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Abstract 
Objective: To develop and evaluate a data-driven process to generate suggestions for improving alert criteria using explainable artificial intelli-
gence (XAI) approaches.
Methods: We extracted data on alerts generated from January 1, 2019 to December 31, 2020, at Vanderbilt University Medical Center. We 
developed machine learning models to predict user responses to alerts. We applied XAI techniques to generate global explanations and local 
explanations. We evaluated the generated suggestions by comparing with alert’s historical change logs and stakeholder interviews. Sugges-
tions that either matched (or partially matched) changes already made to the alert or were considered clinically correct were classified as 
helpful.
Results: The final dataset included 2 991 823 firings with 2689 features. Among the 5 machine learning models, the LightGBM model achieved 
the highest Area under the ROC Curve: 0.919 [0.918, 0.920]. We identified 96 helpful suggestions. A total of 278 807 firings (9.3%) could have 
been eliminated. Some of the suggestions also revealed workflow and education issues.
Conclusion: We developed a data-driven process to generate suggestions for improving alert criteria using XAI techniques. Our approach could 
identify improvements regarding clinical decision support (CDS) that might be overlooked or delayed in manual reviews. It also unveils a secon-
dary purpose for the XAI: to improve quality by discovering scenarios where CDS alerts are not accepted due to workflow, education, or staffing 
issues.
Key words: clinical decision support; explainable artificial intelligence; electronic health record. 

Introduction
The federal government has spent more than $34 billion 
on the implementation of electronic health records (EHRs) 
over the past decade.1 Clinical decision support (CDS) alerts, 
a critical component of EHRs, provide patient-specific infor-
mation paired with organized clinical knowledge to reduce 
errors and improve healthcare quality.2 However, most 
alerts are infrequently accepted (acceptance rates< 10%), 
which leads to alert fatigue and desensitizes clinicians to 
alerts of higher importance.3–6 Additionally, many alerts 
fire at inopportune times (eg, a weight-loss alert during a car-
diac resuscitation) or in clinical scenarios where they are 
unlikely to be helpful (eg, a cholesterol screening alert for 
a hospice patient).7 CDS alerts are often triggered by a lim-
ited set of criteria (eg, suggest cholesterol screening in men 

>35 or women >45 who have not received screening). 
Accounting for additional criteria (eg, exclude hospice 
patients from cholesterol screenings) could eliminate some 
alert firings that are extremely unlikely to be accepted.

Researchers have attempted various approaches to identify 
these criteria and improve alert quality, including manual 
review8–11 and collecting feedback from healthcare pro-
viders12,13 to adjust or turn off low-response alerts. These 
approaches are time- and labor-intensive, which prohibits 
rapid improvement of alerts. Additionally, manual reviews 
can only consider a small number of variables at a time, mak-
ing it difficult to fully understand complex clinical scenarios. 
Finally, clinician feedback often fails to comprehensively cap-
ture all users’ perceptions, and it introduces recall bias.14

Previous research has found that clinician type, work 
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complexity, and repeated alerts influence the perceived values 
of alerts.15–17 Combining alert log data with EHR data can 
provide information on who overrides alerts, when, and 
under what circumstances, which can be used to better target 
alerts.18 Therefore, an urgent need arises for an efficient and 
fair approach to comprehensively analyze user interaction 
with alerts and automatically generate suggestions to target 
alerts more precisely or improve clinical processes.

Explainable artificial intelligence (XAI) approaches are 
promising tools to address this need. XAI is a range of techni-
ques designed to maintain high learning performance in AI 
while enabling users to understand model behavior.19,20 XAI 
techniques can be broadly categorized into 2 types based on 
the scope of their explanations: global and local.21 Global 
explanations focus on the entire model’s rationale, providing 
a comprehensive overview of the decision-making process 
and its various potential results. This kind of transparency is 
reflected in models such as logistic regression, where the 
entire logic must be clear and traceable. However, the pursuit 
of global explanations often leads to a trade-off with model 
complexity and predictive power. On the other hand, local 
explanations focus on explaining individual decisions or pre-
dictions. XAI techniques in this category tailor explanations 
to specific instances, offering justifications for the model’s 
behavior in particular scenarios. A prominent example of this 
is the Local Interpretable Model-Agnostic Explanations 
(LIME) technique, which provides local approximations of a 
model’s predictions, enabling a granular understanding of its 
operations.22 Building on such foundational work, new 
methods like “Anchors” promise to enhance the precision of 
these local explanations with decision rules, guiding users 
through the AI’s reasoning for individual cases.23

In prior work, we developed a traditional machine learning 
model that could suppress 294 871 (54.1%) medication alert 
firings while maintaining a false-negative rate of only 0.9% 
(ie, missed 430 acceptances) in a test dataset, illustrating that 
machine learning models based on the alert log data can 
accurately predict user response to alerts within a single 
organization.24 However, results from machine learning are 
insufficient in that they lack transparency and are difficult to 
integrate into current rule-based alerts. Using XAI techniques 
allows for explanations of models (ie, user acceptance or not- 
acceptance of alerts). For example, one potential explanation 
of the model is that the model’s prediction is to not accept the 
alert when the patient is in postpartum department for the 
Contraindicated—Non-steroidal anti-inflammatory drugs 
(NSAIDs) and Pregnancy alert. Based on this explanation, 
CDS experts could review the alert logic, for instance, by con-
sidering the patient’s presence in the postpartum department 
as an exclusion criterion for the Contraindicated—NSAIDs 
and Pregnancy alert to improve specificity of alerts and 
reduce unnecessary alerts. The purpose of this study was to 
develop and evaluate a data-driven process that generates 
suggestions to improve alert criteria.

Materials and methods
Method overview
The method overview is shown in Figure 1. It consists of 3 
components: (1) a data collection step that extracts alert log 
data and associated variables from EHR; (2) a model devel-
opment component that applies XAI approaches to generate 
suggestions on improving the alert logic; and (3) a suggestion 

evaluation component, which includes: historical change log 
comparison, stakeholder interviews, and current alerts data 
analysis. For machine learning models used in the XAI 
approach, we used the Area under the ROC Curve (AUC) to 
select the optimal models. The output of models was a set of 
IF-THEN rules to explain in what situations users were less 
likely to accept the alert. We used a set of metrics—odds ratio 
(OR), probability of low acceptance, decrease rate, confi-
dence, interest, conviction, and the P value of v2—to select 
rules into the evaluation step. We then converted the rules 
into suggestions. For example, for a breast cancer screening 
alert, a rule was: IF the patient was a hospice patient, THEN 
the user was less likely to accept the alert. The corresponding 
suggestion would be: Do not fire the breast screening alert for 
hospice patients.

Data collection
Leveraging a previously developed taxonomy to identify fea-
tures influencing user responses to alerts, we extracted data 
from Vanderbilt University Medical Center (VUMC)’s Epic 
Clarity clinical data warehouse for alerts generated from Jan-
uary 1, 2019 to December 31, 2020. To build a predictive 
model, the dataset only included data generated before the 
alert was displayed to the user.24 Alerts with firing counts 
�100, or acceptance counts �10, were excluded. User 
responses were categorized as accepted or not accepted. If the 
user chose “Acknowledge/override Warning,” “Cancel 
Warning,” “No Action Taken,” “Accept BPA (No Action 
Taken),” or “Cancel BPA,” then the user response was classi-
fied as “not accepted.” Otherwise, the user response 
belonged to “accepted,” (ie, single order, remove order set). 
For the NSAIDs alert, for example, we extracted 2196 instan-
ces of the alert firing. Each row contained one alert firing and 
the outcome (in this case, if the NSAID was removed the alert 
was classified as “accepted”; if the user overrode the alert 
and kept the NAID order, it was counted as “not accepted”). 
For each alert firing record, we also extracted 2689 features, 
such as the patient’s age, all of their diagnoses, lab results, 
etc. The same features are used for every CDS alert. Numeric 
variables were binned into 10 groups with equal-width 
intervals.25

Model development
Four machine learning techniques were evaluated: random 
forest, neural network, support vector machine, and 
gradient-boosted trees. These models are commonly used for 
medical data, and gradient-boosted tree models (LightGBM 
implementation) have demonstrated superior performance in 
recent studies.24,26,27 To impute missing values of numerical 
features, we compared mean imputation, median imputation, 
and imputation with the most frequent value. For categorical 
features, we used the one-hot encoding method.28

We applied 3 XAI techniques: skope-rules, boosted rule 
set, and Anchor. The skope-rules technique extracts rules 
from gradient-boosted trees, deduplicates them, and com-
bines them based on out-of-bag precision, providing a global 
explanation that represents typical patterns across the entire 
dataset.29 On the other hand, the boosted rule set, employing 
the principles of AdaBoost, sequentially fits a set of rules to 
handle data variance effectively.30 Unlike gradient boosted 
trees, which focus on reducing residuals and typically pro-
duce deeper trees, AdaBoost emphasizes correctly classifying 
previously misclassified instances by adjusting the weights of 
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observations and classifiers. Lastly, the Anchor technique is 
utilized for its ability to generate precise local explanations, 
which represent local patterns.23 We used optuna, Inter-
pretML, and imodels packages in Python 3.10 to develop 
models.31–33

We merged the rules generated by the XAI approaches 
and removed duplicates. For each rule, we used a set of 
selection metrics to compute the values to select candidates 
for the final evaluation: odds ratio (OR), probability of low 
acceptance, decrease rate, confidence, interest, conviction, 
and the P value of v2. The probability of low acceptance 
uses the Binomial distribution with a Beta(1,1) (ie, uniform) 
prior to identify alerts whose acceptance rate may fall below 
a certain threshold. To illustrate, consider the rules for 
improving alerts, such as “IF the patient is a hospice patient, 
THEN the user is less likely to accept the breast cancer 
screening alert.” Assuming the breast cancer screening alerts 
were triggered in 1000 hospice patients and accepted 16 
times, the excluded firings count would be 1000, leading to 
a subpopulation acceptance rate of 1.6%. In this scenario, 
the posterior distribution of the acceptance rate would be 
Beta(17,985), giving a probability of 0.782 that the accept-
ance rate for these excluded firings would be at most 0.02, 
thereby supporting the adoption of the corresponding sug-
gestion “Do not fire the breast cancer screening alert for the 
hospice patients.” This metric effectively accounts for both 
the number of firings (the more the better) and the number 
of acceptances (the fewer the better) when selecting obsolete 
alerts. Additional metrics were calculated as detailed in  

Table 1. The pros and cons of each metric are displayed in 
Table S1. We recognized the necessity of employing multi-
ple metrics to evaluate the usefulness of suggestions in CDS 
alert optimization. Simple metrics were considered initially; 
however, they proved insufficient for a holistic assessment. 
Finally, a subset of 1000 randomly chosen suggestions was 
reviewed by 2 CDS experts (A.W. and A.B.M.), who exam-
ined each rule alongside its corresponding metric values, to 
determine the thresholds for both the beta probability dis-
tribution and the selection metrics. The thresholds were 
thus informed by the manual review, leveraging the exper-
tise of our CDS experts to optimize for practical impact on 
CDS alerts improvement.

Suggestion evaluation
We conducted a comprehensive qualitative and quantitative 
evaluation of the generated suggestions. The first method we 
used in the qualitative assessment was to compare the gener-
ated suggestions with BPA’s historical change logs to identify 
consistent or partially consistent modifications and record 
the corresponding modification dates. The change log is a 
locally developed tool containing all changes made to BPAs 
in VUMC’s Epic system since 2019, generated each day by 
comparing the current version of each BPA record with the 
previous day’s version and recording the differences. Gener-
ated suggestions that matched or partially matched with BPA 
changes were classified as “helpful suggestions.” For the 
remaining generated suggestions, we conducted stakeholder 
interviews aimed at assessing clinical significance through the 
insights of relevant healthcare professionals. The generated 
suggestions that did not match BPA changes but were clini-
cally correct were also classified as “helpful suggestions.” 
Notably, a limitation of the above methods was that gener-
ated suggestions with seemingly disparate modifications may 
have similar implications, posing a challenge to manual side- 
by-side comparisons. For example, a generated suggestion 
“exclude patients with chief complaints of ‘Return’ for an 
alert about Retinopathy of Prematurity (ROP) exam for pre-
mature infants” had the same effect as a modification to 
exclude all outpatients. Because in the clinical settings for this 
alert, the chief complaint “Return” was only used for outpa-
tients. As a complementary approach, we extracted the most 
recent user response and corresponding features for alerts 
generated from March 1, 2023 to June 30, 2023, to assess 
whether alerts still fired in the context of the generated sug-
gestions. In addition, for each BPA, we calculated the relative 

Figure 1. Study overview.

Table 1. Metric to select generated suggestions.

X (Firings in  
the generated  
suggestion)

�X (Firings not in  
the generated  
suggestion)

Y (not accepted) a c
�Y (accepted) b d

Odds ratio ¼ a � d
b � c 

Probability of acceptance Betað1þb; 1þ aÞ

Decrease rate ¼ ðaþbÞ
aþbþ cþdð Þ

Confidence ¼ a
aþb 

Interest ¼
a

aþ bð Þ
aþ c

aþ bþ cþ dð Þ

Conviction ¼ aþbð Þ�ðbþd Þ
ðaþbþ cþdÞ�b 

P value of v2 
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change in acceptance rate compared to the original accept-
ance rate.

Results
The final dataset included 2 991 823 firings with 2689 fea-
tures, 139 BPAs, 247 648 patients, and 18 397 users. The fea-
tures are listed in Table S2. The overall acceptance rate was 
12.3%. Among the machine learning models, the LightGBM 
model achieved the highest value in AUC: 0.919 [0.918, 
0.920]. It was selected as the optimal machine learning model 
for generating suggestions in Anchor. Sensitivity, precision, 
F1, accuracy, and AUC for each machine learning model are 
listed in Table 2.

Applying pre-defined thresholds (odd ratio> 1.25, proba-
bility of low acceptance>0.5, decrease rate<0.4, con-
fidence>0.98, interest>1, conviction>1.2, and P[v2]<
0.01) and taking the intersection, a total of 1727 generated 
suggestions were selected as candidates for evaluation. In his-
torical change log comparisons, we found that 76 of the sug-
gestions either fully or partially matched with historical 
changes (63 fully matched and 13 partially matched). In addi-
tion, another 20 suggestions were identified as “helpful sug-
gestions” in stakeholder interviews. Taken together, these 96 
helpful suggestions were associated with 18 BPAs. Among 
2 991 823 firings, 278 807 firings (9.3%) could have been 
eliminated. Table 3 shows examples of generated suggestions 
and their corresponding comments. All modified, partially 
modified, or discussed generated suggestions are listed in 
Table S3.

If all helpful suggestions were implemented, then for each 
BPA, the average decrease in alert firings would be 12.3% 
and the average relative change in acceptance rates would be 
16.9%. Table 4 shows the number of firings and acceptance 
rates before and after applying the helpful generated sugges-
tions grouped by BPAs.

The evaluation dataset contained 524 970 firings for 112 
BPAs with an overall acceptance rate of 12.2%. Of the 1727 
suggestions generated, 702 corresponded to situations where 
no alerts occurred. Specifically, 425 suggestions related to 
retired BPAs and the other 277 suggestions were likely to 
have been included in the modifications.

Discussion
In this study, we developed and evaluated a data-driven proc-
ess to generate suggestions for improving alert criteria using 
XAI approaches. This approach could eliminate alert firings 
by 9.3% after implementing the suggestions validated by 
CDS experts. This approach can significantly reduce, but not 
eliminate, human intervention, and it generates fully trans-
parent rules in a timely manner from user interactions with 
alerts while potentially being more accurate compared to 
ordinary rule-based models.

The effectiveness of the XAI approach in eliminating alert 
firings might be underestimated due to the robust manual 
alert review process at VUMC. From March to September in 
2020, VUMC performed an intensive 6-month initiative to 
refine alert criteria, working with 28 clinicians.34 In addition 
to this, VUMC has monthly CDS governance meetings to 
review alerts with low acceptance rates. These regular and 
comprehensive manual review processes provide a valuable 
opportunity to compare the data-driven generated sugges-
tions with those generated by manual review. However, as a 
result, some of the suggestions generated from the 2019 alert 
data had already been identified in subsequent manual 
reviews. Conversely, the XAI approach may eliminate a 
larger number of alert firings from institutions with limited 
resources to conduct manual reviews.

We presented an effective approach to identify improve-
ments in alert criteria which a human might not be able to 
identify or identify in a timely manner. Through a compara-
tive analysis of modification timelines, we found that only 
62% of the helpful suggestions were implemented by 2021. 
Furthermore, 16% of these helpful suggestions were imple-
mented after 2022, and 22% of helpful suggestions were not 
identified by human review. Several reasons led to these 
results. When experts reviewed alerts, it was difficult to con-
sider hundreds of possible improvements. Reviewers might 
not consider clinical scenarios which are rare or outside their 
area of practice (such as patients in the OR, patients receiving 
an imaging procedure, patients on hospice). On the other 
hand, this data-driven process could learn from millions of 
user interactions with alerts to cover a much wider range of 
scenarios. From this perspective, one person manually 
reviewing an alert could provide the opinion of one health-
care provider, but the XAI-based process could generate sug-
gestions that are more comprehensive for all providers at the 
institution.

More importantly, our research not only has benefits 
within the scope of CDS, but it also aims to improve the clini-
cal process. For example, for the alert regarding weight docu-
mentation of pediatric patients, one generated suggestion was 
“Do not fire when: Provider Primary Location ¼ Vanderbilt 
Wilson County Adult Hospital.” This suggestion was noted 
by a stakeholder for its importance to further explore the rea-
son of low acceptance in this location and the potential to 
reinforce education on its use. It demonstrates that alert log 
data provides not only user acceptance of alerts, but also an 
opportunity to track practices and associated implementation 
process. Overall, this data-driven process transforms CDS 
alert knowledge maintenance into a learning health system by 
effectively utilizing user interaction data in the clinical set-
ting. This would enable the CDS team to learn from experi-
ence and inform clinical improvements, leading to 
continuous enhancements in healthcare quality and 
efficiency.

Table 2. Prediction results on the testing dataset.

Model Sensitivity Precision F1 Accuracy AUC

LightGBM 0.441 [0.437, 0.444] 0.737 [0.733, 0.741] 0.551 [0.548, 0.555] 0.912 [0.911, 0.912] 0.919 [0.918, 0.920]
Neural network 0.39 [0.387, 0.393] 0.681 [0.676, 0.686] 0.496 [0.493, 0.499] 0.902 [0.902, 0.903] 0.877 [0.876, 0.878]
Support vector machine 0.098 [0.095, 0.100] 0.612 [0.602, 0.620] 0.169 [0.165, 0.172] 0.881 [0.881, 0.882] 0.811 [0.809, 0.812]
Random forest 0.646 [0.643, 0.650] 0.55 [0.547, 0.553] 0.594 [0.591, 0.597] 0.891 [0.891, 0.892] 0.904 [0.903, 0.905]
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Healthcare organizations and EHR vendors should con-
sider developing or adopting automated methods to identify 
potential improvements to CDS.35 Right now, implementing 
the suggestions requires manual work to update CDS logic, 
but EHR vendors could also add tools to allow users to 
accept suggestions directly and automatically adjust the CDS 
logic accordingly. These automated methods complement 
other approaches to CDS improvement such as the Clickbust-
ers process, review of user feedback, and monitoring.34,36

Additionally, the Epic EHR system includes an automatic 
tool “Tune-up” that suggests updates to minimize disrup-
tions, focusing on features like popup and acknowledgment 
lockout periods, alert triggers, and provider-specific details 
such as type, department, and specialty. However, “Tune- 
up” is constrained to suggest modifications for only one fea-
ture at a time. The XAI approach could consider combina-
tions of different features and generate suggestions with 
multiple features.

Limitations
This study has several limitations. First, we developed and 
evaluated the data-driven process to generate suggestions 
using datasets from a single medical center. Exploring the 
capability of this data-driven process in other healthcare sys-
tems might add more value. Second, as a retrospective study, 

the impact of generated suggestions on patient outcomes and 
physician behaviors remains unknown.

Future work
Future work in this area includes designing an interface for 
CDS experts to visualize the XAI process and evaluate 
model-generated suggestions. A real-time and user-friendly 
interface could facilitate the process of improving CDS alert 
criteria, as described above. Another direction is to conduct a 
multi-site prospective study to implement suggestions and 
evaluate changes in clinician behavior and clinical outcomes.

Conclusion
In summary, we developed a data-driven process to generate 
suggestions for improving alert criteria using XAI techniques. 
Our approach could identify improvements to CDS that 
might be overlooked or delayed in manual reviews. Our study 
also unveils a secondary purpose for the XAI: to improve 
quality by discovering scenarios where CDS alerts are not 
accepted due to workflow, education, or staffing issues. It is 
important for healthcare organizations and EHR vendors to 
integrate such automated techniques to improve CDS tools.

Table 3. Examples of generated suggestions and feedback from clinicians.

BPA Generated suggestion Comment

This patient has one or more Shared Plan of 
Care FYI flags which may require your atten-
tion. [High Priority]

Do not fire when: Encounter Type ¼
Documentation

Already changed, the same exclusion was added on 
March 16, 2023.

This patient is due for the flu vaccine. Please 
order or specify why the vaccine cannot be 
ordered. [High Priority]

Do not fire when: Patient Department ¼ VPH 
ADULT PARTIAL HOSPITALIZATION

Already changed, the same exclusion was added on 
December 17, 2020.

Contraindicated—NSAIDs and Pregnancy 
[Important]

Do not fire when: Patient Department ¼ VUH 
4E POST PARTUM

Already changed, add exclusion criteria: exclude 
Department ¼ VUH 4E POST PARTUM on August 
6, 2020.

Admission medication reconciliation is incom-
plete, there are home medications that need a 
decision. [High Priority]

Do not fire when: Provider Type ¼Nurse 
Anesthetist

Partial effect, the current BPA limits to Nurse Anes-
thetist with encounter type: hospital encounter

Warfarin Dosing Advisor [Critical] (an alert 
which recommends use of pharmacogenomic 
data to calculate initial warfarin dose)

Do not fire when: Encounter Type ¼ Anticoa-
gulation Visit

Discussed with clinicians, correct suggestion. 
“Almost none of those patients are new to warfarin 
therapy and so the anticoagulation clinic is going to 
use INR history for most patients.”

This patient is at risk for unintentional opioid 
overdose due to the following and a naloxone 
prescription is required to be offered by TN 
law. [Important]

Do not fire when: Encounter Type ¼ Refill Discussed several times at the CDS committee meet-
ing, where opinions were mixed. Chose to keep it 
due to Tennessee law that strongly encourages 
naloxone prescribing.

Weight documentation of pediatric patients 
for nurses.

Do not fire when: Provider Primary Location 
¼ Vanderbilt Wilson County Adult Hospital

Discussed with clinicians, incorrect suggestions, 
need education. “If there was a significantly lower 
acceptance rate at any of the hospitals, it would 
make me think maybe staff education could need 
reinforcement if in fact the patients didn’t have a 
weight documented within a certain timeframe like 
at least 2-4 hours into their ED admission/visit.”

Your patient screened positive with symptoms 
concerning suicidal ideation based on the 
Columbia Suicide Severity Rating Scale. Please 
immediately assess patient further for safety 
and care recommendations and order appro-
priate Observation Precautions. [Critical]

Do not fire when: Provider Primary Depart-
ment ¼ BEHAVIORAL HEALTH CONSULT 
VPH

Discussed with clinicians, incorrect suggestions. 
“The provider’s chosen logon department is not rele-
vant to the appropriateness of this safety BPA. The 
pattern of not accepting this BPA may provide us an 
opportunity for focused provider re-education.”
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625 525 0.02 508 006 0.02 117 519 (18.8%) 25%

This patient is at risk for unintentional opioid overdose 
due to the following and a naloxone prescription is 
required to be offered by TN law.

46 506 0.13 37 508 0.17 8998 (19.3%) 31%

Hepatitis C diagnosis without Hepatitis B vaccine or 
immunity documented.

64 191 0.05 56 850 0.06 7341 (11.4%) 20%

Patient has not received a VTE risk score since 
admission—please choose from the following.

118 810 0.14 117 367 0.14 1443 (1.2%) 1%

This patient has one or more Shared Plan of Care FYI 
flags which may require your attention.

99 143 0.07 98 326 0.07 817 (0.8%) 1%

Patient has answered “Yes” to experiencing respiratory 
symptoms and fever. Give the patient a surgical mask to 
wear at all times.

12 940 0.12 12 255 0.13 685 (5.3%) 8%

This patient’s dosing weight is potentially out of date, 
please update the dosing weight.

5480 0.13 4953 0.14 527 (9.6%) 8%

Your patient does not meet criteria for RBC transfusion 
based on best-practice evidence.

2195 0.14 1724 0.18 471 (21.5%) 29%

Contraindicated—NSAIDs and Pregnancy 2196 0.10 1734 0.13 462 (21%) 30%
Warfarin Dosing Advisor 1422 0.32 1047 0.43 375 (26.4%) 34%
PATIENT WITH PNEUMONIA: Use the Community- 
Acquired Pneumonia (CAP) Antibiotic Advisor unless 
excluded.

1246 0.14 919 0.19 327 (26.2%) 36%

Premature infants born <32 weeks or <1500 g are at 
high risk for Retinopathy of Prematurity (ROP). Please 
confirm inclusion on the ROP exam list or indicate your 
reasons for opting out.

13 646 0.61 13 361 0.62 285 (2.1%) 2%

This patient is due for the flu vaccine. Please order or 
specify why the vaccine cannot be ordered.

18 115 0.52 17 834 0.53 281 (1.6%) 2%

This patient does not currently have a dosing weight. 5334 0.35 5067 0.37 267 (5%) 6%
(For NICU Attending) Premature infants born <31 
weeks or <1500 gms are at high risk for Retinopathy of 
Prematurity. Please confirm inclusion on the ROP exam 
list or indicate your reasons for opting out.

10 703 0.60 10 513 0.62 190 (1.8%) 3%

Potentially high vancomycin level. 961 0.06 828 0.07 133 (13.8%) 17%
Patient may require VTE prophylaxis—open the panel 
below for VTE prophylaxis options or select an exclu-
sion reason.

124 797 0.12 124 703 0.12 94 (0.1%) 0%
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