mbs/Sto-
chasticGene.jl). The package is frequently updated; the fits in the 
paper used version 0.7.8. The package can fit a wide range of sto-
chastic models to both mRNA count data (FISH or scRNA) along 
with ON and OFF distributions and spot intensity time series from 
live-cell recordings. We used the median of the posteriors for val-
ues in the graphs and the MAD or 95% posterior credible intervals 
for the uncertainty. The uncertainty for the burst size was com-
puted by propagating errors from the joint posterior of the OFF 
and eject rates and accounts for the cross-correlations. We also 
computed maximum likelihood estimates as a comparison to the 
median values.

Proof that random loss of scRNA results in rescaling of 
eject rate
Proposition: Suppose the steady-state probability distribution for 
mRNA obeys the Poisson-Beta distribution P(m) but the probabil-
ity of observing a molecule is p < 1 and obeys a binomial distribu-
tion, i.e., m ~ Bin(m ’,p), m’ ~ P(m’). Then the eject rate ν will be 
rescaled by the loss probability p, while the other parameters remain 
unaffected.

Proof: The observed probability mass function P(m) will be

P(m) =

∞
∑

n=0

Bin(m∣n, p)P(n) (∗)

https://github.com/nih-niddk-mbs/StochasticGene.jl
https://github.com/nih-niddk-mbs/StochasticGene.jl


Trzaskoma et al., Sci. Adv. 10, eadl4893 (2024)     9 August 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A rt  i c l e

14 of 17

where Bin is the binomial distribution

and the mRNA distribution of the two-state telegraph model, P(n), 
obeys a Poisson-Beta distribution

where α  and β  are the ON and OFF transition rates, and ν  is the 
eject rate.

Inserting both distributions into (*), performing the sum, and 
rearranging give

Thus, the eject rate is rescaled by the technical loss ν → pν.

Quality control of inferred rates (second quality control step)
Only genes that passed quality control were analyzed. The filtering 
was performed on the basis of the following criteria: (kon MAD/kon 
Median)  <  0.75, koff MAD/koff Median)  <  0.75, (keject MAD/keject 
Median) < 0.75, (Burst Size MAD/Burst Size Median) < 0.75, Ex-
pression >0.01.

Cell cycle analysis
On the basis of 10x scRNA-seq expression of cell cycle markers, we 
sorted HCT-116 cells into G1, S, and G2-M stages. Moreover, to 
avoid bias caused by not equal number of cells, we matched the 
number of cells in all stages. Next, we fitted the model and correlated 
all rates inferred from cells in different cell cycle stages.

Analysis of bursting across cell types
To calculate normalized burst size and expression, we used the fol-
lowing formula for normalization

The normalization was applied to the analysis in Fig. 3 (D to F) 
and fig.  S5 to facilitate the comparison of rates across different 
cell types.

Differentially expressed gene analysis of mRNA-seq data
Reads were aligned to the mouse genome (NCBI37/mm9) or the hu-
man genome (hg19) with GSNAP without detecting splice junctions 
de novo (--novelsplicing =  0) (94). Existing splice junctions from 
RefSeq annotation were taken into account (−-use-splicing=/path/
to/mm9.splices.iit). Output files were filtered to remove unaligned 
reads and any alignments with a mapping quality less than 20. Reads 
were mapped to RefSeq genes with htseq-count -m intersection-
nonempty and basemean, FC and adjusted P values for the differen-
tially expressed gene analysis were calculated using the R package 
DESeq2 (95). For mRNA-seq data, genes with more than 100 base 
mean, greater than 1.5 FC, and less than 0.01 adjusted P values were 

selected as the significantly differentially expressed genes. Genes 
down-regulated upon Myc deletion were identified using scRNA-seq 
with a 1.25-FC threshold and adjusted P  <  0.01. Down-regulated 
genes following RAD21, MED26 removal, and JQ1 treatment were 
identified on the basis of bulk mRNA-seq data with a 1.5-fold thresh-
old and adjusted P < 0.01. All other genes, except those significantly 
down-regulated, were classified as “other.” These categories were 
then applied to the analysis of bursting parameters.

ChIP-seq analysis
Sequence reads were aligned to the mouse genome (NCBI37/ mm9) 
or the human genome (hg19) using bowtie with flags -S -m 1 -a 
--best --strata -n 2, and aligned reads were selected with samtools 
view -S -b -F4 and sorted (96, 97). Using Picard (http://broadinsti-
tute.github.io/picard), we removed duplication, and then we extended 
the reads into the estimated fragment sizes by MaSC. MACS2 was 
used for peak calling with corresponding input files and 0.001 P value 
cutoff for each ChIP-seq (98). For comparison between conditions, 
we merged the peaks from each condition by using bedtools merge 
function (99). ChIP-seq signals were counted on the merged peak 
regions which are categorized into promoter, enhancer, SE, and oth-
ers if necessary. Promoter regions are defined by the transcription 
start site (TSS) +/− 1 kb, and enhancer regions are defined by the 
accessibility and H3K27ac ChIP-seq peaks. SE regions are defined by 
the ROSE program (53, 100), which is using H3K27ac ChIP-seq 
data. For the RNAP2 signal composite analysis around genes, we cre-
ated 100-nt windows in the upstream and downstream 5-kb regions 
of genes and 100 bins in the gene-body region with various sizes ac-
cording to the gene length for down-regulated genes or other genes 
separated by more than 5 kb from neighboring genes. Using “Bed-
tools coverage” function with counts option (99), we calculated the 
signals within those windows. After computing RPKM values at each 
position, we obtained mean values after trimming 10% of outliers.

Precision nuclear run-on sequencing
HCT-116 cells were treated in the same way as for scRNA-seq 
(Fig.  4A) and ChIP-seq (Fig.  5 and fig.  S13) experiments. Briefly, 
cells were serum starved for 14 hours, followed by incubation with 
FBS-free medium for 6 hours in the presence of DMSO (control), 
500 μM auxin (Sigma-Aldrich) for degradation of the AID-tagged 
MED26, or with 500 nM JQ1 (Sigma-Aldrich). PRO-seq library 
construction and data analysis was performed by the Nascent Tran-
scriptomics Core at Harvard Medical School, Boston, MA. Thawed 
aliquots of permeabilized cells, previously stored at −80°C, were 
gently pipetted on ice until fully resuspended. Subsequently, per-
meabilized cells were counted using a Luna FX7 (Logos Biosystems) 
instrument. For each sample, 1 million permeabilized cells were 
used for nuclear run-on, with an additional 50,000 permeabilized 
Drosophila S2 cells added for normalization. Nuclear run-on assays, 
library preparation and data analysis followed the protocol outlined 
by Mimoso and Goldman (101). Pooled libraries were then se-
quenced using a NextSeq 2000 (Illumina). For PRO-seq composite 
analysis, we used the same strategy as that used in the RNAP2 ChIP-
seq composite analysis. The difference lies in our utilization of 
strand-sensitive windows with a strand-sensitive bedgraph to ob-
tain sense-stranded signals for PRO-seq. To calculate the signals 
from the bedgraph, we used the “bedtools intersect” function (99). 
To compute the pausing index, we adhered to the definition and 
description outlined in the NRSA package (68). Promoter regions 

Bin(m∣n, p)=

∞
∑

n=0

n!

(n−m)!m!
pm(1−p)n−m
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1
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were defined up to +/− 500-bp regions from the TSS, and gene body 
regions were defined from 1 kb downstream of the TSS to the tran-
scription end site. The pausing index represents the ratio of the 
maximum promoter signal over the total gene body signals. Maxi-
mum promoter signals were selected from among 50-bp windows in 
the promoter region with a sliding 5-nt step. PRO-seq experiments 
were performed in two replicates.

Gene network analysis
After quality control of scRNA-seq data (first quality control step), 
we normalized the data to minimize error due to technical variation 
and to allow the comparisons of samples with differing sequencing 
depth. We followed a similar simple normalization protocol that was 
shown to minimize bias when performing covariance analysis on 
scRNA-seq data (102). To minimize variability per cell, we converted 
the number of reads of a gene per cell to the fraction of reads per 
cell by dividing by the total number of reads per cell. Second, to 
convert back to counts while adjusting for the differences in se-
quencing depth between the samples, we multiplied by the average 
number of reads per cell in the sample with the lowest sequencing 
depth; the value was ~30,000 (determined by the RAD21 degron 
condition) and equates to reads per 30,000. To maintain the dis-
cretization of the data, we then rounded any fractional values. For 
further covariance analysis, we only used pairs of genes where both 
were detected in at least 10% of the cells. Covariances were defined 
as the Spearman’s rank correlation coefficient and calculated with 
the SciPy Python package.

Figures
The schematic cartoons of Figs. 1A, 3A, and 4A and fig. S2 were cre-
ated with BioRender.com.

Statistical analysis
Analysis was done using Kolmogorov-Smirnov and Wilcoxon test 
in R; details can be found in the figure legends.

Supplementary Materials
This PDF file includes:
Figs. S1 to S14
Legends for data S1 to S8

Other Supplementary Material for this manuscript includes the following:
Data S1 to S8
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