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Summary

Small-cell lung cancer (SCLC) is an aggressive malignancy composed of distinct transcriptional 

subtypes, but implementing subtyping in the clinic has remained challenging, particularly due to 

limited tissue availability. Given the known epigenetic regulation of critical SCLC transcriptional 

programs, we hypothesized that subtype-specific patterns of DNA methylation could be detected 

in tumor or blood from SCLC patients. Using genomic-wide reduced-representation bisulfite 

sequencing (RRBS) in two cohorts totallying 179 SCLC patients and using machine learning 

approaches, we report a highly accurate DNA methylation-based classifier (SCLC-DMC) that can 

distinguish SCLC subtypes. We further adjust the classifier for circulating-free DNA (cfDNA) to 

subtype SCLC from plasma. Using the cfDNA classifier (cfDMC) we demonstrate that SCLC 

phenotypes can evolve during disease progression, highlighting the need for longitudinal tracking 

of SCLC during clinical treatment. These data establish that tumor and cfDNA methylation can be 

used to identify SCLC subtypes and might guide precision SCLC therapy.
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Introduction

Small cell lung cancer (SCLC) is a highly aggressive form of lung cancer with limited 

treatment options and generally poor prognosis. SCLC patient outcomes are only modestly 

improved with the addition of immunotherapy to frontline platinum-etoposide chemotherapy 

in an unselected population 1,2. Currently, there are no targeted therapies or predictive 

biomarkers in routine clinical use for SCLC patients, although several are currently under 

investigation including DLL3 protein expression for the use of DLL3-directed CAR-T cell 
3 or bispecific-antibody targeting 4,5 as well as SLFN11 expression to select patients for 

PARP-inhibitor treatments 6. Despite these efforts, the 2-year survival rate has not changed 

appreciably during the past decade 7.

Although SCLC has historically been treated as a single disease entity, recent studies have 

revealed that there are biologically distinct subgroups of SCLC, and that these subgroups 

have different therapeutic vulnerabilities and hence could be used for tailoring treatment 

regimens 8–11. We recently reported on four distinct SCLC subgroups based on mRNA 

profiling 10. Three of the four subtypes are enriched in the predominant expression of 

specific transcription factors, ASCL1 (SCLC-A), NEUROD1 (SCLC-N), and POU2F3 
(SCLC-P) while the fourth is an inflamed subtype (SCLC-I) associated with higher levels of 

PD-L1 and other checkpoint factors, and higher levels of interferon signaling and epithelial 

to mesenchymal transition (EMT) based on their transcriptomic signature 10. Importantly, 

in two independent analyses, the SCLC-I subtype is associated with the greatest benefit 

of the addition of immunotherapy to platinum-etoposide chemotherapy demonstrating the 

potentially predictive value of SCLC subtyping 10,12.

Given the growing recognition that SCLC is comprised of subtypes with distinct therapeutic 

vulnerabilities 10,13,14, the development of practical biomarkers for identifying patients 

likely to benefit from those therapies is urgently needed. Unfortunately, development of 

biomarkers in SCLC is hindered by the lack of access to tissue as diagnostic specimens are 

often limited to fine needle aspirations and surgery is rarely performed 15. Consequently, 

common subtyping approaches studied for SCLC - such as the use of mRNA expression 

signatures or multi-marker immunohistochemistry (IHC) - can typically be performed 

on only a subset of patients. These approaches also have shortcomings limiting their 

routine clinical adoption, such as mRNA degradation commonly seen in preserved SCLC 

specimens, and the use of subjective and time-intensive scoring methods used for multi-

marker IHC assays.

In contrast to the tissue limitations, SCLC is often associated with a high shedding of 

circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) and consequently, 

liquid biopsy strategies have been extensively researched in this setting 16–18. While 

the development of circulating tumor cell derived xenograft models (CDX) allowed the 

mechanistic study of SCLC and has become indispensable for the development of novel 

therapeutic strategies 19,20, liquid biopsies are also used for the development of biomarker 

approaches. Recently, it has been shown that DNA methylation, as a surrogate to gene 

expression, can be used for the development of prognostic signatures as well as to 

differentiate ASCL1-dominant SCLC and NEUROD1-dominant SCLC from a third group 
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of SCLC which is highlighted by the absence of ASCL1 or NEUROD1 dominance 21. 

These and other approaches, including profiling of plasma-derived nucleosomes 22 and 

fragmentomics analyses 23, have opened avenues for using liquid biopsies to guide precision 

medicine approaches in SCLC. However, previous analyses were limited by the absence of 

tumor specimens for direct comparison or profound subtyping of patients based on clinically 

validated gene expression-based subtyping which hampers the routine implementation of 

SCLC subtyping. Here, we therefore investigate the potential use of DNA methylation from 

both tumor and ctDNA in a cohort of 179 SCLC patients whose subtypes are assigned 

based on our recently established classification system 10. We develop machine learning 

approaches to allow the classification of SCLC subtypes using DNA methylation from both 

tissue and liquid biopsy samples in order to identify SCLC subgroups and enable precision 

medicine in SCLC.

Results

1 Detection of SCLC using DNA methylation in plasma samples

We hypothesized that DNA methylation can be used to detect SCLC in the circulation 

and to test this we initially utilized a methylation-sensitive digestion PCR assay designed 

previously to detect lung cancer (EpiCheck assay). Evaluation was based on a cohort of 

52 SCLC cases of which 50 (17 Limited Stage SCLC (LS-SCLC) and 33 Extensive Stage 

SCLC (ES-SCLC)) passed quality control and 398 control cases (395 passed quality control) 

of which 137 cases have been used in an earlier validation study 24. The area under the 

curve for the detection was 0.988 (95% CI: 0.977-0.999; Figure 1A). Two different cut-offs 

were used for the detection, yielding a sensitivity and specificity of 100.0% (95% CI: 

92.9%-100.0%) and 83.8% (95% CI: 79.8%-87.3%) with the low cut-off (EpiScore = 65) 

and 94.0% (95% CI: 83.5%-98.7%) and 94.9% (95% CI: 92.3%-96.9%) with the high 

cut-off (EpiScore = 74), respectively (Figure S1A), with high sensitivity in both LS-SCLC 

(Figure S1B) and ES-SCLC (Figure S1C). Four of the six markers used have also been 

assessed in the subtyping cohort (Table 1) with high methylation levels detected across all 

four subtypes (Table S1).

2 Cohort of clinical specimens for RNA-seq and DNA methylation profiling

Given our finding that DNA methylation was able to detect SCLC from plasma, we next 

hypothesized that DNA methylation can be exploited as a biomarker to subtype SCLC. 

To this end we investigated two independent cohorts of 105 and 74 samples respectively 

(Table 1). Generation of RNA-seq and RRBS data was feasible in both cohorts, though 

in C2, only RNA instead of tissue sections was provided for a subset of samples, leading 

to a lower number of samples with tissue methylation data due to the absence of DNA 

specimen in this subset. Reasons for unsuccessful analysis were low RNA or DNA content, 

low DV200 for RNA or unsuccessful library generation. Processed RNA-seq data is shown 

in Supplementary Data 1 (for cohort 1) and Supplementary Data 2 (cohort 2).

3 Clinical SCLC can be classified using a reduced machine learning RNA-seq signature

We previously reported that SCLC can be classified in four distinct subtypes using a gene 

expression classifier derived from non-negative matrix factorization (NMF) 10 and mRNA 

Heeke et al. Page 4

Cancer Cell. Author manuscript; available in PMC 2024 June 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



expression data from 25 both limited stage and 1 extensive stage SCLC specimens. However, 

our previously established NMF method is limited to analyzing cohorts only and thus we 

aimed to establish a predictive classifier to allow the subtyping of individual samples. 

Building on this analysis, we therefore developed a gene ratio classifier (SCLC-GRC) in 

order to reduce the number of genes required to subtype tumors and facilitate the subtype 

classification using different mRNA profiling methods. Using a consensus classification 

(see STAR methods) incorporating 181 genes, we were able to unambiguously classify 

the majority of samples into a single subtype, notably independent of the cohort and 

underlying RNA-seq method used (Table S1, Figure 1B). Across both cohorts, unambiguous 

subtyping was achieved for 136/142 (96%) of samples with RNA-seq data (Table S1). 

Classification was balanced across the four subtypes with 75/142 (53%), 25/142 (18%), 

21/142 (15%), 15/142 (11%) representing the SCLC-A, SCLC-N, SCLC-P an SCLC-I 

subtypes, respectively. This distribution is comparable to the observed distribution in the 

IMpower133 study with SCLC-A - 51%, SCLC-N - 23%, SCLC-I – 18%, SCLC-P – 

7% 10 (chi-sq p = 0.4186). Consistent with the prior reports of the four subgroups 10, 

the SCLC-A and SCLC-N samples in our cohort demonstrated a higher expression of 

neuroendocrine genes compared to SCLC-P and SCLC-I, while the SCLC-P and SCLC-I 

subgroups were characterized by a higher expression of HLA genes, tumor inflammation 

genes (TIS) (Figure 1B) as well as a higher percentage of tumor stroma and, hence, a 

lower percentage of tumor cells (Figure 1C) as calculated using RNA-seq deconvolution 
26. Furthermore, using CIBERSORT deconvolution27, we identified increased immune cell 

infiltration in the SCLC-P and SCLC-I subtypes, respectively (Figure S1D. Importantly, 

the consensus of classification for each of the samples, retrieved from the overlap of 500 

machine learning models highlighted certain distributions across the four subtypes, with 

samples acquiring properties of some of the other subtypes, suggesting that the SCLC-GRC 

approach is preserving information on the of intratumoral heterogeneity of SCLC subtype 

properties (Figure 1D). Only few specimens could not be classified (equivocal: 6/142; 4%) 

due to what appears to be technical limitations and RNA quality (Figure 1B). Consequently, 

with a success rate of 96%, our classification approach was highly accurate across different 

cohorts and RNA-seq technologies while comprised of a limited number of 181 genes. Thus, 

this assessment is technically less challenging than larger gene panels, and enables robust 

SCLC subtype classification from different cohorts and individual samples.

4 Genome-wide hypomethylation is characteristic of SCLC-P

We then analyzed the differences of genome-wide DNA methylation in our dataset. We 

averaged the methylation level across bins of 100kb width and calculated the mean for 

those bins per subtype. To determine the genome-wide methylation level, we calculated the 

rolling average over 500 bins (= 50Mbp). The analysis highlighted profound differences 

in the global methylation level per subtype, with the SCLC-P subtype presenting with a 

hypomethylated phenotype and SCLC-N with a hypermethylated phenotype, while SCLC-

A and SCLC-I were comparable in cohort 1 (Figure 2A) as well as when filtering for 

tumor-intrinsic DNA methylation signals using the CAMDAC algorithm28 in a subset of 

samples in cohort 2 (Figure S2A; see STAR methods). The SCLC-P hypomethylation 

phenotype was also observed in cohort 2 while methylation patterns for the other subtypes 

appeared to differ between the cohorts (Figure S2B). We further analyzed 59 SCLC-derived 
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cell lines across all four subtypes as well as two previously published datasets on cell 

lines. Interestingly, in cell lines, SCLC-P was hypermethylated (Figure S2C) contrary to 

tumor methylation analysis, which was confirmed in two independent datasets of cell lines 

from the NCI SCLC cell miner project 29 (Figure S2D) and the GDSC 30 (Figure S2E), 

highlighting limitations when working with cell line derived tumor methylation data.

To further explore these subtype-specific differences in global methylation, we analyzed 

expression of 73 genes responsible for reading, writing, or erasing DNA and histone 

methylation and found 47 (64%) of them to be significantly differentially regulated 

across subtypes (Table S2; Figure S3). In addition to the major DNA methyltransferases, 

DNMT1 (Figure 2B), DNMT3A (Figure 2C) and DNMT3B (Figure 2D) and the S-

Adenosylmethionine synthetase (MAT2A; Figure 2E) which creates S-adenosylmethionine 

(SAM) which is critical for methylation processes, we also found SUV39H1 (Figure 

2F) to be differentially expressed between the four SCLC subtypes, especially between 

neuroendocrine and non-neuroendocrine subtypes. SUV39H1 is a methyltransferase that 

trimethylates histone H3 lysine 9 (H3K9) residues. Functionally, H3K9me3 recruits HP1 
and DNMT3A/B for stable methylation of DNA (Figure 2G)31,32, thereby linking histone 

methylation with induction of DNA methylation (Figures 2C, D, F, G). These data suggest 

that SUV39H1-DNMT3A/B axis is a candidate pathway contributing to differences in 

global methylation patterns across SCLC subtypes and highlighting further differences 

in epigenetic regulation of SCLC subtypes. Interestingly, the expression patterns of 

methylation effectors were distinct in SCLC cell line models, which might contribute to 

the discordance of global methylation patterns in cell lines compared to that in primary 

tumor samples (Figure S4; Table S2).

In order to further understand the genomic regions differing between SCLC subtypes, we 

analyzed the average methylation using bins of 100bp across the genome (Figure 2H). 

We utilized the training set of our combined RRBS data (see Materials and Methods) and 

used receiver-operator characteristics (ROC) to analyze the association of each 100bp bin 

with each of the four respective subtypes by computing the area under the curve (AUC) 

and filtered for highly associated sites with AUC > 0.8. We then highlight these highly 

associated sites according to their genomic location, for SCLC-A (Figure 2I), SCLC-N 

(Figure 2J), SCLC-P (Figure 2K) and SCLC-I (Figure 2L) as well as for each sample 

individually (Figure S5). Importantly, bins were spread across the different chromosomes 

confirming the genome-wide methylation differences.

5 DNA Methylation allows classification of SCLC specimens

Our findings suggested that differences in DNA methylation could be exploited for the 

generation of biomarkers that are able to differentiate SCLC subtypes. Therefore, we 

combined the DNA methylation data from both cohorts and randomly split the combined 

dataset in a training and an independent testing set (70% and 30% of samples, respectively). 

The training set was used for both marker selection and model training to ensure that the 

testing set could be used for independent validation. DNA methylation sites for training have 

been associated with each of the four subtypes in the training set using ROC (Figure 3A; 

Table S3). Despite marketed differences in DNA methylation compared to cell lines, we 
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furthermore filtered for DNA regions which have also been associated with the four subtypes 

in cell lines (AUC > 0.7) to enable the model to train on tumor-intrinsic signals and avoid 

overfitting the model based on tumor-stroma derived methylation data, which we expect 

to be a larger contribution in the SCLC-P and SCLC-I subtype. We then selected the top 

DNA methylation sites for each of the four subtypes by differences in DNA methylation 

level and AUC, and created models that were trained by randomly selecting 10, 50, or 100 

methylation sites per subtype, since this has been shown to provide sufficient information 

(Figure S6A). Furthermore, methylation sites selected are specific to SCLC compared to 

data obtained from lung adenocarcinoma and pre-neoplasia as well as non-cancer controls 

(Figure S6B) 33. Similar to our approach on RNA-seq data (Figure 1B), we used a 

threshold of >50% consensus across the models to call a subtype. We ultimately selected 

50 methylation sites/subtype for our final predictive model, as this provided classification 

with high accuracy (Figure S7A). Accuracy for our DNA methylation classifier (SCLC-

DMC) in the independent testing set was 95.8% (95% CI: 78.9% - 99.9%; Kappa = 

0.9286). Importantly, the SCLC-DMC approach allowed the subtyping of 30 additional 

samples for which no RNA-seq data was available and thus RNA-based classification was 

impossible (Figure 3B; Table S3). Interestingly, heterogeneity from the consensus approach 

was reduced in the DMC approach, compared to our GRC approach (Figure S7B; Figure 

1D). In order to validate the performance of the assay and to ensure that tumor-intrinsic 

features have been used for the training, we used the DMC approach to also predict subtypes 

in a set of cell lines that had been classified previously (Figure S7C).10 Our SCLC-DMC 

approach was also capable of classifying SCLC cell lines across all four subtypes with an 

accuracy of 96.6% (95% CI: 88.1 – 99.6).

6 DNA Methylation is preserved in ctDNA and can be used for classification of SCLC 
subtypes

Since DNA methylation is highly conserved in plasma, we hypothesized that DNA 

methylation can also serve as biomarker in SCLC liquid biopsies. First, we established a 

DNA methylation-based assessment of ctDNA to calculate the ctDNA burden. While the 

highly sensitive method for SCLC detection (Figure 1A) only allows the assessment of 

SCLC presence/absence, an additional method that allows the quantification of ctDNA 

fraction could potentially enable more insights on data derived from tumor and thus 

quality of classification. Indeed, we found multiple DNA methylation sites that correlate 

with ctDNA fraction based on ultra-low pass whole genome sequencing (ULP-WGS) 

and we selected seven methylation sites which are highly and linearly correlated to 

ctDNA fraction (Figure S8A). By calculating the mean for the seven selected sites, we 

established a convenient and easy method to assess ctDNA in SCLC with high correlation 

to ULP-WGS (R = 0.89; p < 0.0001; Figure 3C). We further analyzed how the ctDNA 

fraction differed between samples at baseline and progression, and observed no significant 

differences (Figure 3D). Consequently, samples selected at tumor progression yielded results 

comparable to samples at baseline, underscoring the applicability of our SCLC subtyping 

approach.

Based on the robust results from our tissue SCLC-DMC, we hypothesized that our approach 

could also be applied to SCLC plasma samples. Using a subset of five matched samples, 
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we analyzed the differences between tumor DNA methylation and plasma DNA methylation 

and observed that SCLC DNA methylation patterns are indeed conserved in plasma (Figure 

3E), enabling a liquid biopsy approach. We therefore utilized the same DNA methylation 

sites as selected for our SCLC-DMC for tissue samples, filtered for sites detected in plasma 

and refitted a model using only samples with GRC classification (N = 43/54 80%; SCLC-

cfDMC; Figure 3A). Indeed, this allowed us to classify SCLC plasma samples with an 

accuracy of 100% (43/43) compared to the RNA-based SCLC-GRC and 93.3% (28/30) 

compared to the SCLC-DMC (Figure 3F; Table S3). Moreover, we observed excellent 

concordance with samples profiled only by our tissue-based SCLC-DMC to robustly detect 

all four SCLC subtypes from clinical plasma samples. Of note, all samples used for 

the classification were from untreated patients to allow correlation of subtypes with the 

associated tumor tissue. We also compared the DNA methylation levels selected for the 

training with DNA methylation data obtained from healthy donors34, and could demonstrate 

that baseline cfDNA samples from SCLC patients cluster generally distinctly to DNA 

methylation profiles from the healthy comparison (Figure S8B). Correlating global DNA 

methylation between healthy cfDNA and baseline samples, we observed a statistically 

significant drop in correlation for samples with higher ctDNA fraction (third and fourth 

quartile) compared to samples with lower ctDNA fraction (first and second quartile; Figure 

S8C).

Prior studies using single cell profiling from our group and others suggest that SCLC 

tumors can become more heterogenous, and shift their subtype, after progression on therapy. 
20,35,36 To assess this, we analyzed a subset of patients, in which baseline samples as well 

as plasma sample at clinical progression were available. Our analysis of these samples 

demonstrated a strong heterogeneity in the sample subtype at progression as compared to 

their baseline classification (Figure 3G; Figure S9A). For example, in a large subset of 

patients, the SCLC subtype of their respective tumor switched from SCLC-A to SCLC-I 

at progression. Therefore, we further analyzed the promoter methylation levels in the 

cfDNA of patients with a baseline SCLC-A subtype whose did or did not demonstrate 

a subtype switch to SCLC-I. Indeed, in samples with subtype switching we saw marked 

differences in the promoter methylation of immune-related genes, such as CXCL12 (T cell 
recruitment), CIITA (antigen presentation machinery transcription), STAT1 (inflammatory 
gene transcription) as well as the interferon alpha and gamma receptors (IFNRA1, IFNRA2, 
IFNGR1) highlighting profound changes in the tumor:immune phenotypes (Figure S9B). 

Even though all those changes were not limited to the subtype switching samples this further 

highlights that analysis of promoter methylation from liquid biopsy samples can also provide 

information on tumor evolution under therapeutic pressure. Despite the switch to a more 

inflammatory phenotype, we did not detect any differences in PFS (HR = 0.49; 95% CI: 

0.11 – 2.24) or OS (HR = 1.02; 95% CI: 0.27 – 3.9) for patients whose tumors switched 

to SCLC-I versus those that maintained SCLC-A subtype (Figure S9C). Treating SCLC 

cell lines with 2µM cisplatin for 9 days, did not alter DNA methylation in the respective 

genes, suggesting that the contribution of the tumor microenvironment might be required for 

subtype plasticity (Figure S9D).
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7 DNA Methylation predicts drug response and clinical outcome similar to gene 
expression

Previously, we demonstrated that, in vitro, cell lines assigned to SCLC-A and SCLC-N 

by gene expression possessed unique therapeutic vulnerabilities 10.To validate that these 

same vulnerabilities are preserved using the methylation classifier, we compared IC50 

values for over 400 drugs 37 between methylation-assigned SCLC-A and SCLC-N subtypes 

and identified numerous distinct vulnerabilities between the groups. For example, as 

demonstrated with the gene expression classifier, SCLC-N cell lines were more sensitive 

to the CDK inhibitor (BCL2i) R-547 (Figure 4A), as well as to Aurora kinase inhibitor 

(AURKi). CYC-116 (Figure 4B). Collectively, these data provide evidence that DNA 

methylation is able to predict drug response in vitro similar to RNA-based classification.

Finally, to determine whether methylation- and RNA-based subtyping approaches yielded 

comparable clinical outcomes among SCLC patients, we used our SCLC-GRC or our 

SCLC-DMC for patients with known clinical outcomes. While many samples had both 

RNA and methylation data present, several of the patients were only subtyped by one of the 

two methods. To ensure adequate statistical power for the analysis, we focused on the two 

most prevalent subtypes, SCLC-A and SCLC-N, respectively. Importantly, when comparing 

the two approaches, overall survival was comparable for patients identified as SCLC-A (HR 

(95% CI) = 1.01 (0.61 – 1.66); Figure 4C) as well as for patients identified as SCLC-N 

(HR = 1.02 (0.48 − 2.18); Figure 4D) when using SCLC-GRC (RNA-seq) or SCLC-DMC 

(DNA methylation), demonstrating that DNA methylation and RNA-seq can be assessed and 

provide concordant results in the clinical setting.

Discussion

Lung cancer histological subtypes are increasingly defined by transcriptomic features 

rather than solely by mutational signatures 38. This is especially true in small-cell 

lung cancer with its four distinct subtypes that are defined by specific gene expression 

rather than by targetable, or even distinct, genomic alterations. Indeed, advancement of 

personalized therapies in such a setting requires more complex clinical classification 

strategies. Consequently, we developed robust classifiers using gene expression data (SCLC-

GRC) as well as DNA methylation (SCLC-DMC) to accurately and reliably predict 

SCLC subtypes in clinical specimens. Importantly, classification using SCLC-DMC was 

also established in plasma specimen addressing a critical need in SCLC, where tumor 

specimens are scarce and accurate liquid biopsy-based approaches are urgently needed. 

Both methods allow the precise classification of a transcriptionally defined tumor phenotype 

while the DNA methylation-based method allowed to further subtyping using liquid biopsy 

specimen. Consequently, DNA methylation-only strategies can be employed in settings 

where molecular analysis is performed primarily with DNA specimen, while the use 

of transcriptionally methods might enable the integration with additional signatures, for 

example for better description of the tumor microenvironment or assessment of marker 

genes 39.

To date, SCLC subtypes have been associated with the predominant expression of a 

transcription factor (ASCL-1, NEUROD1, or POU2F3) although it is worth noting that the 
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SCLC-A, -N, -P, and -I subtypes were defined by clusters that arose from NMF clustering 

and not by the individual factors themselves. Initial subtyping approaches have explored 

the use of immunohistochemistry (IHC) for these factors 9,10,40, although this approach is 

limited by the tissue requirements, challenges in quantitation, heterogeneity in staining, and 

the observation that no single marker specifically can unequivocally define each subgroup 
9,40. Additionally, YAP1 was initially proposed to define a distinct subtype itself 8 but on 

further analysis was found to be absent or expressed only at low levels in tumors (typically 

in the stroma or in the NSCLC component of mixed tumors), although a subpopulation 

of YAP1 positive cells may emerge in the setting of resistance9,10,20,41. Intriguing results 

from the SWOG1929 trial, a phase II trial assessing the addition of the PARP inhibitor 

talazoparib to atezolizumab maintenance in ES-SCLC highlighted that biomarker-driven 

trials in SCLC are possible, even with stratification based on limited tissue, as this trial 

required SLFN11 positive IHC for enrollment 42. Therefore, IHC remains to be an important 

method for biomarker assessment in SCLC but also for understanding of heterogeneity. 

Consequently, tissue-based biomarker assessment can guide clinical treatment decisions and 

the use of an mRNA-based approach can be implemented for SCLC subtyping. However, 

technical challenges and tissue limitations persist, and thus classification is not possible for 

all samples as is the analysis of longitudinal samples.

Consequently, we and others hypothesized that DNA methylation might overcome these 

limitations by providing a more robust classification method as well as enabling a liquid 

biopsy option. Indeed, DNA methylation has been reported to distinguish ASCL1 and 

NEUROD1 driven tumors as well as subtypes independent of those transcription factors 
21,43 and to be associated with drug response 44. In addition, DNA methylation has also 

been implicated in phenotypic regulations like EMT 45,46. DNA methylation is highly 

dysregulated in cancer with transcription factors being particularly regulated by DNA 

methylation 47, making it highly relevant in transcriptionally-defined cancer subtypes like in 

SCLC.

Hence, using a large cohort of clinical SCLC specimen with genome-wide DNA methylation 

data, we were able to establish a robust classifier to define SCLC subtypes with comparable 

clinical outcomes to our RNA-based classification. Importantly, the SCLC-DMC was able to 

classify tumor samples that failed classification using RNA suggesting potential advantages 

of DNA methylation over gene expression signatures. Even more, the preservation of DNA 

methylation patterns in cfDNA is of particular interest as it allows the classification from 

liquid biopsies. Indeed, our data show limited differences between cfDNA methylation 

and DNA methylation in the primary tumor. This is critical in SCLC where tumor tissue 

is limited but high amounts of cfDNA can be isolated 48. Thus, the use of cfDNA to 

identify disease subtypes could rapidly facilitate clinical implementation. DNA methylation 

has previously been used for detection of SCLC, as well as for its differentiation to other 

cancers from liquid biopsies 49, findings we replicated here by utilizing a commercial DNA 

methylation assay that incorporates limited DNA methylation sites 24.Future assays might 

be able to combine both, the detection of SCLC for initial diagnosis with the subtyping, 

to enable a liquid-first rapid therapy initiation, which is especially important in rapidly 

progressing SCLC 50. Additionally, DNA methylation is increasingly used to detect tumor 

DNA in plasma which could serve as predictor of response to therapy. Consequently, 
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longitudinal plasma samples are critical to track tumor evolution during treatment and serve 

as early markers of treatment response and relapse 18,51.

Furthermore, our study provides new insights into the epigenetic regulation of SCLC 

subtypes. Interestingly, SCLC-P was consistently hypomethylated in our both primary 

tissue cohorts, while the other subtypes demonstrated more variability between the two 

clinical cohorts that will require further investigation. However, our analysis only allowed 

to investigate DNA methylation and gene expression differences while many epigenetic 

processes contribute to different SCLC phenotypes 52. Importantly, we highlighted strong 

differences between primary tumor samples and cell lines as well as differences in 

expression of epigenetic enzymes that might contribute to those differences. Strikingly, 

SCLC-P cell line models exhibited hypermethylated phenotypes compared to primary 

tumors. Intriguingly, in this shift in global methylation was coincident with significantly 

increased expression of the SUV39H1-HP1-DNMT3A/B axis, along with several other 

methyltransferases, not seen in SCLC-P tissue samples. It is possible that tumor extrinsic 

factors, such as the tumor microenvironment, play key roles in shaping global methylation 

patterns in SCLC as has been reported in other cancers53. Thus, in cell only systems, such 

as in vitro cell culture, absence of these factors produces global shifts in tumor methylation 

patterns. Changes in gene expression and global DNA methylation have also been reported 

during tumor sphere formation in vitro as well as compared to primary tumor, suggesting 

that cell line cultivation in SCLC might impact gene expression and epigenetic regulation 
54–56. Considering that cell lines are often used as model for further investigation, it will 

be important to clarify how representative cell lines are in SCLC to allow robust in vitro 
studies.

Previous work based on mouse models already demonstrated that SCLC subtypes may shift, 

and that tumors may evolve towards greater heterogeneity, under the selection pressure 

of different treatments. 20 In this study, we confirm the heterogeneity of SCLC subtypes 

during treatment, as we observed a switch to an inflamed subtype in a large proportion of 

ASCL1+ samples at progression. This finding was supported by the notion that the switch 

to a more inflammatory phenotype was accompanied by profound changes in the promoter 

methylation of genes controlling immune cell recruitment, interferon responsiveness and 

production, as well as inflammatory gene transcription. These findings support the ability 

of frontline etoposide, platinum, and immunotherapy (EP+IO) therapies to “reawaken” 

tumor-immune crosstalk in a subset of tumors, including those not initially “inflamed” or 

SCLC-I. In line with this, we also observed that some samples with SCLC-A or SCLC-N 

have inflammatory features suggesting that inflammatory states also exist in those samples, 

in line with recently presented data 57. Understanding how some tumors evolve to a more 

“inflamed” state but still progress clinically will be essential for identifying treatment 

regimens that can successfully harness the immune system for increased tumor control. 

Additionally, it is critical to further establish longitudinal collection of SCLC specimens 

to enable better understanding of evolution and gain deeper insights into SCLC subtype 

plasticity.

The capability of our system to identify those changes further highlights the power of 

for liquid-biopsy guided surveillance during cancer treatment in SCLC. Furthermore, it is 
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likely that a cfDNA-specific classifier could be further refined to take into account cfDNA-

specific attributes (e.g. background cfDNA methylation) which could further enhance its 

accuracy.58 Likewise, confirmation of our findings in additional independent clinical cohorts 

is critical for clinical implementation, and will also further clarify reliability in the rare 

SCLC-P and SCLC-I subtypes. Additional analysis will also need to take into account 

limitations in ctDNA fraction and will need to establish clear analytical parameters to allow 

a precise classification of SCLC subtypes in a clinical setting. Likewise, the analysis of gene 

expression changes from liquid biopsy specimen have not been limited to DNA methylation 

analysis but also other approaches, assessing the distribution of cfDNA fragments across 

the genome, like the DELFI 59 or the EPICseq method 23 to enable fragmentomics-based 

analysis of SCLC. In addition, the development of highly sensitive nucleosome-capture 

methods 22 have also demonstrated high performance for SCLC subtyping and detection. 

Future assays might consequently deviate from DNA methylation approaches or might 

incorporate a combination of different approaches for improved performance 60.

Taken together, our approaches using gene expression data as well as DNA methylation 

in SCLC highlight that reliable subtyping in transcriptionally-defined cancer is feasible 

from tumor specimen as well as by using a methylation-based liquid biopsy assay. Our 

findings indicate that DNA methylation-based biomarkers using tumor or blood samples 

can be implemented for the identification of clinically relevant SCLC subtypes, a critical 

step towards bringing precision, biomarker-directed therapy into the clinic for SCLC and 

potentially other tumor types.

Limitations of the study

In this study we do not assess parameters critical for routine implementation of the 

developed methods such as RNA/DNA quality, minimal tumor content for tissue-based 

assays as well as the influence of ctDNA content on subtyping performance and minimal 

ctDNA content for subtyping. Additionally, while we report on LOD and LOB for the 

epicheck assay designed to detect SCLC from previously undiagnosed individuals, we do 

not assess LOD and LOB for our 7-methylation site assay designed to assess ctDNA 

fraction. Consequently, additional studies are required to translate this method into a 

validated assay with strict analysis criteria. Furthermore, the limited amount of SCLC 

plasma samples with matched tissue required to assess performance required us to rely on 

cross-validation instead of validating the results in independent cohorts. Gathering additional 

cohorts from various resources and regions is critical to assess the robustness of the methods 

(for both tissue and plasma) and will be subject of future studies. Lastly, while we observed 

differences in drug response in cell line models according to SCLC subtypes, final validation 

of clinical validity of SCLC subtyping is pending prospective clinical trials.

[The Key Resources Table could be either included here OR uploaded as a separate file] Key 

Resources Table
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human FFPE specimen This paper N/A

Human blood plasma 
specimen

This paper N/A

Critical commercial assays

SMARTer Seq V3 Takara #634487

RNA TruSeq RNA Exome Illumina 20020189

Ovation RRBS Methyl-Seq Tecan 0553-32

MagMAX™ FFPE DNA/RNA 
Ultra Kit

Applied Biosystems A31881

Apostle MiniMax High 
Efficiency Cell-Free DNA 
Isolation Kit

Apostle Bio A17622-250

Chemicals, peptides, and recombinant proteins

Cisplatin MD Anderson 
Pharmacy

N/A

Software and algorithms

R v4.2.1 R foundation 
for statistical 
computing

https://www.r-project.org/

Caret Max Kuhn https://topepo.github.io/caret/

xGBoost Chen et al. 61 https://github.com/dmlc/xgboost/tree/
36ad160501251336bfe69b602acc37ab3ec32d69

Trimmomatic Bolger et al. 62 https://github.com/usadellab/Trimmomatic

Bismark Felix Krueger https://github.com/FelixKrueger/Bismark

Salmon Patro et al.63 https://github.com/COMBINE-lab/salmon

CAMDAC Cadieux et al. 28 https://github.com/VanLoo-lab/CAMDAC

Deposited data

RNA-seq of SCLC specimen This paper phs003416.v1.p1

RRBS of SCLC specimen This paper phs003416.v1.p1

ULP-WGS of SCLC plasma 
specimen

This paper phs003416.v1.p1

RRBS of plasma specimen This paper phs003416.v1.p1

RRBS of cell line specimen This paper GSE241673

RNA-seq of SCLC Specimen George et al. 25 EGAS00001000925

RNA-seq of SCLC Specimen IMPower133 10 EGAS00001004888

RNA-seq of cell lines NCI Cell Miner 29 https://discover.nci.nih.gov/rsconnect/SclcCellMinerCDB/

RNA-seq of cell lines GDSC 30 https://www.cancerrxgene.org/downloads/bulk_download

Experimental models: Cell lines

Human cell line: H1694 ATCC Cat # CRL-5888

Human cell line: H446 ATCC Cat # HTB-171

Human cell line: H2171 ATCC Cat # CRL-5929

Human cell line: H847 ATCC Cat # CRL-5846
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human cell line: H82 ATCC Cat # HTB-175

Human cell line: NJH29 Kindly provided 
by Dr. Julien 
Sage (Stanford 
University, 
Stanford, CA)

N/A

Human cell line: H524 ATCC Cat # CRL-5831

Human cell line: DMS273 Sigma Aldrich Cat # 95062830-1VL

Human cell line: SHP-77 ATCC Cat # CRL-2195

Human cell line: H865 ATCC Cat # CRL-5849

Human cell line: H2330 ATCC Cat # CRL-5940

Human cell line: H1522 ATCC Cat # CRL-5874_FL

Human cell line: H2196 ATCC Cat # CRL-5932

Human cell line: DMS53 ATCC Cat # CRL-2062

Human cell line: H146 ATCC Cat # HTB-173

Human cell line: DMS79 ATCC Cat # CRL-2049

Human cell line: H1876 ATCC Cat # CRL-5902

Human cell line: H209 ATCC Cat # HTB-172

Human cell line: H2108 ATCC Cat # CRL-5984_FL

Human cell line: H378 ATCC Cat # CRL-5808

Human cell line: H1688 ATCC Cat # CCL-257

Human cell line: H2195 ATCC Cat # CRL-5931

Human cell line: H1436 ATCC Cat # CRL-5871

Human cell line: H345 ATCC Cat # CRL-5846

Human cell line: H2198 ATCC Cat # HTB-180

Human cell line: H735 ATCC Cat # CRL-5978

Human cell line: H69 ATCC Cat # HTB-119

Human cell line: H250 ATCC Cat # CRL-5828

Human cell line: H1963 ATCC Cat # CRL-5982

Human cell line: H187 ATCC Cat # CRL-5804

Human cell line: H1105 ATCC Cat # CRL-5856

Human cell line: H128 ATCC Cat # HTB-120

Human cell line: H510A ATCC Cat # HTB-184

Human cell line: H1672 ATCC Cat # CRL-5886

Human cell line: DMS153 ATCC Cat # CRL-2064

Human cell line: H1417 ATCC Cat # CRL-5869

Human cell line: H748 ATCC Cat # CRL-5841

Human cell line: H2029 ATCC Cat # CRL-5913

Human cell line: H1238 ATCC Cat # CRL-5859

Human cell line: H740 ATCC Cat # CRL-5840

Human cell line: H774 ATCC Cat # CRL-5842
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human cell line: H2081 ATCC Cat # CRL-5920

Human cell line: H2141 ATCC Cat # CRL-5927

Human cell line: H2107 ATCC Cat # CRL-5983_FL

Human cell line: CORL88 Sigma Aldrich Cat # 92031917-1VL

Human cell line: H889 ATCC Cat # CRL-5817

Human cell line: H1092 ATCC Cat # CRL-5855

Human cell line: H719 ATCC Cat # CRL-5837

Human cell line: H1836 ATCC Cat # CRL-5898

Human cell line: H1618 ATCC Cat # CRL-5879

Human cell line: H526 ATCC Cat # CRL-5811

Human cell line: H211 ATCC Cat # CRL-5824

Human cell line: H196 ATCC Cat # CRL-5823

Human cell line: H841 ATCC Cat # CRL-5845

Human cell line: DMS114 ATCC Cat # CRL-2066

Human cell line: H1930 ATCC Cat # CRL-5906

Human cell line: H1048 ATCC Cat # CRL-5853

Human cell line: H1341 ATCC Cat # CRL-5864

Human cell line: H2227 ATCC Cat # CRL-5934

STAR Methods

Resource Availability

Lead Contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, John V. Heymach 

(jheymach@mdanderson.org).

Materials Availability—This study did not generate new unique reagents. Cell lines used 

in this manuscript have been retrieved and are available from ATCC.

Experimental Model and Study Participant Details

Patient Selection—Patients in this study were included in two cohorts. In cohort 1, 

105 patients have been selected after pathological examination of the tissue quality. All 

patients in this cohort were consented to the GEMINI protocol at the UT MD Anderson 

Cancer Center (UT MDACC). In cohort 2, 74 patients were included from the UT MD 

Anderson Cancer Center, the Hospital del Mar, Barcelona, Spain, Vanderbilt Medical 

Center, Nashville, TN USA, and LPCE Biobank Cote d’Azur (BB-0033-00025), Nice, 

France. For 15/74 patients in cohort 2, plasma and previously extracted RNA was included. 

For those patients, only RNA-seq and plasma DNA methylation was performed but no tissue 

DNA methylation due to the absence of tissue for DNA extraction. All patients provided 

written informed consent. Each sample was required to have > 100 tumor cell in each 

specimen, and at least 2 slides of tissue sections was required for inclusion in the study. All 
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patients provided written informed consent prior to study enrollment and the study complied 

with the declaration of Helsinki.

Patient samples: Formalin-fixed and paraffin embedded (FFPE) specimen were used from 

all patients. At least two sections of 5-8µm were used. Each slide were analyzed by a board 

certified pathologist to contain at least 100 tumor cells. Blood was obtained by phlebotomy 

and plasma was processed within 6h of blood draw. 1-2ml of plasma were used for each 

patient.

Clinical Data—Clinical data was retrieved from the GEMINI database which includes 

clinical data obtained during treatment at the UT MDACC and consent was provided for 

accessing the clinical data. Additional data was retrieved manually and reviewed by three 

board-certified oncologists. For the analysis of survival, overall survival was calculated by 

time from date of diagnosis to death and patients with lost follow-up were censored at 

the date where the last information was obtained. Survival analysis was performed using 

Kaplan-Meier analysis and cox-proportional hazard ratio estimation using the survminer 

package 64 in R 65.

Cell line Samples—The human SCLC cell lines H1694, H446, H2171, H847, H82, 

NJH29, H524, DMS273, SHP-77, H865, H2330, H1522, H2196, DMS53, H146, DMS79, 

H1876, H209, H2108, H378, H1688, H2195, H1436, H345, H2198, H735, H69, H250, 

H1963, H187, H1105, H128, H510A, H1672, DMS153, H1417, H748, H2029, H1238, 

H740, H774, H2081, H2141, H2107, CORL88, H889, H1092, H719, H1836, H1618, H526, 

H211, H196, H841, DMS114, H1930, H1048, H1341, H2227 were obtained from ATCC 

(Manassas, VA) or Sigma Aldrich (St. Louis, MO). The patient-derived xenograft cell 

line NJH29 was kindly provided by Dr. Julien Sage (Stanford University, Stanford, CA). 

Cells were grown in suggested media supplemented with 5% fetal bovine serum and 1% 

penicillin/streptomycin and maintained in a 37°C humidified chamber with 5% CO2. Cells 

were passaged less than six months from the time they were received, regularly tested for 

Mycoplasma contamination and routinely subjected to DNA fingerprinting.

For the treatment with chemotherapy, H1876 and H2195 cells were cultivated in HITES 

with 5% fetal bovine serum and 1% penicillin/streptomycin. They were treated with 2µM 

cisplatin for 0, 2, 5, 9 days, respectively.

Method Details

SCLC detection using cfDNA—Detection of SCLC has been performed using a 

commercial PCR based assay. Initial validation has been performed previously 24. Sample 

inclusion, assay execution and data analysis has been performed as highlighted previously. 

However, 288 additional specimens have been included in this analysis. Furthermore, new 

cut-offs specifically for the detection of SCLC have been selected in this study. Level 

of detection (LOD) and level of blank (LOB) was determined by 22 replicates of an 

unmethylated plasmid DNA that contain the cloned markers spiked into healthy human 

cfDNA in order to establish the limit of blank (LOB) for each marker separately (the average 

LOB across the markers was 1:249,281). Totally 35ng of DNA was used for the spike-in 
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experiment of which 3.5ng of DNA was used per qPCR reaction for each of the six markers. 

For the assessment of LOD, we spiked the unmethylated DNA together with DNA that is 

methylated in these 6 markers from a human lung cancer cell line into 35ng of the healthy 

human plasma cfDNA at a dilution of 1:10,000 (methylated:unmethylated). All 22 replicates 

detected DNA methylation in the six markers demonstrating a LOD of at least 1:10,000.

Nucleic Acid Extraction—For the nucleic acid extraction, at least two slides of FFPE 

tissue samples were cut at 5-8µm each. For each sample, tumor area was highlighted by 

a board-certified Pathologist and macrodissection was used prior to extraction in cohort 

1 but not cohort 2, if necessary. For combined RNA and DNA extraction, the MagMAX 

FFPE DNA/RNA Ultra Kit (Thermo Fisher Scientific, A31881) was used following the 

manufacturer’s protocol. DNA concentration was assessed using the Qubit 1X dsDNA HS 

Assay Kit and a Qubit 2.0 fluorimeter. For RNA, concentration was measured using the 

Qubit RNA high sensitivity (HS) assay kit. RNA quality was analyzed using the Agilent 

RNA 6000 Pico kit on a 2100 Bioanalyzer.

For cfDNA extraction, 1-3 ml Plasma obtained in Streck Cell-Free DNA BCT tubes was 

used for each sample. Plasma was obtained within 6h of phlebotomy by spinning the blood 

for 10 minutes at 1800xg followed by a second centrifugation step of the isolated plasma 

for 10 minutes at 2000xg. Both centrifugation steps were performed in swing-bucket rotors. 

cfDNA was extracted using the Apostle MiniMax High Efficiency Cell-Free DNA Isolation 

Kit (Apostle Inc). cfDNA concentration was assessed using the Qubit 1X dsDNA HS Assay 

Kit and a Qubit 2.0 fluorimeter.

RNA-seq—For cohort 1, 85 samples have been selected for RNA sequencing. All samples 

were treated with DNase treatment using DNase I (ThermoFisher, Massachusetts, USA) 

prior to RNA-seq to reduce DNA contamination that might interfere with downstream 

results. Library generation using the SMARTer Stranded Total RNA-seq Kit V3 (Takara 

Bio USA Inc., California, USA) was performed following the manufacturer’s instructions. 

Final library quantity was measured by KAPA SYBR FAST qPCR and library quality 

was evaluated using a TapeStation D1000 ScreenTape (Agilent Technologies, CA, USA). 

Libraries were sequenced on an Illumina NovaSeq instrument (Illumina, California, 

USA) with a read length configuration of 150 PE for 80M PE reads per sample (40M 

clusters). Fastq files were quality trimmed using trimmomatic and aligned to the GRCh38 

transcriptome using salmon v1.6.0.

For cohort 2, 57 samples have been submitted for RNA-seq using the Illumina RNA 

Access hybrid capture-based protocol. All samples were treated with DNAse I prior to 

library generation according to manufacturer’s protocol. Sequencing was performed on an 

Illumina NovaSeq instrument with 100M PE configuration. 40M reads were used for each 

sample. Fastq files were quality trimmed using trimmomatic and aligned to the GRCh38 

transcriptome using salmon v1.6.0.

RRBS—To analyze DNA Methylation across the genome, RRBS (Reduced Representation 

Bisulfite Sequencing) 66,67 was utilized using the Ovation RRBS Methyl-Seq kit (Tecan 

Group Ltd., Zurich, Switzerland). To account for the highly degraded DNA from FFPE and 
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plasma samples, the material was first treated with one unit of Shrimp Alkaline Phosphatase 

(New England Biolabs, Ipswich, MA) to remove phosphorylated DNA which might interfere 

with downstream analysis 34. Briefly, 0.1 – 100ng of genomic DNA was digested using 

MspI, and Illumina-compatible cytosine-methylated adaptor were ligated to the enzyme-

digested DNA. For lower concentrations of DNA, adapters were diluted 1:40 to 1:120, in 

order to decrease the representation of randomly fragmented DNA and adapter-dimers in the 

final library. RRBS libraries were then visualized using Bioanalyzer High Sensitivity DNA 

chips (Agilent, Santa Clara, CA), and those passing QC were subsequently sequenced as 

100bp paired-end reads on an Illumina NovaSeq instrument with a target sequencing depth 

of 300M PE reads (150M clusters). After sequencing, Fastq files were obtained and adapters 

were trimmed using trimmomatic. Alignment and retrieval of DNA Methylation (in percent 

of total methylated Cytosines) was performed using Bismark v 0.22 68 against the GRCh38 

human genome. Samples with < 50% mapping rate and, < 60M aligned reads were excluded 

from further analysis. Finally, cytosines with coverage < 10 were filtered out to assure high 

confidence DNA Methylation analysis.

For cell lines, 100ng of RNA was used using the Ovation RRBS Methyl-Seq kit (Tecan 

Group Ltd., Zurich, Switzerland) as for the clinical samples but without the initial 

phosphatase step. Sequencing was performed in a single Read 57 bp configuration on a 

Illumina HiSeq 3000 sequencer. Data processing was performed likewise using Bismark v 

0.22. Annotations of methylated regions was performed using the annotatr 69package and 

the Hg38 database.

Deconvolution of tumor intrinsic signals in cohort 2 was performed using the Copy number-

aware deconvolution of tumor-normal DNA methylation (CAMDAC) algorithm as published 

previously 28.

ULP-WGS—Library preparation was performed using the KAPA HyperPrep Kit with 

Library Amplification product KK8504) and IDT’s duplex UMI adapters (KAPA 

Biosciences). Sequencing is performed on a NovaSeq 6000 with 2x 150bp configuration 

and a target sequencing depth of ~ 0.3x.

In order to define DNA methylation sites that are associated with general ctDNA 

content, we correlated DNA methylation sites against their reported cDNA content 

using ULP-WGS. Only sites with R2 > 0.65, slope between 0.9 and 1.1 and 

intercept between -10 and 10 were selected. After manual analysis, seven sites have 

been selected: “chr12:27974490”, “chr1:7236563”, “chr17:29139387”, “chr19:128737209”, 

“chr2:10401557”, “chr21:34669078”, “chr21:45590104”. ctDNA content was calculated by 

averaging the methylation level across all seven sites for each sample.

Generation of Predictive Models for Classification using RNA-seq—We 

hypothesized that using gene ratios of one gene over another gene might be more robust 

to classify SCLC across different datasets than using the single expression value. For this 

purpose, we combined the data retrieved from George et al. comprising of surgical SCLC 

specimen and the data from the IMPower133 clinical trial as published in Gay CM et al 
10. While for the latter only limited genes were published, we filtered for genes that were 
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present in both datasets that served as training set. We used ROC analysis to define the genes 

which were mostly associated with one of the four subtypes by analysing the association 

of each respective gene with each of the four subtypes. For each of the four subtypes, the 

Top 50 genes with the highest area under the curve in ROC analysis have been selected 

for model generation. Due to some overlaps across the genes selected, finally 181 genes 

were used (Table S1). We then created all different gene ratios of those genes. To select 

highly relevant gene ratios, we created predictive models, incorporating randomly selected 

20 gene ratios per model with 500 distinct models for each of the four subtypes (totally 

2000 models created). For the training, the caret package 70 in R was used, and extreme 

gradient boosting with DART (Dropout Additive Regression Trees) 71 was utilized with 

repeated cross validation with a 5-fold split and 20 repeats during training. Those models 

were then used to define the subtypes in our clinical dataset. In order to obtain the most 

generalized subtype classification, we used all models for the prediction and if >50% of the 

models agreed on the subtype, the subtype was called based on this consensus classification. 

Samples with less than 50% agreement are called “equivocal” as a clear classification could 

not be obtained with our current methodology. Consensus as well as subtyping for each 

sample is provided in Table S1.

Generation of Predictive Models for Classification using DNA Methylation 
Data—To generate models with broader applicability, we combined data from the cell lines 

and our clinical GEMINI cohort in order to tune models to work across different sample 

types. The selected DNA Methylation sites were filtered to be present in both datasets. 

Furthermore, only methylation sites with <= 10% missing data were used. Following, we 

performed ROC analysis on the combined set to select the methylation sites that had the 

highest association with one of the four subtypes by analysing the association of each DNA 

methylation site with each of the four subtypes. We selected based on the following criteria; 

For SCLC-A: AUC >= 0.7 & difference to other subtypes >= abs(25%) (N = 199), for 

SCLC-N: AUC >= 0.7 & diff >= abs(30) (N = 127), for SCLC-P: AUC >= 0.8 & diff >= 

abs(35) (N = 194), for SCLC-I: AUC >= 0.7 & diff >= abs(30) (N = 293; Table S3). Initially, 

we analyzed the influence of number of methylation sites and performance by selecting, 1, 

2, 3, 4, 5, 10, 20, 30, 40, 50, 100 methylation sites randomly training 100 models for each 

of the combinations. We analyzed the accuracy for each of those models on the training and 

the testing set (Figure S6A). Based on this analysis, for each of the four subtypes we created 

models by randomly selecting 10, 50, or 100 methylation sites per subtype per model for 

our final classifier. For each number of methylation sites, 500 models were created using 

xgboost with DART leave-one-out cross validation (LOOCV) using the training set. Similar 

to the RNA-seq approach, a subtype was called when >50% agreed on the subtype. If < 

50% agreement was achieved, the subtype was classified as “equivocal” due to the lack of 

consensus. The classification for each sample is provided in Table S3.

For models predicting subtypes using cfDNA, the same methylation sites were used but 

filtered for presence in the cfDNA dataset. Similarily to tissue models, we used xgBOOST 

with DART and LOOCV and trained 500 models per subtype. The consensus approach was 

applied. The classification for each sample is provided in Table S3.
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Quantification and Statistical Analyses

All analysis have been performed in R v4.1.1 65. Binning of the genome was performed 

based on the BSgenome.Hsapiens.NCBI.GRCh38 database 72 using a tile width of 100bp or 

100,000 bp cutting the last tile of each chromosome. DNA methylation across each tile was 

averaged excluding missing data. To analyse the genome-wide methylation per subtype, the 

mean methylation per tile per sample was further averaged per subtype. The rolling average 

of 500 bins (= 50Mbp) was calculated using the ‘rollmean’ function in the R zoo package 73.

In order to annotate the methylation sites to regions in the genome associated 

with genes, the annotatr package has been used 69. The following regions 

have been annotated based on the GRCh38 genome: “hg38_genes_promoters”, 

“hg38_genes_exons”, “hg38_genes_introns”, “hg38_genes_1to5kb”, “hg38_genes_5UTRs”, 

“hg38_genes_intergenic”, “hg38_genes_3UTRs”, “hg38_genes_firstexons”, 

“hg38_genes_intronexonboundaries”, “hg38_genes_exonintronboundaries”.

Association of DNA methylation sites or regions has been performed using pROC 74. 

Cut-offs were calculated using Youden’s J and sensitivity and specificity has been calculated 

based on the pre-calculated cut-off. For the calculations of differences, unless otherwise 

highlighted, Wilcoxon test has been used with FDR correction for multiple testing using 

rstatix 75.

Figures were created using ggplot2 76 or ComplexHeatmap 77. The graphical abstract was 

created using Biorender.com.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Code generated in this manuscript can be found at: https://github.com/MD-Anderson-

Bioinformatics/SCLC_Subtyping

Raw sequencing data generated as part of this manuscript are deposited in dbGap (https://

www.ncbi.nlm.nih.gov/gap/) under accession number phs003416.v1.p1. Sequencing data 

from cell lines are deposited in GEO (https://www.ncbi.nlm.nih.gov/geo/) with accession 

number GSE241673. Processed RNA-seq data for cohort 1 and cohort are additionally 

directly provided in this manuscript as data S1 and data S2, respectively.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.
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Figure 1. Detection and Classification of SCLC.
A Receiver operator characteristics (ROC) analysis of a DNA methylation-based test for the 

detection of SCLC from plasma. B Predictive models were generated to classify SCLC 

based on RNA-seq (Gene Ratio Classifier; GRC) and consensus of several combined 

predictive models is shown. A subtype was called when the consensus > 0.5, else a 

sample was called equivocal. In addition, the expression of the three transcription factors 

ASCL1 (for SCLC-A), NEUROD1 (for SCLC-N) and POU2F3 (for SCLC-P) is shown 

normalized across the two cohorts. Furthermore, genes involved in neuroendocrine and 

non-neuroendocrine (Non-NE) as well as in tumor inflammation (TIS) and expression of 

HLA is shown. C Immune infiltration estimation using RNA-seq data (using the ESTIMATE 

algorithm). Boxplot shows the median as thick line, the box highlighting the first and 

third quartile with the whiskers highlighting 1.5x the interquartile range. D Characterization 

of SCLC consensus heterogeneity. The consensus agreement value for each subtype is 

plotted on the axis for each subtype by its consensus fraction of the respective subtype, 

demonstrating overlaps between SCLC subtypes. The line plot at the axis characterizes 
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the distribution of subtypes across the axis. Wilcoxon test was used to compute p-values 

between groups.

See also Figure S1, Table S1, and Data S1 and S2.
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Figure 2. Subtype-specific DNA methylation in SCLC.
A DNA methylation was assessed using reduced-representation bisulfite sequencing (RRBS) 

and DNA methylation was averaged per sample and subtype over 100kbp bins and the 

rolling average over 500 bins (= 50mbp) is highlighted in the c1 tumor samples. B-G 
Analysis of gene expression per SCLC subtype for DNA-methyltransferase 1 (DNMT1; 

B), DNA-methyltransferase 3A (DNMT3A; C) and 3B (DNMT3B; D), methionine 

adenosyltransferase 2A (MAT2A; E) and histone lysine methyltransferase (SUV39H1; F). 

G Overview of mechanism that links SUV39H1 expression with histone methylation. H 
Scheme highlighting the analysis and selection of DNA methylation sites associated with 

each of the SCLC subtypes using 100bp bins. By calculating the area under the curve by 

receiver operator characteristics (AUROC) we defined genomic region with high (AUC > 

0.8) association with one the four respective subtypes. DNA methylation bins are shown 

related to their position within the genome for each chromosome for SCLC-A (I), SCLC-N 

(J), SCLC-P (K) and SCLC-I (L) and number of regions is stated for each subtype. Boxplot 

shows the median as thick line, the box highlighting the first and third quartile with the 
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whiskers highlighting 1.5x the interquartile range. Wilcoxon test was used to compute 

p-values between groups.

See also Figures S2-5 and Table S2.

Heeke et al. Page 29

Cancer Cell. Author manuscript; available in PMC 2024 June 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. DNA methylation-based subtyping in SCLC.
A Scheme describing the process to develop the SCLC DNA methylation classifier (SCLC-

DMC). Both cohorts were combined and the dataset was split in a training and a testing 

set and highly predictive DNA methylation sites were selected using area under the receiver 

operator characteristics curve (AUROC) to create predictive models using extreme gradient 

boosting with Dropouts multiple Additive Regression Trees (xGB-DART) with leave one 

out cross validation (LOOCV). For each subtype, 500 models were individually trained. 

Performance was assessed on the testing set. A cfDNA adjusted consensus classification 

approach (SCLC-cfDMC) was created using the same DNA methylation sites as used 

for the SCLC-DMC to predict subtypes in liquid biopsies. B Classification of SCLC 

tissue specimen using the SCLC-DMC approach. Prediction of subtype is shown in the 

training set, the independent testing set as well as in samples were classification by RNA 
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(GRC) was not possible due to the absence of RNA-seq data (untested). The consensus 

in percentage of agreement between the models is shown. C Correlation of computed 

circulating tumor DNA (ctDNA) fraction by ultra-low pass whole genome sequencing 

(ULP-WGS) and a classifier based on seven methylation sites (Calculated Fraction [%]). 

D Differences in ctDNA fraction per DNA methylation were compared between samples 

analyzed at baseline prior to treatment and samples at tumor progression. E Differences in 

genome-wide DNA methylation between tumor tissue samples and matched baseline plasma 

samples were compared. DNA methylation was averaged per sample and subtype over 

100kbp bins and changes between tumor DNA methylation and plasma DNA methylation 

were analyzed for each 100kb bin for each patient represented by a row in the heatmap 

across each chromosome as highlighted above. Furthermore, mean methylation per bin 

across the samples is highlighted in grey color above the heatmap together with the rolling 

average depicted by a black line. A histogram to the right highlights the distribution of 

differences for each bin across all samples. F The classification of SCLC subtypes using 

the SCLC-cfDMA approach is shown in plasma sample taken at baseline prior to treatment. 

Additionally, to the consensus, the classification based on the gene-ratio approach (GRC) as 

well as based on the tissue DMC approach is shown. Samples with GRC classification were 

included in the training cohort and inclusion for each sample is shown. G Classification 

of SCLC-subtypes using the SCLC-cfDMC approach is shown for samples with matched 

baseline plasma and plasma at progression. Boxplot shows the median as thick line, the box 

highlighting the first and third quartile with the whiskers highlighting 1.5x the interquartile 

range. Wilcoxon test was used to compute p-values between groups.

See also Figures S6-9 and Table S3.
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Figure 4. Influence of SCLC subtyping methods on in vitro drug screening and clinical outcome.
Comparison of IC50 values for the A CDKi R-547 and the B AURKi CYC-116 between 

cell lines assigned to SCLC-A and SCLC-N using SCLC-DMC. C-D Clinical outcome 

depending on classification method used. Overall survival of SCLC patients stratified 

by classification using the SCLC-GRC (RNA-seq) and SCLC-DMC (DNA Methylation) 

method for C SCLC-A and D SCLC-N. Statistical significance is calculated using log-rank 

test. Cox-proportional hazard ratio is calculated and shown with 95% confidence interval. 

Boxplot shows the median as thick line, the box highlighting the first and third quartile with 
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the whiskers highlighting 1.5x the interquartile range. Wilcoxon test was used to compute 

p-values between groups.
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Table 1
Overview of included patients for the whole cohort, cohort 1 (C1) and cohort 2 (C2)

Group All C1 C2

N 179 105 74

Age (range) 66 (26 - 96) 66 (26 - 96) 68 (45 - 82)

Sex (%) F 72 (40%) 57 (54%) 15 (20%)

M 107 (60%) 48 (46%) 59 (80%)

RNA-seq [Yes/No] 142 (79%) 85 (81%) 57 (77%)

RNA classification (%)
SCLC-GRC

SCLC-A 75 (42%) 47 (45%) 28 (38%)

SCLC-N 25 (14%) 22 (21%) 3 (4%)

SCLC-P 15 (8%) 4 (4%) 11 (15%)

SCLC-I 21 (12%) 8 (8%) 13 (18%)

equivocal 6 (3%) 4 (4%) 2 (3%)

RRBS [Yes/No] 124 (69%) 83 (79%) 41 (55%)¥

RRBS classification (%)
SCLC-DMC

SCLC-A 78 (44%) 55 (52%) 23 (31%)

SCLC-N 23 (13%) 20 (19%) 3 (4%)

SCLC-P 11 (6%) 3 (3%) 8 (11%)

SCLC-I 11 (6%) 5 (5%) 6 (8%)

equivocal 1 (1%) 0 (0%) 1 (1%)

Both [RNA-seq & RRBS] 100 (56%) 66 (63%) 34 (46%)

¥
For 15/74 samples (21%) only previously extracted RNA was available and thus no RRBS could be performed. Excluding those samples, success 

rate for RRBS was 72% (41/57) for C2 and 76% (124/164) for the complete data set.
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