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Abstract

StemDriver is a comprehensive knowledgebase dedicated to the functional annotation of genes participating in the determination of hematopoi-
etic stem cell fate, available at http://biomedbdc.wchscu.cn/StemDriver/. By utilizing single-cell RNA sequencing data, StemDriver has success-
fully assembled a comprehensive lineage map of hematopoiesis, capturing the entire continuum from the initial formation of hematopoietic
stem cells to the fully developed mature cells. Extensive exploration and characterization were conducted on gene expression features corre-
sponding to each lineage commitment. At the current version, StemDriver integrates data from 42 studies, encompassing a diverse range of
14 tissue types spanning from the embryonic phase to adulthood. In order to ensure uniformity and reliability, all data undergo a standardized
pipeline, which includes quality data pre-processing, cell type annotation, differential gene expression analysis, identification of gene categories
correlated with differentiation, analysis of highly variable genes along pseudo-time, and exploration of gene expression regulatory networks. In
total, StemDriver assessed the function of 23 839 genes for human samples and 29 533 genes for mouse samples. Simultaneously, StemDriver
also provided users with reference datasets and models for cell annotation. We believe that StemDriver will offer valuable assistance to research
focused on cellular development and hematopoiesis.
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Introduction

Hematopoiesis plays an important role in the intricate work-
ings of the human body. Vital functions such as oxygen trans-
port, immune system, blood clotting, and blood regenera-
tion all rely on the proper orchestration of hematopoiesis
(1). The normal self-renewal and differentiation processes of
hematopoietic stem cells (HSCs) are closely connected with
human well-being and health. Although HSCs are the first
tissue-specific adult stem cells to be successfully isolated and
used for clinical treatment (2), the underlying mechanism
that governs the fate determination of hematopoietic stem
cells (HSCs) still remains unknown. By employing single-cell
RNA sequencing data, several recent studies have attempted
to chart the dynamic molecular changes that underlie the dif-
ferentiation of HSCs (3-5). However, individual studies con-
centrate on one or a few specific cell types derived from
HSC are limited in their ability to support broad biologi-
cal research. Current hematopoiesis-related databases such as
BloodSpot (6), Haemopedia RNA-seq (7) and CODEX (8)
provided gene-expression profiles without systematic func-
tional annotations to elucidate the molecular functions be-
hind cell fate determination. The information provided by
these databases have become insufficient to address the cur-
rent research demands. There is an urgent need for a database
that analyzes genes from various perspectives, providing users
with a platform for comprehensive and multifaceted gene
exploration.

To address this gap, we have developed StemDriver, a com-
prehensive knowledge database focused on gene functions re-
lated to the determination of hematopoietic stem cell fate.
Recent studies have shown that hematopoietic stem cells
(HSCs) originate in the yolk sac and later appear in the
aorta/gonad/mesonephros (AGM) region. Afterward, they
migrate to the fetal liver and fetal bone marrow, where they
undergo a phase of expansion (9-11). In order to encom-
pass the entirety of hematopoiesis, we curated datasets that
span various developmental stages, ranging from embryonic
to adult phases. In the end, StemDriver includes 42 datasets
from both human and mouse samples, covering 14 distinct
tissue types. By utilizing the collected data, we have generated
a lineage map that encompasses 22 major cell types, start-
ing from the early formation of HSCs during embryogenesis
and extending to the emergence of terminal unipotent cells in
adults.

StemDriver offers comprehensive gene annotation, delving
into gene roles in hematopoietic stem cell differentiation from
multiple perspectives. Initially, we explored the correlation be-
tween gene expression and differentiation direction and ex-
tent. Subsequently, we analyzed gene expression differences
across cell types and within stem cell subsets with varying dif-
ferentiation directions. Lastly, we monitored dynamic gene ex-
pression changes and identified highly variable genes along de-
velopmental trajectories. The synthesis of these analyses pro-
vides insights into the gene’s effects on differentiation direc-
tion, degree, and specificity, its potential to initiate specific
differentiation pathways, and its significant influence on cell
transitions during distinct stages. Moreover, we probed the en-
richment of gene expression regulatory networks within each
lineage commitment. Finally, we carried out a detailed charac-
terization of the roles played by 23 839 genes in humans and
29 533 genes in mice during the differentiation processes of
hematopoietic stem cells and their progenitors. The compre-
hensive annotation results provided by StemDriver enable us
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to gain profound insights into the molecular characteristics as-
sociated with the differentiation of pluripotent stem cells into
various cell lineages. All these reuslts will contribute to the
identification of novel targets suitable for cellular engineering
or disease treatment.

Materials and methods

Data collection

We conducted a search of previous studies centered on HSCs
using scRNA-seq data through the PubMed website, employ-
ing keywords such as ‘hematopoietic stem cell’, ‘single cell’,
and ‘RNA-seq’. Subsequently, a total of 245 relevant papers
were identified. From these datasets, we applied the following
criteria for dataset selection: (i) The datasets had to be publicly
accessible. (ii) Only datasets generated using single-cell RNA
sequencing techniques were considered. (iii) The study focused
on organisms within the Homo sapiens and Mus musculus
species. (iv) Included cell types were limited to early formed
HSCs, HSCs, and their resultant cell types. (v) The datasets
had to meet the quality control standards outlined in the data
preprocessing section (Figure 1). Following the application
of these filters, a total of 42 scRNA-seq datasets remained.
These datasets were originated from 14 different types of tis-
sues, including adult bone marrow, adult peripheral blood,
adult spleen, Aorta-Gonad-Mesonephros (AGM), cord blood
(CB), fetal bone marrow (FBM), fetal liver (FL), fetal kidney
(FK), fetal genitourinary system (FG), fetal thymus (FT), fe-
tal skin (FS), fetal artery (FA), yolk sac (YS), and placenta
(PL). The scRNA-seq datasets were generated using a vari-
ety of sequencing platforms, including SMART-seq2, START-
seq, CITE-seq, inDrop, 10x Genomics, Fluidigm C1 and
Microarray.

Data pre-processing

The raw data collected in StemDriver underwent pre-
processing using a standardized pipeline. Here is an overview
of the steps involved: (i) Gene symbol mapping: The origi-
nal datasets, which used Entrez ID for gene information, were
mapped to gene symbols using the org.Hs.eg.db (12) in R for
human data and org.Mm.eg.db (13) for mouse data. To stan-
dardize gene symbols, we retained human genes recorded as
approved genes in the HGNC database (14) and mouse genes,
excluding withdrawn marker symbols, recorded by MGI (15).
(i) Gene expression matrix construction: A gene expression
matrix with raw data was constructed for each data set.
Datasets that only provided normalized data were excluded,
as SCENIC (16) analysis requires the raw count data. (iii)
Quality control: We first excluded genes expressed in less than
5 single cells, cells with >200 genes, and <20% mitochondrial
genes retained for downstream analyses.

Dataset Integration

In this study, data integration was selectively applied to
datasets exclusively composed of stem cells or progenitors.
These datasets primarily consisted of cells with minimal differ-
entiation variation, which posed limitations for cell differen-
tiation analysis. To overcome this, these cells were integrated
with more mature cell types to facilitate trajectory analysis.
Briefly, pre- or HSC cells were integrated with progenitors,
including common lymphoid progenitors (CLP), granulocyte-
monocyte progenitors (GMP) and megakaryocyte-erythroid
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Figure 1. StemDriver workflow and overview of functional analysis. In total, there are 42 datasets covering 22 major cell types sourced from 14 different
tissues. DEG, differentially expressed genes. HVG, highly variable genes. Datasets include in StemDriver screened with a uniform criterion and
pre-processed with a standard workflow. StemDriver provides functional analysis of genes including Differential gene expression analysis.
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progenitors (MEP). Subsequently, these progenitors were
merged with fully developed mature cells.

Batch effects removal

Datasets including different sources underwent batch effects
removal utilizing harmony (17) within the Seurat (Version
4.3.0) (18). In detail, Seurat objects from various samples
were consolidated into a unified global object using the merge
function. Following this, log-normalization and feature selec-
tion procedures were carried out. Principal components were
computed using the RunPCA function with the parameter set
to npcs = 50. The RunHarmony function was employed to
integrate the data by specifying the reduction parameter as
‘pca’ The reduction method ‘harmony’ was applied to the in-
tegrated data, and the cells were clustered using a resolution
of 0.5. The subsequent downstream analysis of the integrated
data adhered to the same procedures as applied to the other
datasets, ensuring consistency in our analytical approach.

Cell clustering and annotation

Datasets without integration processed with standard Seurat
workflow. Briefly, the raw count matrix underwent a loga-
rithmic transformation using a scale factor of 10 000. Then,
the top 2000 highly variable genes were obtained using the
FindVariableGenes function in Seurat with default parame-
ters. Principal component analysis (PCA) was performed using
the top 2000 highly variable genes, and the top 15 resulting
principal components were used for subsequent UMAP anal-
ysis. The cell identities for each cluster were determined based
on the original study results. In most cases, the original liter-
ature provided cell type information for each cell. However,
for some studies that only provided marker genes for each
cell type, the expression pattern of the marker gene list was
projected onto a DotPlot. Cell identities were then manually
annotated based on the expression patterns observed in the
DotPlot.

Differential gene expression analysis

To identify genes that are highly expressed in specific cell
types, the FindAllMarkers function in Seurat was employed.
This analysis aimed to identify genes that exhibit significant
differential expression in a particular cell type compared to
other cell types within the dataset. For this analysis, genes
with a log, fold-change in average expression bigger than 1
or lower than —1 and an adjusted P-value less than 0.05 were
retained as cell-type-specific highly expressed genes.

Cell Trajectory analysis with STEMNET,
identification of genes with effective roles in cell
differentiation

StemDriver classified genes into four categories based on gene
expression patterns correlated with cell differentiation as be-
low. (i) Direction (Dir) gene: these genes exhibit consistent up-
or down-regulation from early lineage priming throughout the
entire differentiation direction that the stem cells follow. (ii)
Degree (Deg) gene: these genes show up or down-regulation
at a specific degree of cell differentiation, independent of the
differentiation direction. (iii) Dir&Deg gene: these genes are
up- or down-regulated at a specific degree of differentiation
in a specific direction, combining features of both the direc-
tion and degree gene models. (iv) Neither: these genes do not
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exhibit consistent and systematic changes during cell develop-
ment, which may not play an important role during stem cell
differentiation.

To identify the gene expression patterns, we employed the
STEMNET packages (19). The procedure involved selecting
target cell types as differentiation endpoints, using cells la-
beled with these target cell types as anchors, and mapping
stem cells and progenitors to different directions using the
runSTEMNET function. The gene expression features were
then fitted into the four categories mentioned above using the
mclapply function. To speed up computation, mc.cores = 40
was set. The optimal categories for each gene were determined
by comparing the models’ Bayesian Information Criteria.

Cell trajectory analysis with PAGA, calculating gene
importance across trajectories

In this study, we utilized the Partition-based Graph Abstrac-
tion (PAGA) (20) method within the dynverse tool (21) to
track gene expression changes along intricate developmental
trajectories. In brief, raw and normalized counts of the top
2000 highly variable genes were employed to create a dyn-
verse object. The selection of the root cell, possessing the low-
est differentiation degree, was based on STEMNET results.
Cell trajectory analysis was conducted using the ‘paga-tree’
method within the infer_trajectory function. Furthermore, the
influence of gene expression on trajectory branch points was
assessed using the calculate_milestone_feature_importance
function, resulting in importance scores for each gene at each
branch point.

Cell trajectory analysis with Monocle 3, identify
highly variable genes along the pseudo-time

To capture the dynamic changes in gene expression from
stem cells to mature cell types, we used Monocle 3 (ver-
sion 1.3.1) (22), which is able to identify correlated genes
on the complex trajectory. The genes that exhibit high vari-
ability in expression between cell types along the trajectory
were identified using graph-autocorrelation analysis through
the graph_test function of Monocle 3. Co-expression gene
modules were calculated based on the identified variable
genes using specific criteria, including p-value < 0.05, g-
value < 0.05, and Morans_I > 0.1. Morans_I is a measure-
ment of spatial autocorrelation, ranging from -1 to + 1. A
higher value of Morans_I indicate stronger positive autocor-
relation. The enrichment of co-expressed gene modules can be
visualized in a heatmap. For individual genes, only those with
a Morans_I > 0.5 were included in the dynamic expression
profile on pseudo-time.

Gene expression regulatory network analysis

Gene regulatory network analysis was conducted by using
pySCENIC (version 0.11.2) (23). First, the co-expression gene
modules were calculated based on the raw count matrix. Then
we built the regulons, which consist of transcriptional factors
and candidate target genes, using enriched DNA motifs from
gene modules with a normalized enrichment score (NES) of
3.0 or higher. The regulons enriched in lineage branches were
then calculated based on area under the curve (AUC) values.
The heatmap of regulons enriched in each lineage branch was
included in the visualization.



D1046

Table 1. StemDriver statistics on gene analysis
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Gene number in Gene number in

Methods Major group Sub group human mouse
STEMNET Gene expression associated with stem cell differentiation in Direction 14 873 13627
terms of
Degree 9733 12 954
Dir&Deg 17 658 25 045
PAGA Gene importance at branch point 2000 2000
Monocle 3 Highly variable genes in trajectory along pseudo-time 33 13 502 11922
(trajectory_hvg)
Seurat Differential expressed genes in cell types (celltype_DEG) 70 6733 5558
Seurat Differential expressed genes in trajectory (direction_DEG) 3009 2254

Cell annotation with scANVI approach

Cells from different datasets were integrated into the scANVI
model (24). Initially, the cells underwent normalization and
pre-processing using the Scanpy (version 1.9.1) workflow.
Subsequently, the top 2000 highly variable genes were se-
lected for joint embedding. Dimension reduction and clus-
tering were carried out using the scANVI model in scvi-
tools (version 0.20.3) (25). The model was trained for 500
epochs and a weight_decay set to 0. The trained scANVI
model and its latent embedding were exported for transfer
learning with scArches (26). When users employ our trained
scANVI model for cell annotation, it is essential to configure
the batch_key as ‘Dataset’, the labels_key as ‘celltype’, and the
unlabeled_category as ‘Unknown.

Results

Overview of stemdriver

To evaluate the role of genes in the differentiation process
of hematopoietic stem cells and their progenitors, we con-
ducted an analysis focusing on several aspects. Differentially
expressed genes (DEGs) analysis evaluated gene expression on
cell-type-specificity, which is conducted with Seurat software
(18). Gene expression associate with stem cell differentiation
in terms of direction, degree, both direction and degree, or nei-
ther were identified with STEMNET analysis (19). The gene
importance of the top 2000 highly valuable genes across de-
velopmental trajectories were assessed by PAGA (20) analy-
sis. Furthremore, the highly variable genes alone pseudo-time
of each cell trajectory were identified with Monocle 3 (22)
analysis. Ultimately, we comprehensively assessed the func-
tions of 23 839 human genes and 29 533 mouse genes. Ta-
ble 1 shows the overall statistics for our findings. In human,
14 873 genes influence cell differentiation direction (Table 1,
Direction), 9 733 genes impact the extent of cell differentia-
tion (Table 1, Degree), and 17 658 genes simultaneously af-
fect both direction and extent of cell differentiation (Table 1,
Dir&Deg). In mice, 13 627 genes influence cell differentia-
tion direction, 12 954 genes affect cell differentiation degree,
and 25 045 genes similarly influence both direction and de-
gree of cell differentiation. Furthermore, across 33 differen-
tiation trajectories, 13 502 human genes and 11 922 mouse
genes were identified to influence the transition of cells from
their initial state to the final state (Table 1, trajectory_hvg).
Lastly, in humans, 3009 genes and in mice, 2254 genes, may
potentially initiate the differentiation of stem cells into spe-
cific downstream cell types (direction_DEG). Additionally, 6
733 human genes and 5 558 mouse genes exhibit differen-
tial expression across various cell types (celltype_DEG). Users

can access the detailed outcomes of the aforementioned anal-
yses by visiting the homepage of the StemDriver website and
selecting the specific functional analysis results of interest
(Figure 2).

StemDriver additionally provides three modules designed
to facilitate easy navigation through our analyses. The first
module, named ‘Driver Map,’ offers comprehensive cell type
information, including marker genes, subtypes, and associated
datasets. The second module, ‘Dataset, offers essential con-
textual information and organizes analysis outcomes into five
distinct sections. Lastly, the ‘Gene’ module offers detailed gene
annotations spanning across datasets. Further elaboration on
these modules is available below.

Driver map module

By utilizing the collected data, we have constructed a com-
prehensive lineage map that spans 22 major cell types. This
map commences with the early formation of hematopoietic
stem cells (HSCs) during embryogenesis and extends to the
emergence of terminal unipotent cells in adults (Figure 3).
Early-forming HSCs were predominantly identified in the
yolk sac, AGM region, fetal liver, and fetal bone. Subse-
quently, hematopoietic stem cells undergo a series of sequen-
tial differentiation stages, progressively transforming into var-
ious types of blood cells to support normal hematopoiesis
and immune functions. In the initial stages, hematopoietic
stem cells primarily differentiate into multipotent progeni-
tors (MPPs), which exhibit a high degree of similarity to
HSCs. Following this, MPPs further differentiate into lineage-
committed progenitors, including common myeloid progen-
itors (CMPs), granulocyte-monocyte progenitors (GMPs),
lymphoid-primed multipotent progenitors (LMPs), and oth-
ers. These lineage-committed progenitors subsequently un-
dergo further differentiation into functionalized unipotent
cells. For instance, CMPs undergo a stepwise transformation
into megakaryocyte-erythroid progenitors (MEPs) and ery-
throcytes with oxygen transport functions. Similarly, LMPs
experience successive differentiation stages leading to the for-
mation of common lymphoid progenitors (CLPs), which fur-
ther give rise to T cells, B cells, and NK cells involved in
immune responses. Interestingly, both CMPs and LMPs can
also give rise to GMPs, which subsequently mature into neu-
trophils, monocytes, eosinophils, basophils, dendritic cells,
and macrophages. These cell types play crucial roles in main-
taining normal immune functions.

While differentiation of hematopoietic stem cells within the
bone marrow has been extensively studied, the understand-
ing of HSC formation during the embryonic period is still in
its early stages. StemDriver incorporates recently published
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Figure 2. Summary information for analysis results. Users can download the results by choosing an interesting analysis. In addition, we provided
reference cells used to analyze cell fate choice and trained the scANVI model for cell type annotation. The reference data and code can be downloaded

from the StemDriver website.

sequencing data that shed light on HSC formation across dif-
ferent tissues during the embryonic period. Users can explore
the DriverMap to select specific cell types of interest, gain-
ing access to more detailed information such as cell subtypes
recorded in StemDriver, highly expressed genes, and associ-
ated datasets.

Dataset module

In the Dataset module, users can access literature informa-
tion for each dataset (Figure 4A). The analysis results for each
dataset are presented in four categories: ‘Overview’, “Trajec-
tory’, ‘Gene’, ‘Download’. The ‘Overview’ section includes
UMAP plots for visualizing cell composition, donut plots de-
picting cell numbers per cell type, and histograms displaying
cell type proportions at different stages (Figure 4B). In the
“Trajectory’ section, In the “Trajectory’ section, we presented
a broad overview of four analysis methods. STEMNET anal-

ysis was employed to predict potential lineage commitments
of stem cells and progenitor cells and visualize the results in
a star plot. Cells positioned at the center of the plot represent
the lowest degree of differentiation, while cells situated at the
vertices of the plot correspond to the highest degree of dif-
ferentiation. This indicates a more mature status within the
corresponding lineages. In contrast to the STEMNET analy-
sis, the PAGA analysis also predicted cell trajectories. How-
ever, PAGA analysis diverged by evaluating gene importance
at each trajectory branch point. Subsequently, we applied
Monocle 3 analysis to study the development of each cell lin-
eage. During this analysis, genes that potentially play a signif-
icant role along pseudo-time were assessed. Readers have the
option to select a trajectory of interest to gain insight into the
overall status of cells and evaluate the importance of specific
genes in that context. In addition to the three trajectory anal-
ysis methods mentioned above, we also conducted an analy-
sis of the gene expression regulatory network using SCENIC.
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Figure 3. DriverMap, a complete lineage map of hematopoiesis based on collected data.

The enrichment of gene sets for each developmental trajec-
tory can be visualized through the heatmap. The results of
gene evaluation from each of these analysis approaches were
summarized and can be referred to in the table located at the
bottom (Figure 4C, Supplementary Figure 1B). In the ‘Gene’
section (Figure 4D, we offer detailed visualizations of genes
that stand out from the analyses mentioned earlier. It’s impor-
tant to note that since the above methods characterize genes
from different perspectives, not all genes may have consistent
representations across all analysis results. Readers have the
flexibility to search for their specific genes of interest to gain
a comprehensive understanding of their characteristics. Fur-
thermore, the results of these analyses from the four methods
can be downloaded from the ‘Download’ section.

Taking the E-MTAB-11343 dataset as an example (Supple-
mentary Figure 1) (3), this dataset comprises sixteen distinct
cell types, totaling 22 098 cells. These cells originate from
human embryos, range from the 4th post-conception week
(PCW) to the 17th PCW (Supplementary Figure 1A). This
dataset encompasses various matured cell types. Cell devel-
opment lineages can be visualized through the star plot gen-
erated using STEMNET analysis. As depicted in the image
(Supplementary Figure 1B), the central portion is composed
of stem cells and progenitors, while B cells, T cells, and other
matured cells are situated at the vertices. Cells that have ini-
tiated differentiation are progressing toward their respective
directions (Supplementary Figure 1B.i). The PAGA analysis
segmented the cell trajectories into 27 branch points, and it
assessed the importance of the top 2000 highly valuable genes
at these branch points. The results of this evaluation are avail-
able in the table (Supplementary Figure 1B.ii, B.iii). Informa-

tion about the enrichment of gene regulons for cell lineages
can be found in the PySCENIC method section (Supplemen-
tary Figure 1C).

Gene module

Users can search their interested genes either through ‘Dataset’
page or ‘Gene’ page online. The ‘Dataset’ page, included the
discovered genes obtained from above four analysis methods.
Taking MZB-associated genes (MZB1) as an example (Figure
5A), the star plot showcases the expression levels of MZB1
across different lineage commitments. Based on the results
of differential expression analysis, MZB1 exhibits higher ex-
pression in B cells and T cells, as well as within subgroups
of MLPs that undergo differentiation into B cells and T cells
(Supplementary Figure 1C). In order to catch the gene expres-
sion characteristics alone pseudo-time, we checked the results
obtained from Monocle 3 (Supplementary table 1). Mono-
cle 3 evaluated the significance of genes along pseudo-time
by assessing their autocorrelation, which represented as the
Morans_I value. The Morans_I value ranges from -1 to + 1,
with a higher value indicating a stronger positive autocorre-
lation. This suggests a higher possibility of gene impact on
cell development. According to the results from Monocle 3,
MZB1 has a relatively high Morans_I value in the T cell
(0.490295551) and B cell (0.260621267) development lin-
eage, which is consistent with the results of DEG analysis. In
addition, the results of PAGA analysis showed that MZB1 had
a significant impact on cell cluster of 8, 13, 11, 1, 7, 14, 2,
which is a mix of B cell and progenitors, or a mix of T cell
and progenitors.
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Figure 4. Exploring dataset module. (A) The literature information on datasets can be found in the table. (B) The ‘Overview’ section. General cell type
information is included in the "‘Overview’ section. (C) The ‘Trajectory’ section offers a summarized overview of the results from trajectory analysis
conducted using STEMNET, PAGA, and MONOCEL3. In the STEMNET analysis, potential lineage commitments of stem cells and progenitor cells were
predicted. PAGA analysis assessed the importance of genes at each trajectory branch point, while Monocle 3 analysis identified significant genes along
the pseudo-time. Furthermore, the results of the gene regulatory network analysis conducted with SCENIC are also included in this section. (D) The
‘Gene’ section contains the expression profiles of each gene. Due to the extensive number of profiles, expression data is only available for genes
included in the analysis results. As different analysis methods are applied, not every gene may be included in every set of results, and consequently, not

all genes will have displays for every analysis method.
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Figure 5. Results exploring with gene. (A) Example of summarized gene information obtained by searching. (B) Statistical analysis of gene expression
patterns correlates with differentiation. (C) Expression of gene Lyz2 in datasets of GSE68981 and Gse109774.

Above analysis results indicate that MZB1 is likely involved
in the development of both B cells and T cells. MZB1 is estab-
lished as a marker gene for marginal zone B cells (MZB) and is
well-documented for its substantial role in antibody secretion
(27,28). Additionally, a recent study reported an upregulation
of MZB1 in transitional B cells with high IgM expression, and
these cells were identified as following a developmental tra-
jectory towards MZB cells (29). The involvement of MZB1 in
T cell development has also been documented, with evidence
demonstrating that targeting the MZB1 gene with microRNA-
185 leads to the arrest of T cell development (30).

To gain a more comprehensive understanding of the role of
MZB1, we further examined its expression in other datasets.
As indicated in supplementary table 2, the MZB1 gene exhib-
ited significantly higher expression across multiple cell types,
spanning various stages of B cell development, including pre-
pro-B, pro-B, late pro-B and B cells. This strongly suggests
that MZB1 plays a crucial role in B cell development. A pre-
vious study has reported that the expression of Mzb1 serves
as a hallmark for identifying pro- and pre-B cells, with these
genes playing essential roles in governing the proliferation and
maturation of B cells (31). Additionally, MZB1 has been ob-
served to exhibit high expression in plasmacytoid dendritic
cells (pDC) in multiple datasets, suggesting a significant con-
nection between MZB1 and pDC. While there are limited re-
ports on the specific role of MZB1 in pDC development, it has
been documented to enhance the immune functions of pDC
27).

Conclusion and discussion

StemDriver aims to provide valuable data and gene informa-
tion to assist researchers in identifying potential candidates

for future research. StemDriver have curated a comprehen-
sive scRNA-seq dataset that spans from the embryonic phase
to adulthood, capturing the entire journey from the initial
formation of hematopoietic stem cells to the maturation of
fully functional terminal cells. StemDriver provided a compre-
hensive evaluation of gene characteristics related to cell dif-
ferentiation. STEMNET categorized genes based on their ex-
pression patterns concerning stem cell differentiation. PAGA
analysis assessed gene importance at trajectory branch points.
Monocle 3 identified highly variable genes along pseudo-
time, and DEG analysis revealed cell-type-specific gene ex-
pression. StemDriver offers a platform for cross-dataset com-
parisons. We have collected data from 42 different studies
and performed standardized analysis. By leveraging resources
from various studies, users can gain a more comprehen-
sive understanding of gene expression features related to cell
differentiation.

After being processed with a standardized workflow, a total
of 23839 human genes and 29533 mouse genes were identi-
fied. These genes were annotated based on their association
with stem cell differentiation, their significance at trajectory
branch points, their expression along pseudo-time on specific
cell trajectory development, and their expression specificity
across cell types. The statistical analysis (Figure 5B) clearly
demonstrates that over 50% of the identified genes with im-
pactful roles fall under the ‘Dir&Deg’ category for both hu-
mans and mice. This underscores their crucial involvement in
driving the differentiation of stem cells and progenitors to-
wards distinct lineage commitments. However, a notable por-
tion of genes also align with multiple expression patterns. This
variability might stem from their distinct functions across di-
verse lineage branches or involvement in different cells asso-
ciated with lineage commitment. For instance, the gene Lyz2
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(Lysozyme 2) was categorized as a ‘Degree gene’ in the dataset
GSE6898 (32), indicating that Lyz2 doesn’t show specific tra-
jectory preferences while promoting HSC differentiation into
GMP, MEP, and CLP. However, in dataset GSE10977 (33), it
was classified as a ‘Dir&Deg’ gene, indicating that its expres-
sion promotes stem cells to differentiate into specific unipotent
cells. This observation concurs with the outcomes of gene dif-
ferential expression analysis in the directional context. Impor-
tantly, Lyz2 demonstrates increased expression in progenitors
undergoing differentiation into granulocytes and monocytes
(Figure 5C). This discovery enhances our comprehension of
the roles played by individual genes during varied differentia-
tion processes.

StemDriver offers comprehensive gene annotations from
multiple perspectives, rendering it highly valuable in the field
of cell engineering. Although there has been well-documented
progress in cell-based immunotherapy against blood cancers,
the limited availability of specific cell subsets has presented
significant challenges in the development and implementation
of these therapies. Consequently, extensive studies have been
directed towards modifying induced pluripotent stem cells (iP-
SCs) to generate desired cell subsets, including iPSC-derived
natural killer (NK) cells (34,35). To identify genes that play a
crucial role in initiating the differentiation of stem cells and
their progenitors into NK cells, we conducted a screening us-
ing the StemDriver database, focusing on the differentiation
stage of NK cells. As a result, we identified a total of 321 genes.
The functions of these genes are pivotal in governing various
aspects of NK cell behavior. For instance, IL32 (36) plays a
role in NK cell activity, (HSPA6) (37) is associated with cy-
totoxicity, and HLA-A, HLA-B and HLA-C (38) are involved
in recognition processes. StemDriver offers thorough gene ex-
pression annotations across the trajectory of target cells de-
rived from diverse progenitors. This resource empowers re-
searchers with a comprehensive grasp of gene functions, aid-
ing in the identification of efficient target genes for iPSC en-
gineering. Moreover, it can be instrumental in designing a cell
culture environment that facilitates the stimulation of target
gene expression.

The primary objective of StemDriver is to offer an intricate
molecular overview of hematopoiesis, wherein the intricate
molecular changes within specific cell subgroups are best com-
prehended through single-cell resolution sequencing. There-
fore, the bulk cell data is not included. While single-cell assay
for transposase-accessible chromatin with high-throughput
sequencing (scATAC-seq) also provides information at single-
cell resolution, there is currently insufficient data to cover all
the relevant cell types involved in hematopoiesis. Therefore,
we are planning to include the scATAC-seq data in the near
future. By leveraging a wide range of omics data, we aim
to construct a more comprehensive regulatory landscape of
hematopoietic differentiation, spanning from the initial for-
mation of hematopoietic stem cells to the development of each
distinct functional terminal cell type. In summary, StemDriver
serves as a pioneering and unique database that offers a sys-
tematic characterization of molecular functions in HSC for-
mation and differentiation at the single-cell level. The wealth
of information contained in StemDriver presents numerous in-
triguing stories and insights waiting to be explored by users.

Data availability

All data and results can be downloaded on the StemDriver
website  (http:/biomedbdc.wchscu.cn/StemDriver/).  The
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trained scANVI model and code used to perform cell anno-
tation on new data are also included on the download page.
For more details and discussions, contact Dr Xiaobo Zhou.

Supplementary data
Supplementary Data are available at NAR Online.
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