
Nucleic Acids Research , 2024, 52 , D1042–D1052 
https://doi.org/10.1093/nar/gkad1063 
Advance access publication date: 11 November 2023 
Database issue 

St emDriv er: a kno wledg ebase of g ene functions f or 

hemat opoietic st em cell fat e det ermination 

Yang y ang Luo 

1 ,† , Jingjing Guo 

1 ,† , Jianguo W en 

2 , W eiling Zhao 

2 , Kexin Huang 

1 , Yang Liu 

1 , 

Grant Wang 

2 , Ruihan Luo 

1 , Ting Niu 

1 , Yuzhou Feng 

1 , Haixia Xu 

1 , Pora Kim 

2 , * and 

Xiaobo Zhou 

2 , 3 , 4 , * 

1 Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, 
P.R. China 
2 Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center 
at Houston, Houston, TX 77030, USA 

3 McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA 

4 School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA 

* To whom correspondence should be addressed. Tel: +1 713 500 3923 and 3636; Email: Xiaobo.zhou@uth.tmc.edu 
Correspondence may also be addressed to Pora Kim. Email: pora.kim@uth.tmc.edu 
† The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors. 

Abstract 

StemDriver is a comprehensive knowledgebase dedicated to the functional annotation of genes participating in the determination of hematopoi- 
etic stem cell f ate, a v ailable at ht tp://biomedbdc.wc hscu.cn/StemDriver/. By utilizing single-cell RNA sequencing data, StemDriver has success- 
fully assembled a comprehensive lineage map of hematopoiesis, capturing the entire continuum from the initial formation of hematopoietic 
stem cells to the fully de v eloped mature cells. Extensiv e e xploration and characterization w ere conducted on gene expression features corre- 
sponding to each lineage commitment. At the current v ersion, StemDriv er integrates data from 42 studies, encompassing a diverse range of 
14 tissue types spanning from the embryonic phase to adulthood. In order to ensure uniformity and reliabilit y, all dat a undergo a standardized 
pipeline, which includes qualit y dat a pre-processing , cell t ype annot ation, differential gene e xpression analy sis, identification of gene categories 
correlated with differentiation, analysis of highly variable genes along pseudo-time, and exploration of gene expression regulatory networks. In 
total, StemDriver assessed the function of 23 839 genes for human samples and 29 533 genes for mouse samples. Simultaneously, StemDriver 
also provided users with reference datasets and models for cell annotation. We believe that StemDriver will offer valuable assistance to research 
focused on cellular development and hematopoiesis. 
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ntroduction 

ematopoiesis plays an important role in the intricate work-
ngs of the human body. Vital functions such as oxygen trans-
ort, immune system, blood clotting, and blood regenera-
ion all rely on the proper orchestration of hematopoiesis
 1 ). The normal self-renewal and differentiation processes of
ematopoietic stem cells (HSCs) are closely connected with
uman well-being and health. Although HSCs are the first
issue-specific adult stem cells to be successfully isolated and
sed for clinical treatment ( 2 ), the underlying mechanism
hat governs the fate determination of hematopoietic stem
ells (HSCs) still remains unknown. By employing single-cell
NA sequencing data, several recent studies have attempted

o chart the dynamic molecular changes that underlie the dif-
erentiation of HSCs ( 3–5 ). However, individual studies con-
entrate on one or a few specific cell types derived from
SC are limited in their ability to support broad biologi-

al research. Current hematopoiesis-related databases such as
loodSpot ( 6 ), Haemopedia RNA-seq ( 7 ) and CODEX ( 8 )
rovided gene-expression profiles without systematic func-
ional annotations to elucidate the molecular functions be-
ind cell fate determination. The information provided by
hese databases have become insufficient to address the cur-
ent research demands. There is an urgent need for a database
hat analyzes genes from various perspectives, providing users
ith a platform for comprehensive and multifaceted gene

xploration. 
To address this gap, we have developed StemDriver, a com-

rehensive knowledge database focused on gene functions re-
ated to the determination of hematopoietic stem cell fate.
ecent studies have shown that hematopoietic stem cells

HSCs) originate in the yolk sac and later appear in the
orta / gonad / mesonephros (AGM) region. Afterward, they
igrate to the fetal liver and fetal bone marrow, where they
ndergo a phase of expansion ( 9–11 ). In order to encom-
ass the entirety of hematopoiesis, we curated datasets that
pan various developmental stages, ranging from embryonic
o adult phases. In the end, StemDriver includes 42 datasets
rom both human and mouse samples, covering 14 distinct
issue types. By utilizing the collected data, we have generated
 lineage map that encompasses 22 major cell types, start-
ng from the early formation of HSCs during embryogenesis
nd extending to the emergence of terminal unipotent cells in
dults. 

StemDriver offers comprehensive gene annotation, delving
nto gene roles in hematopoietic stem cell differentiation from
ultiple perspectives. Initially, we explored the correlation be-

ween gene expression and differentiation direction and ex-
ent. Subsequently, we analyzed gene expression differences
cross cell types and within stem cell subsets with varying dif-
erentiation directions. Lastly, we monitored dynamic gene ex-
ression changes and identified highly variable genes along de-
elopmental trajectories. The synthesis of these analyses pro-
ides insights into the gene’s effects on differentiation direc-
ion, degree, and specificity, its potential to initiate specific
ifferentiation pathways, and its significant influence on cell
ransitions during distinct stages. Moreover, we probed the en-
ichment of gene expression regulatory networks within each
ineage commitment. Finally, we carried out a detailed charac-
erization of the roles played by 23 839 genes in humans and
9 533 genes in mice during the differentiation processes of
ematopoietic stem cells and their progenitors. The compre-
ensive annotation results provided by StemDriver enable us
to gain profound insights into the molecular characteristics as-
sociated with the differentiation of pluripotent stem cells into
various cell lineages. All these reuslts will contribute to the
identification of novel targets suitable for cellular engineering
or disease treatment. 

Materials and methods 

Data collection 

We conducted a search of previous studies centered on HSCs
using scRNA-seq data through the PubMed website, employ-
ing keywords such as ‘hematopoietic stem cell’, ‘single cell’,
and ‘RNA-seq’. Subsequently, a total of 245 relevant papers
were identified. From these datasets, we applied the following
criteria for dataset selection: (i) The datasets had to be publicly
accessible. (ii) Only datasets generated using single-cell RNA
sequencing techniques were considered. (iii) The study focused
on organisms within the Homo sapiens and Mus musculus
species. (iv) Included cell types were limited to early formed
HSCs, HSCs, and their resultant cell types. (v) The datasets
had to meet the quality control standards outlined in the data
preprocessing section (Figure 1 ). Following the application
of these filters, a total of 42 scRNA-seq datasets remained.
These datasets were originated from 14 different types of tis-
sues, including adult bone marrow, adult peripheral blood,
adult spleen, Aorta-Gonad-Mesonephros (AGM), cord blood
(CB), fetal bone marrow (FBM), fetal liver (FL), fetal kidney
(FK), fetal genitourinary system (FG), fetal thymus (FT), fe-
tal skin (FS), fetal artery (FA), yolk sac (YS), and placenta
(PL). The scRNA-seq datasets were generated using a vari-
ety of sequencing platforms, including SMAR T-seq2, STAR T-
seq, CITE-seq, inDrop, 10 × Genomics, Fluidigm C1 and
Microarray. 

Data pre-processing 

The raw data collected in StemDriver underwent pre-
processing using a standardized pipeline. Here is an overview
of the steps involved: (i) Gene symbol mapping: The origi-
nal datasets, which used Entrez ID for gene information, were
mapped to gene symbols using the org.Hs.eg.db ( 12 ) in R for
human data and org.Mm.eg.db ( 13 ) for mouse data. To stan-
dardize gene symbols, we retained human genes recorded as
approved genes in the HGNC database ( 14 ) and mouse genes,
excluding withdrawn marker symbols, recorded by MGI ( 15 ).
(ii) Gene expression matrix construction: A gene expression
matrix with raw data was constructed for each data set.
Datasets that only provided normalized data were excluded,
as SCENIC ( 16 ) analysis requires the raw count data. (iii)
Quality control: We first excluded genes expressed in less than
5 single cells, cells with > 200 genes, and < 20% mitochondrial
genes retained for downstream analyses. 

Dataset Integration 

In this study, data integration was selectively applied to
datasets exclusively composed of stem cells or progenitors.
These datasets primarily consisted of cells with minimal differ-
entiation variation, which posed limitations for cell differen-
tiation analysis. To overcome this, these cells were integrated
with more mature cell types to facilitate trajectory analysis.
Briefly, pre- or HSC cells were integrated with progenitors,
including common lymphoid progenitors (CLP), granulocyte-
monocyte progenitors (GMP) and megakaryocyte-erythroid
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Figure 1. StemDriver workflow and overview of functional analysis. In total, there are 42 datasets co v ering 22 major cell types sourced from 14 different 
tissues. DEG, differentially expressed genes. HVG, highly variable genes. Datasets include in StemDriver screened with a uniform criterion and 
pre-processed with a standard w orkflo w. StemDriv er pro vides functional analy sis of genes including Differential gene e xpression analy sis. 
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included in the visualization. 
rogenitors (MEP). Subsequently, these progenitors were
erged with fully developed mature cells. 

atch effects removal 

atasets including different sources underwent batch effects
emoval utilizing harmony ( 17 ) within the Seurat (Version
.3.0) ( 18 ). In detail, Seurat objects from various samples
ere consolidated into a unified global object using the merge

unction. Following this, log-normalization and feature selec-
ion procedures were carried out. Principal components were
omputed using the RunPCA function with the parameter set
o npcs = 50. The RunHarmony function was employed to
ntegrate the data by specifying the reduction parameter as
pca’ The reduction method ‘harmony’ was applied to the in-
egrated data, and the cells were clustered using a resolution
f 0.5. The subsequent downstream analysis of the integrated
ata adhered to the same procedures as applied to the other
atasets, ensuring consistency in our analytical approach. 

ell clustering and annotation 

atasets without integration processed with standard Seurat
orkflow . Briefly , the raw count matrix underwent a loga-

ithmic transformation using a scale factor of 10 000. Then,
he top 2000 highly variable genes were obtained using the
indVariableGenes function in Seurat with default parame-
ers. Principal component analysis (PCA) was performed using
he top 2000 highly variable genes, and the top 15 resulting
rincipal components were used for subsequent UMAP anal-
sis. The cell identities for each cluster were determined based
n the original study results. In most cases, the original liter-
ture provided cell type information for each cell. However,
or some studies that only provided marker genes for each
ell type, the expression pattern of the marker gene list was
rojected onto a DotPlot. Cell identities were then manually
nnotated based on the expression patterns observed in the
otPlot. 

ifferential gene expression analysis 

o identify genes that are highly expressed in specific cell
ypes, the FindAllMarkers function in Seurat was employed.
his analysis aimed to identify genes that exhibit significant
ifferential expression in a particular cell type compared to
ther cell types within the dataset. For this analysis, genes
ith a log 2 fold-change in average expression bigger than 1
r lower than −1 and an adjusted P -value less than 0.05 were
etained as cell-type-specific highly expressed genes. 

ell Trajectory analysis with STEMNET, 
dentification of genes with effective roles in cell 
ifferentiation 

temDriver classified genes into four categories based on gene
xpression patterns correlated with cell differentiation as be-
ow. (i) Direction (Dir) gene: these genes exhibit consistent up-
r down-regulation from early lineage priming throughout the
ntire differentiation direction that the stem cells follow. (ii)
egree (Deg) gene: these genes show up or down-regulation
t a specific degree of cell differentiation, independent of the
ifferentiation direction. (iii) Dir&Deg gene: these genes are
p- or down-regulated at a specific degree of differentiation
n a specific direction, combining features of both the direc-
ion and degree gene models. (iv) Neither: these genes do not
exhibit consistent and systematic changes during cell develop-
ment, which may not play an important role during stem cell
differentiation. 

To identify the gene expression patterns, we employed the
STEMNET packages ( 19 ). The procedure involved selecting
target cell types as differentiation endpoints, using cells la-
beled with these target cell types as anchors, and mapping
stem cells and progenitors to different directions using the
runSTEMNET function. The gene expression features were
then fitted into the four categories mentioned above using the
mclapply function. To speed up computation, mc.cores = 40
was set. The optimal categories for each gene were determined
by comparing the models’ Bayesian Information Criteria. 

Cell trajectory analysis with PAGA, calculating gene
importance across trajectories 

In this study, we utilized the Partition-based Graph Abstrac-
tion (PAGA) ( 20 ) method within the dynverse tool ( 21 ) to
track gene expression changes along intricate developmental
trajectories. In brief, raw and normalized counts of the top
2000 highly variable genes were employed to create a dyn-
verse object. The selection of the root cell, possessing the low-
est differentiation degree, was based on STEMNET results.
Cell trajectory analysis was conducted using the ‘paga-tree’
method within the infer_trajectory function. Furthermore, the
influence of gene expression on trajectory branch points was
assessed using the calculate_milestone_feature_importance
function, resulting in importance scores for each gene at each
branch point. 

Cell trajectory analysis with Monocle 3, identify 

highly variable genes along the pseudo-time 

To capture the dynamic changes in gene expression from
stem cells to mature cell types, we used Monocle 3 (ver-
sion 1.3.1) ( 22 ), which is able to identify correlated genes
on the complex trajectory. The genes that exhibit high vari-
ability in expression between cell types along the trajectory
were identified using graph-autocorrelation analysis through
the graph_test function of Monocle 3. Co-expression gene
modules were calculated based on the identified variable
genes using specific criteria, including p-value < 0.05, q-
value < 0.05, and Morans_I > 0.1. Morans_I is a measure-
ment of spatial autocorrelation, ranging from -1 to + 1. A
higher value of Morans_I indicate stronger positive autocor-
relation. The enrichment of co-expressed gene modules can be
visualized in a heatmap. For individual genes, only those with
a Morans_I > 0.5 were included in the dynamic expression
profile on pseudo-time. 

Gene expression regulatory network analysis 

Gene regulatory network analysis was conducted by using
pySCENIC (version 0.11.2) ( 23 ). First, the co-expression gene
modules were calculated based on the raw count matrix. Then
we built the regulons, which consist of transcriptional factors
and candidate target genes, using enriched DNA motifs from
gene modules with a normalized enrichment score (NES) of
3.0 or higher. The regulons enriched in lineage branches were
then calculated based on area under the curve (AUC) values.
The heatmap of regulons enriched in each lineage branch was
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Table 1. StemDriver statistics on gene analysis 

Methods Major group Sub group 
Gene number in 

human 
Gene number in 

mouse 

STEMNET Gene expression associated with stem cell differentiation in 
terms of 

Direction 14 873 13 627 

Degree 9733 12 954 
Dir&Deg 17 658 25 045 

PAGA Gene importance at branch point 2000 2000 
Monocle 3 Highly variable genes in trajectory along pseudo-time 

(trajectory_hvg) 
33 13 502 11 922 

Seurat Differential expressed genes in cell types (celltype_DEG) 70 6733 5558 
Seurat Differential expressed genes in trajectory (direction_DEG) 3009 2254 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell annotation with scANVI approach 

Cells from different datasets were integrated into the scANVI
model ( 24 ). Initially, the cells underwent normalization and
pre-processing using the Scanpy (version 1.9.1) workflow.
Subsequently, the top 2000 highly variable genes were se-
lected for joint embedding. Dimension reduction and clus-
tering were carried out using the scANVI model in scvi-
tools (version 0.20.3) ( 25 ). The model was trained for 500
epochs and a weight_decay set to 0. The trained scANVI
model and its latent embedding were exported for transfer
learning with scArches ( 26 ). When users employ our trained
scANVI model for cell annotation, it is essential to configure
the batch_key as ‘Dataset’, the labels_key as ‘celltype’, and the
unlabeled_category as ‘Unknown. 

Results 

Overview of stemdriver 

To evaluate the role of genes in the differentiation process
of hematopoietic stem cells and their progenitors, we con-
ducted an analysis focusing on several aspects. Differentially
expressed genes (DEGs) analysis evaluated gene expression on
cell-type-specificity, which is conducted with Seurat software
( 18 ). Gene expression associate with stem cell differentiation
in terms of direction, degree, both direction and degree, or nei-
ther were identified with STEMNET analysis ( 19 ). The gene
importance of the top 2000 highly valuable genes across de-
velopmental trajectories were assessed by PAGA ( 20 ) analy-
sis. Furthremore, the highly variable genes alone pseudo-time
of each cell trajectory were identified with Monocle 3 ( 22 )
analysis. Ultimately, we comprehensively assessed the func-
tions of 23 839 human genes and 29 533 mouse genes. Ta-
ble 1 shows the overall statistics for our findings. In human,
14 873 genes influence cell differentiation direction (Table 1 ,
Direction), 9 733 genes impact the extent of cell differentia-
tion (Table 1 , Degree), and 17 658 genes simultaneously af-
fect both direction and extent of cell differentiation (Table 1 ,
Dir&Deg). In mice, 13 627 genes influence cell differentia-
tion direction, 12 954 genes affect cell differentiation degree,
and 25 045 genes similarly influence both direction and de-
gree of cell differentiation. Furthermore, across 33 differen-
tiation trajectories, 13 502 human genes and 11 922 mouse
genes were identified to influence the transition of cells from
their initial state to the final state (Table 1 , trajectory_hvg).
Lastly, in humans, 3009 genes and in mice, 2254 genes, may
potentially initiate the differentiation of stem cells into spe-
cific downstream cell types (direction_DEG). Additionally, 6
733 human genes and 5 558 mouse genes exhibit differen-
tial expression across various cell types (celltype_DEG). Users
can access the detailed outcomes of the aforementioned anal- 
yses by visiting the homepage of the StemDriver website and 

selecting the specific functional analysis results of interest 
(Figure 2 ). 

StemDriver additionally provides three modules designed 

to facilitate easy navigation through our analyses. The first 
module, named ‘Driver Map,’ offers comprehensive cell type 
information, including marker genes, subtypes, and associated 

datasets. The second module, ‘Dataset,’ offers essential con- 
textual information and organizes analysis outcomes into five 
distinct sections. Lastly, the ‘Gene’ module offers detailed gene 
annotations spanning across datasets. Further elaboration on 

these modules is available below. 

Driver map module 

By utilizing the collected data, we have constructed a com- 
prehensive lineage map that spans 22 major cell types. This 
map commences with the early formation of hematopoietic 
stem cells (HSCs) during embryogenesis and extends to the 
emergence of terminal unipotent cells in adults (Figure 3 ).
Early-forming HSCs were predominantly identified in the 
yolk sac, AGM region, fetal liver, and fetal bone. Subse- 
quently, hematopoietic stem cells undergo a series of sequen- 
tial differentiation stages, progressively transforming into var- 
ious types of blood cells to support normal hematopoiesis 
and immune functions. In the initial stages, hematopoietic 
stem cells primarily differentiate into multipotent progeni- 
tors (MPPs), which exhibit a high degree of similarity to 

HSCs. Following this, MPPs further differentiate into lineage- 
committed progenitors, including common myeloid progen- 
itors (CMPs), granulocyte-monocyte progenitors (GMPs),
lymphoid-primed multipotent progenitors (LMPs), and oth- 
ers. These lineage-committed progenitors subsequently un- 
dergo further differentiation into functionalized unipotent 
cells. For instance, CMPs undergo a stepwise transformation 

into megakaryocyte-erythroid progenitors (MEPs) and ery- 
throcytes with oxygen transport functions. Similarly, LMPs 
experience successive differentiation stages leading to the for- 
mation of common lymphoid progenitors (CLPs), which fur- 
ther give rise to T cells, B cells, and NK cells involved in 

immune responses. Interestingly, both CMPs and LMPs can 

also give rise to GMPs, which subsequently mature into neu- 
trophils, monocytes, eosinophils, basophils, dendritic cells,
and macrophages. These cell types play crucial roles in main- 
taining normal immune functions. 

While differentiation of hematopoietic stem cells within the 
bone marrow has been extensively studied, the understand- 
ing of HSC formation during the embryonic period is still in 

its early stages. StemDriver incorporates recently published 
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Figure 2. Summary information for analysis results. Users can download the results by choosing an interesting analysis. In addition, we provided 
reference cells used to analyze cell fate choice and trained the scANVI model for cell type annotation. The reference data and code can be downloaded 
from the StemDriver website. 
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equencing data that shed light on HSC formation across dif-
erent tissues during the embryonic period. Users can explore
he DriverMap to select specific cell types of interest, gain-
ng access to more detailed information such as cell subtypes
ecorded in StemDriver, highly expressed genes, and associ-
ted datasets. 

ataset module 

n the Dataset module, users can access literature informa-
ion for each dataset (Figure 4 A). The analysis results for each
ataset are presented in four categories: ‘Overview’, ‘Trajec-
ory’, ‘Gene’, ‘Download’. The ‘Overview’ section includes
MAP plots for visualizing cell composition, donut plots de-
icting cell numbers per cell type, and histograms displaying
ell type proportions at different stages (Figure 4 B). In the
Trajectory’ section, In the ‘Trajectory’ section, we presented
 broad overview of four analysis methods. STEMNET anal-
ysis was employed to predict potential lineage commitments
of stem cells and progenitor cells and visualize the results in
a star plot. Cells positioned at the center of the plot represent
the lowest degree of differentiation, while cells situated at the
vertices of the plot correspond to the highest degree of dif-
ferentiation. This indicates a more mature status within the
corresponding lineages. In contrast to the STEMNET analy-
sis, the PAGA analysis also predicted cell trajectories. How-
ever, PAGA analysis diverged by evaluating gene importance
at each trajectory branch point. Subsequently, we applied
Monocle 3 analysis to study the development of each cell lin-
eage. During this analysis, genes that potentially play a signif-
icant role along pseudo-time were assessed. Readers have the
option to select a trajectory of interest to gain insight into the
overall status of cells and evaluate the importance of specific
genes in that context. In addition to the three trajectory anal-
ysis methods mentioned above, we also conducted an analy-
sis of the gene expression regulatory network using SCENIC.
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Figure 3. DriverMap, a complete lineage map of hematopoiesis based on collected data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The enrichment of gene sets for each developmental trajec-
tory can be visualized through the heatmap. The results of
gene evaluation from each of these analysis approaches were
summarized and can be referred to in the table located at the
bottom (Figure 4 C, Supplementary Figure 1B). In the ‘Gene’
section (Figure 4 D, we offer detailed visualizations of genes
that stand out from the analyses mentioned earlier. It’s impor-
tant to note that since the above methods characterize genes
from different perspectives, not all genes may have consistent
representations across all analysis results. Readers have the
flexibility to search for their specific genes of interest to gain
a comprehensive understanding of their characteristics. Fur-
thermore, the results of these analyses from the four methods
can be downloaded from the ‘Download’ section. 

Taking the E-MTAB-11343 dataset as an example (Supple-
mentary Figure 1) ( 3 ), this dataset comprises sixteen distinct
cell types, totaling 22 098 cells. These cells originate from
human embryos, range from the 4th post-conception week
(PCW) to the 17th PCW (Supplementary Figure 1A). This
dataset encompasses various matured cell types. Cell devel-
opment lineages can be visualized through the star plot gen-
erated using STEMNET analysis. As depicted in the image
(Supplementary Figure 1B), the central portion is composed
of stem cells and progenitors, while B cells, T cells, and other
matured cells are situated at the vertices. Cells that have ini-
tiated differentiation are progressing toward their respective
directions (Supplementary Figure 1B.i). The PAGA analysis
segmented the cell trajectories into 27 branch points, and it
assessed the importance of the top 2000 highly valuable genes
at these branch points. The results of this evaluation are avail-
able in the table (Supplementary Figure 1B.ii, B.iii). Informa-
tion about the enrichment of gene regulons for cell lineages 
can be found in the PySCENIC method section (Supplemen- 
tary Figure 1C). 

Gene module 

Users can search their interested genes either through ‘Dataset’ 
page or ‘Gene’ page online. The ‘Dataset’ page, included the 
discovered genes obtained from above four analysis methods.
Taking MZB-associated genes (MZB1) as an example (Figure 
5 A), the star plot showcases the expression levels of MZB1 

across different lineage commitments. Based on the results 
of differential expression analysis, MZB1 exhibits higher ex- 
pression in B cells and T cells, as well as within subgroups 
of MLPs that undergo differentiation into B cells and T cells 
(Supplementary Figure 1C). In order to catch the gene expres- 
sion characteristics alone pseudo-time, we checked the results 
obtained from Monocle 3 (Supplementary table 1). Mono- 
cle 3 evaluated the significance of genes along pseudo-time 
by assessing their autocorrelation, which represented as the 
Morans_I value. The Morans_I value ranges from -1 to + 1,
with a higher value indicating a stronger positive autocorre- 
lation. This suggests a higher possibility of gene impact on 

cell development. According to the results from Monocle 3,
MZB1 has a relatively high Morans_I value in the T cell 
(0.490295551) and B cell (0.260621267) development lin- 
eage, which is consistent with the results of DEG analysis. In 

addition, the results of PAGA analysis showed that MZB1 had 

a significant impact on cell cluster of 8, 13, 11, 1, 7, 14, 2,
which is a mix of B cell and progenitors, or a mix of T cell 
and progenitors. 



Nucleic Acids Research , 2024, Vol. 52, Database issue D 1049 

Figure 4. Exploring dataset module. ( A ) The literature information on datasets can be found in the table. ( B ) The ‘Overview’ section. General cell type 
information is included in the ‘Overview’ section. ( C ) The ‘Trajectory’ section offers a summarized overview of the results from trajectory analysis 
conducted using STEMNET, PAGA, and MONOCEL3. In the STEMNET analysis, potential lineage commitments of stem cells and progenitor cells were 
predicted. PAGA analysis assessed the importance of genes at each trajectory branch point, while Monocle 3 analysis identified significant genes along 
the pseudo-time. Furthermore, the results of the gene regulatory network analysis conducted with SCENIC are also included in this section. ( D ) The 
‘Gene’ section contains the expression profiles of each gene. Due to the extensive number of profiles, expression data is only available for genes 
included in the analysis results. As different analysis methods are applied, not e v ery gene may be included in every set of results, and consequently, not 
all genes will ha v e displa y s f or e v ery analy sis method. 
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Figure 5. Results exploring with gene. ( A ) Example of summarized gene information obtained by searching. ( B ) Statistical analysis of gene expression 
patterns correlates with differentiation. ( C ) Expression of gene Lyz2 in datasets of GSE68981 and Gse109774. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above analysis results indicate that MZB1 is likely involved
in the development of both B cells and T cells. MZB1 is estab-
lished as a marker gene for marginal zone B cells (MZB) and is
well-documented for its substantial role in antibody secretion
( 27 ,28 ). Additionally, a recent study reported an upregulation
of MZB1 in transitional B cells with high IgM expression, and
these cells were identified as following a developmental tra-
jectory towards MZB cells ( 29 ). The involvement of MZB1 in
T cell development has also been documented, with evidence
demonstrating that targeting the MZB1 gene with microRNA-
185 leads to the arrest of T cell development ( 30 ). 

To gain a more comprehensive understanding of the role of
MZB1, we further examined its expression in other datasets.
As indicated in supplementary table 2, the MZB1 gene exhib-
ited significantly higher expression across multiple cell types,
spanning various stages of B cell development, including pre-
pro-B, pro-B, late pro-B and B cells. This strongly suggests
that MZB1 plays a crucial role in B cell development. A pre-
vious study has reported that the expression of Mzb1 serves
as a hallmark for identifying pro- and pre-B cells, with these
genes playing essential roles in governing the proliferation and
maturation of B cells ( 31 ). Additionally, MZB1 has been ob-
served to exhibit high expression in plasmacytoid dendritic
cells (pDC) in multiple datasets, suggesting a significant con-
nection between MZB1 and pDC. While there are limited re-
ports on the specific role of MZB1 in pDC development, it has
been documented to enhance the immune functions of pDC
( 27 )’. 

Conclusion and discussion 

StemDriver aims to provide valuable data and gene informa-
tion to assist researchers in identifying potential candidates
for future research. StemDriver have curated a comprehen- 
sive scRNA-seq dataset that spans from the embryonic phase 
to adulthood, capturing the entire journey from the initial 
formation of hematopoietic stem cells to the maturation of 
fully functional terminal cells. StemDriver provided a compre- 
hensive evaluation of gene characteristics related to cell dif- 
ferentiation. STEMNET categorized genes based on their ex- 
pression patterns concerning stem cell differentiation. PAGA 

analysis assessed gene importance at trajectory branch points.
Monocle 3 identified highly variable genes along pseudo- 
time, and DEG analysis revealed cell-type-specific gene ex- 
pression. StemDriver offers a platform for cross-dataset com- 
parisons. We have collected data from 42 different studies 
and performed standardized analysis. By leveraging resources 
from various studies, users can gain a more comprehen- 
sive understanding of gene expression features related to cell 
differentiation. 

After being processed with a standardized workflow, a total 
of 23839 human genes and 29533 mouse genes were identi- 
fied. These genes were annotated based on their association 

with stem cell differentiation, their significance at trajectory 
branch points, their expression along pseudo-time on specific 
cell trajectory development, and their expression specificity 
across cell types. The statistical analysis (Figure 5 B) clearly 
demonstrates that over 50% of the identified genes with im- 
pactful roles fall under the ‘Dir&Deg’ category for both hu- 
mans and mice. This underscores their crucial involvement in 

driving the differentiation of stem cells and progenitors to- 
wards distinct lineage commitments. However, a notable por- 
tion of genes also align with multiple expression patterns. This 
variability might stem from their distinct functions across di- 
verse lineage branches or involvement in different cells asso- 
ciated with lineage commitment. For instance, the gene Lyz2 
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Lysozyme 2) was categorized as a ‘Degree gene’ in the dataset
SE6898 ( 32 ), indicating that Lyz2 doesn’t show specific tra-

ectory preferences while promoting HSC differentiation into
MP , MEP , and CLP . However, in dataset GSE10977 ( 33 ), it
as classified as a ‘Dir&Deg’ gene, indicating that its expres-

ion promotes stem cells to differentiate into specific unipotent
ells. This observation concurs with the outcomes of gene dif-
erential expression analysis in the directional context. Impor-
antly, Lyz2 demonstrates increased expression in progenitors
ndergoing differentiation into granulocytes and monocytes
Figure 5 C). This discovery enhances our comprehension of
he roles played by individual genes during varied differentia-
ion processes. 

StemDriver offers comprehensive gene annotations from
ultiple perspectives, rendering it highly valuable in the field
f cell engineering. Although there has been well-documented
rogress in cell-based immunotherapy against blood cancers,
he limited availability of specific cell subsets has presented
ignificant challenges in the development and implementation
f these therapies. Consequently, extensive studies have been
irected towards modifying induced pluripotent stem cells (iP-
Cs) to generate desired cell subsets, including iPSC-derived
atural killer (NK) cells ( 34 ,35 ). To identify genes that play a
rucial role in initiating the differentiation of stem cells and
heir progenitors into NK cells, we conducted a screening us-
ng the StemDriver database, focusing on the differentiation
tage of NK cells. As a result, we identified a total of 321 genes.
he functions of these genes are pivotal in governing various
spects of NK cell behavior. For instance, IL32 ( 36 ) plays a
ole in NK cell activity, (HSPA6) ( 37 ) is associated with cy-
otoxicity, and HLA-A, HLA-B and HLA-C ( 38 ) are involved
n recognition processes. StemDriver offers thorough gene ex-
ression annotations across the trajectory of target cells de-
ived from diverse progenitors. This resource empowers re-
earchers with a comprehensive grasp of gene functions, aid-
ng in the identification of efficient target genes for iPSC en-
ineering. Moreover, it can be instrumental in designing a cell
ulture environment that facilitates the stimulation of target
ene expression. 

The primary objective of StemDriver is to offer an intricate
olecular overview of hematopoiesis, wherein the intricate
olecular changes within specific cell subgroups are best com-
rehended through single-cell resolution sequencing. There-
ore, the bulk cell data is not included. While single-cell assay
or transposase-accessible chromatin with high-throughput
equencing (scA T AC-seq) also provides information at single-
ell resolution, there is currently insufficient data to cover all
he relevant cell types involved in hematopoiesis. Therefore,
e are planning to include the scA T AC-seq data in the near

uture. By leveraging a wide range of omics data, we aim
o construct a more comprehensive regulatory landscape of
ematopoietic differentiation, spanning from the initial for-
ation of hematopoietic stem cells to the development of each
istinct functional terminal cell type. In summary, StemDriver
erves as a pioneering and unique database that offers a sys-
ematic characterization of molecular functions in HSC for-
ation and differentiation at the single-cell level. The wealth
f information contained in StemDriver presents numerous in-
riguing stories and insights waiting to be explored by users. 

ata availability 

ll data and results can be downloaded on the StemDriver
ebsite ( http:// biomedbdc.wchscu.cn/ StemDriver/ ). The
trained scANVI model and code used to perform cell anno-
tation on new data are also included on the download page.
For more details and discussions, contact Dr Xiaobo Zhou. 

Supplementary data 

Supplementary Data are available at NAR Online. 
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