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Abstract 

Background: RNA-sequencing has become a standard tool for analyzing gene activity in bulk samples and at the 
single-cell level. By increasing sample sizes and cell counts, this technique can uncover substantial information about 
cellular transcriptional states. Beyond quantification of gene expression, RNA-seq can be used for detecting variants, 
including single nucleotide polymorphisms, small insertions/deletions, and larger variants, such as copy number 
variants. Notably, joint analysis of variants with cellular transcriptional states may provide insights into the impact of 
mutations, especially for complex and heterogeneous samples. However, this analysis is often challenging due to 
a prohibitively high number of variants and cells, which are difficult to summarize and visualize. Further, there is a 
dearth of methods that assess and summarize the association between detected variants and cellular transcriptional 
states.

Results: Here, we introduce XCVATR (eXpressed Clusters of Variant Alleles in Transcriptome pRofiles), a method that 
identifies variants and detects local enrichment of expressed variants within embedding of samples and cells in sin-
gle-cell and bulk RNA-seq datasets. XCVATR visualizes local “clumps” of small and large-scale variants and searches for 
patterns of association between each variant and cellular states, as described by the coordinates of cell embedding, 
which can be computed independently using any type of distance metrics, such as principal component analysis or 
t-distributed stochastic neighbor embedding. Through simulations and analysis of real datasets, we demonstrate that 
XCVATR can detect enrichment of expressed variants and provide insight into the transcriptional states of cells and 
samples. We next sequenced 2 new single cell RNA-seq tumor samples and applied XCVATR. XCVATR revealed subtle 
differences in CNV impact on tumors.

Conclusions: XCVATR is publicly available to download from https:// github. com/ harma ncilab/ XCVATR.

Keywords: Single cell RNA-sequencing, Embedding, Genetic variation

Background
Gene expression profiling generates large datasets that 
contain information about the activity levels of all genes 
in the transcriptome for a large number of samples. 
Analysis of these complex and high-dimensional data 
can uncover hidden expression patterns for driver genes, 
such as disease markers [1, 2], delineate the transcrip-
tional architecture of disease pathophysiology [3, 4], and 
help to formulate new hypotheses [5]. RNA-sequencing 
(RNA-seq), wherein cDNA generated from isolated RNA 
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is sequenced and quantified to estimate of gene expres-
sion levels, is the standard approach for profiling gene 
expression in large samples [6]. Unlike gene expression 
arrays, which only provide estimates of gene expres-
sion levels, RNA-seq can also determine allele-specific 
expression, facilitate expression quantitative trait locus 
(eQTL) mapping [7–9], detect small polymorphisms [10], 
and large copy number variants (CNVs) [11], and eluci-
date transcriptional dynamics [12, 13]. The decreasing 
cost of sequencing has facilitated analysis of very large 
sample sizes that include thousands of samples [14] and 
hundreds of tissues [15, 16]. Further, advances in single-
cell sequencing technologies [17–19] have allowed gene 
expression profiling at the single-cell level for thousands 
of cells, encompassing hundreds of cell types and cellu-
lar states. Consequently, the amount of information that 
must be summarized and interpreted is increasing at a 
challenging pace.

One of the main difficulties researchers face when 
analyzing large datasets is efficiently summarizing the 
massive quantities of biological information. To analyze 
thousands of samples or cells in a meaningful manner 
[20], it is first necessary to decrease dimensionality of the 
data by embedding the cells with methods such as prin-
cipal component analysis (PCA) or t-distributed stochas-
tic neighbor embedding (t-SNE). Embedding enables the 
transcriptomic state of cells to be summarized and puts 
them in a simple perspective so that they can be clus-
tered [21] for differential expression analysis [22], cell-
type assignment [23], and integration with other datasets 
across multiple modalities [24]. Critically, while numer-
ous embedding techniques have been proposed [25], they 
have mostly been used for visualization purposes only. 
Thus, further work is needed to fully utilize the embed-
ding space in downstream analyses.

Here, we propose a novel method for the detection, 
integration, and visualization of genetic variation within 
the embedding space from single-cell and bulk RNA-seq 
datasets. Motivation for developing this method stems 
from our observation that cells with similar mutations 
generally cluster together in “clumps”, and analyzing such 
clumps can yield interesting insights and facilitate gen-
eration of novel hypotheses. For example, a driver muta-
tion might induce a specific transcriptional state, which 
causes cells harboring the mutation to cluster in the 
embedding coordinates. The most consequential variants 
are large-scale CNVs that show clear clumping patterns 
in t-SNE and PCA embeddings of gene expression analy-
ses. Our approach, named XCVATR (eXpressed Clusters 
of Variant Alleles in Transcriptome pRofiles), is a flexible 
and integrated framework for detecting, filtering, and 
analyzing mutations, so as to determine their association 
with the distances that are defined by the cell-embedding 

techniques (i.e., spatial enrichment of mutations on the 
embedding space).

XCVATR is different from clustering methods that 
use variant calls to cluster cells [26, 27] in two main 
ways. First, XCVATR maps the variant allele frequencies 
(AFs) on an existing embedding and detects local pat-
terns of enrichment for the expressed alleles (i.e., spatial 
correlation between the expressed variant [28] AFs and 
embedding coordinates). This is distinct from cluster-
ing methods that define the distance metric using the 
variants themselves. Second, unlike clustering algorithms 
that aim to identify cell clusters to optimize global clus-
tering of the cells, XCVATR identifies local patterns. In 
addition, XCVATR is a self-contained framework for 
the detection, annotation, and filtering of small variants, 
as well as for the detection and visualization of asso-
ciations between variant AFs and the embedding space. 
Thus, there is no dependency on other methods, and the 
parameters for variant calling and filtering can be explic-
itly controlled.

A major component of XCVATR is the embedding 
that is used to summarize cellular transcriptomic states 
and define cell–cell distances. XCVATR expects the 
embedding to preserve locality information, such that 
cells close to one another in the embedding space are 
biologically similar. This is a reasonable expectation for 
popular dimensionality reduction techniques, such as 
PCA, t-SNE, and uniform manifold approximation and 
projection (UMAP). Among these, t-SNE and UMAP 
probabilistically preserve locality (i.e., there is a random 
component in the embedding). Here, we demonstrate 
that locality information is fairly well-preserved, even 
with the presence of randomness in the embedding. We 
note, however, that the opposite statement does not have 
to hold. That is, we do not expect all biologically similar 
cells to map close to each other in the embedding space, 
as this strict requirement would require the embedding 
to preserve biological information almost exactly [29]. 
Furthermore, it is not necessary to analyze the associa-
tion of variants with embedding coordinates and geom-
etry. Overall, XCVATR combines various components of 
general RNA-seq analysis into one flexible package for 
identifying, filtering, and visualizing variants at differ-
ent levels (e.g., at variant level, gene level, and large scale 
events), while also analyzing their spatial distributions. 
Thus, we expect that this will be a useful tool for detect-
ing genetic variants and assessing their biological impact 
in single-cell and bulk RNA-seq datasets.

Results
We first overview the XCVATR algorithm then we pre-
sent the main results.
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Overview of XCVATR algorithm
Figure  1 outlines the steps of the XCVATR algorithm, 
which are summarized below (see Methods for more 
details). Input to XCVATR is a mapped-read file, such 
as a BAM file. While this is typical for single-cell (sc)
RNA-seq data, bulk datasets contain many BAM files 
(i.e., one for each replicate), and these can also be used 
in the analysis without any extra pre-processing.

By default, XCVATR relies on the distance matrix 
between cells (or samples) that is generated based on 
transcriptomic profiles. The first step in construct-
ing this distance matrix is read count quantification 
for each cell (or sample), which is used for computing 
either the embedding coordinates of the cells or build-
ing the distance matrix directly from the expression 
levels. It is worth noting that XCVATR can also make 
use of distance matrices that are computed by other 
means, such as proteomic distances that are estimated 
from measurement of protein expression levels [30, 31].

Next, XCVATR performs detection and annotation 
of the genetic variants. Variant detection is designed 
to include an integrated and flexible single nucleotide 
variant (SNV)/insertion and deletion (indel) calling 
step into XCVATR’s variant clump detection analysis. 
XCVATR generates pileups to identify candidate SNVs, 
which are then passed through several filters, such as 
total coverage, strand bias, and mapping qualities. This 
strategy is similar to that used by the VarScan suite 
of variant callers [32, 33]. Notably, variant detection 
can also be parametrized in a relaxed manner, allow-
ing users to evaluate clumps for variants that may be 
missed with conventional pipelines (e.g., variants with 
low AFs). We hypothesized that such relaxed vari-
ant calling can still be meaningful, as the variants will 
be further filtered in the context of variant clumping 
analysis in XCVATR. We therefore suggest that variant 
calls from XCVATR should only be used for clumping 
analysis and not for other downstream analyses. How-
ever, existing variant call sets (e.g., VCF files) generated 
by other pipelines, such as GATK [34] and Mutect [35], 

can be provided as input, thereby skipping the variant 
detection step.

Variant annotation is integrated into XCVATR to make 
the workflow more flexible and complete. This is because 
although there are well-established protocols for variant 
annotation, such as VEP [36] and AnnoVar [37], these 
methods occasionally change over time, making it chal-
lenging to integrate their output and provide reproduc-
ibility. Therefore, XCVATR performs variant annotation 
to provide a stable and flexible filter for selecting variants 
with respect to impact. XCVATR takes the variant anno-
tation file (e.g., GTF or GFF) and annotates the detected 
variants with respect to their impact on the protein 
sequence. These variants are then filtered to identify and 
include the most impactful mutations (See Methods for 
more details on annotation and variant calling filters).

Allele counting
For SNVs and small indels, XCVATR counts the number 
of mapped reads for each variant that support the alter-
native and reference alleles (Fig.  1a). Using this infor-
mation, XCAVTR builds a matrix and computes the 
estimated alternative AFs of each variant. These are then 
used as scores to assess a variant’s existence in each cell.

For CNVs, XCVATR relies on an existing call set. CNVs 
are first separated into amplifications and deletions and 
then analyzed at two different scales. This is because 
CNVs are distinct compared to small variants, in that 
they can cover large domains that are as long as chro-
mosomal arms. Therefore, to analyze CNVs at different 
length scales, XCVATR performs clumping analysis at 
both large scale (i.e., chromosome arm-length scale) and 
at segment-level scale. Large-scale CNV analysis includes 
possible deletion and amplification events for each of the 
44 chromosomal arms. For these, XCVATR first builds a 
binary count matrix that is analogous to the alternative 
allele count matrix generated for small variants (Fig. 1b). 
Each entry in this matrix indicates the existence of the 
CNV (row) in the corresponding cell (column). At the 
segment-level scale, each CNV is treated as a separate 

Fig. 1 Schematic overview of the XCVATR algorithm workflow. a Illustration of single nucleotide variant (SNV)/ insertion and deletion (indel) 
processing steps. The reads (blue dashes) are used to generate strand-specific pileups (only one strand is shown). These pileups are used to detect 
variants and generate a list of candidate SNVs and indels. Variants are filtered with respect to the Single Nucleotide Polymorphism Database (dbSNP) 
and their impact on protein-coding genes. Next, reads supporting reference and alternate alleles are counted for each variant in each cell; counts 
are stored in the allelic count matrix and are used to estimate variant read-level allele frequencies (AFs). In parallel, the reads mapping to each gene 
for each cell are counted in the quantification matrix, which is used to compute the cell embeddings and the cell–cell distance matrix. Variant AFs 
are mapped onto the embedding coordinates for visualization. b The illustration of the copy number variation (CNV) processing steps. The CNV 
segments are pooled, and the breakpoints are pooled and sorted on each chromosome separately. Consecutive breakpoints are used to define the 
set of minimal CNV segments that do not overlap with any breakpoint. Each new CNV segment is assigned a value of 0 or 1 for each cell based on 
their amplification/deletion (amp/del) status in that cell; these data are used to generate the binary matrix, which is mapped on the embedding 
to visualize clumps. c Clump detection steps. Read-level AFs are first smoothed on the embedding coordinates, and local maxima representing 
the clump centers are identified. This is followed by assignment of z-scores by read-depth (RD)-aware shuffling. Finally, the significant clumps are 
compared and visualized

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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variant. However, because the CNVs identified in each 
cell can overlap, XCVATR first identifies the smallest set 
of non-overlapping CNV segments by overlapping the 
CNVs from cells and identifying the minimal set of com-
mon variants (Fig. 1b). Next, these common variants are 
used to build a binary count matrix similar to the large-
scale matrix. XCVATR counts each of the common and 
disjoint events as a separate variant and performs variant 
clump analysis.

After the alleles are counted, XCVATR can optionally 
analyze the variants by identifying and selecting the most 
impactful variant in each cell (or sample) for each pro-
tein-coding gene. This will filter out many variants and 
provide the user with a clearer view of the clumps at the 
gene level. In addition, this gene-level summarization of 
the annotations is important when different mutations 
in a driver gene can display the same clumping behavior 
(See Analysis of Bulk Meningioma RNA-seq Samples).

Aggregated rare variant summarization and visualization
We hypothesized that variants with low population fre-
quency, by default using The Single Nucleotide Poly-
morphism Database (dbSNP) [38], are enriched among 
sample-specific (i.e., de-novo or singleton) mutations and 
somatic mutations (in the case of neoplastic samples). 
Additionally, sample-specific variants should be present 
at similar proportions in normal cells relative to tumors 
or any type of neoplastic cell. To visualize the rare vari-
ant fraction in each cell, XCVATR uses the rare variant 
read-level AF call matrix and computes the fraction of 
expressed alternative alleles of rare variants among the 
accessible rare variants. In this way, XCVATR generates a 
normalized measure of rare variant content in each cell’s 
expressional state. This aggregated rare variant summa-
rization and visualization step may help to incorporate 
population-level variant frequency information into the 
embeddings (i.e., transcriptional states). XCVATR can 
also visualize existing metadata, such as assigned cell 
types, jointly with the aggregated rare variant fractions.

Smoothing scale selection on the embedding
XCVATR next performs a multiscale analysis of the dis-
tance matrices to identify variant clumps. This approach 
is similar to the multiscale filters that are used to identify 
blobs in images [39–41]. Each scale defines a neighbor-
hood around a cell in the embedding coordinates and 
is used to smooth the AFs with a Gaussian filter that is 
centered on the cell and decreases with increasing dis-
tance from this center cell. The scales, however, must 
be tuned to the distance metric or the embedding coor-
dinates. XCVATR performs a scale selection to tune the 
analysis to the selected cell–cell distance metric. For each 
cell, XCVATR identifies Nν cells that are closest to it (i.e., 

neighbors), thus defining the close neighborhood of each 
cell. XCVATR then scans neighborhood size, as follows:

selecting those that include between 1% (or 10 cells, if 
lower) and 10% of cells in the sample (Ncells). It then com-
putes the minimum and maximum radii for each cell 
that satisfies the above condition. XCVATR identifies the 
medians of the minimum and maximum radii over all 
cells and uses these final minimum and maximum radii 
(σmin, σmax) for multiscale analysis. This computation 
can be performed efficiently, since the distance matrix 
(unless it is provided) can be computed quickly from the 
embedding coordinates using fast matrix multiplications. 
Neighbor detection is then performed by sorting the dis-
tances and selecting the closest Nν cell (or samples). After 
this step, only the closest neighbors are processed by 
XCVATR.

Variant clump candidate selection
One of the challenges in clump detection is the large 
number of cells that need to be analyzed in different 
scales. To decrease the search space and reduce the cost 
of modeling, XCVATR performs a cell-centered analy-
sis, wherein it does not aim to model the whole embed-
ding space, but rather focuses on the cells, such that each 
detected clump is centered around a specific cell (or sam-
ple). This is a reasonable expectation, as the expected 
clumps are larger than the cell–cell distances, and there-
fore, clump detection should be accurate even when 
clumps are centered around cells.

From visual evaluation of the variant AF distributions 
on embeddings, the number of clumps were observed 
to be much smaller than the number of samples or cells. 
Motivated by this, we designed a clump-center-candidate 
pre-selection that decreases the search space for the 
clump centers. Given a smoothing scale σa at the scale a, 
XCVATR computes a smoothed AF value for each cell, as 
follows:

where φj denotes the alternative AF of the variant in the 
jth cell (1 > φj > 0), di, j denotes the distance between the ith 
and jth cells in the sample, and N (a)

ν (i) indicates the set of 
indices for the cells that are in the vicinity of the ith cell 
for the scale a. From the above equation, the smoothed 
AF of the ith cell, φ(a)

i  , is higher when its neighborhood 
contains many cells with high AFs. In addition, the 
smoothed AF depends on the scaling parameter σa, and 
each scale is processed independently from other scales. 

(0.1 × Ncells) > Nν > max (0.01 × Ncells, 10)

φ
(a)
i =

1

N
(a)
ν (i)

×
k∈N

(a)
ν (i)\i

φj × exp −
d2i,j

σ 2
a
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XCVATR then identifies potential variant clump centers 
in the embedding coordinates by determining the set of 
cells whose neighborhoods contain cells that are strictly 
lower in terms of smoothed AF (Fig. 1c), that is, the cells 
whose smoothed AF is the “local maximum”. These cells 
are considered candidates:

where Ca denotes the indices of cells that are clump 
centers. An advantage of this multiscale processing is 
that the above condition does not rely on any thresh-
olding or modeling and fits naturally to the distribution 
of smoothed AF data on the embedding. In addition, 
we observed that the number of locally maximal clump 
center cells is at least 1–2 orders of magnitude smaller 
than the number of cells. Thus, the number of clumps 
that need to be scored decreases substantially with little 
impact on accuracy (See below).

Specification of position and size of clumps
Up to this point, we have identified each clump by 
the cell at its center, which specifies the position of 
the clump in the embedding space. In addition to the 
center, it is also necessary to define the radius of the 
clump, so that its size can be determined. For this, 
XCVATR makes use of the scale parameter at which 
the clump is identified (i.e., σa at scale a). Thus, all cells 
that are closer than σa to the center of a given clump are 
assigned to this clump.

Variant clump evaluation by read‑depth (RD)‑aware 
permutation
For each candidate clump center cell in Ca (ath scale), the 
corresponding smoothed AF is compared to an empiri-
cal background. To this end, XCVATR utilizes a permuta-
tion test to assign significance to each candidate clump 
center by permuting the AF of all cells (including non-
candidates) and computing the smoothed AF (described 
above) for each candidate with permuted AF’s. This is 
repeated Κ times. For each permutation, the smoothed 
AFs are computed for every candidate clump center, and 
this is used to build an empirical background (Fig.  1c). 
XCVATR then computes a z-score that is used to rank 
the clumps and assigns final scores, as follows:

It is important to ensure that the AF provides new 
information and does not simply recapitulate the geom-
etry imposed by the embedding coordinates. This may 
occur, for example, when some cells are expressing a 

Ca =

{

i
∣

∣

∣
∀j ∈ N (a)

ν (i) : φ
(a)
i > φ

(a)
j

}

Zφ =
φ

(a)
i − µφ

δφ

cell-specific marker that is not expressed at all in other 
cells. In this case, a non-impactful germline variant 
may be expressed in this cell population, whereas other 
cells will show no expression of the variant. In such a 
scenario, a naïve approach would determine that this 
variant exhibits a clump comprised of the cells where 
the gene is expressed. This would be an uninteresting 
clump that emerges based on the cell-type specific-
ity of the gene. To filter out these clumps, XCVATR 
sets a threshold, τ, on the total read depth at which a 
variant (Sum of reference and alternate read counts) is 
expressed in each cell and estimates a z-score using this 
read depth as a co-variate. This allows the clumps to be 
evaluated and filtered with respect to RD bias. In order 
to further filter the clumps, XCVATR also computes 
the significance of enrichment for expressed alternative 
alleles at both the read level and the cell (or sample) 
level in each clump.

Assessment of read‑level alternate allele expression 
enrichment in clumps
Given the clumps identified for a variant, XCVATR first 
computes the total number of alternate and reference 
reads from all cells (i.e., counts in the bulk sample). These 
bulk-allele counts are used as a baseline alternate AF for 
the corresponding variant, which we denote by AF (bulk)

alt  . 
Next, for each clump, the total alternative allele support-
ing reads and total reads are computed using only the 
cells in this clump. At scale a, for the bth clump, the allelic 
counts are used to compute the read-level modified bino-
mial P-value, with bulk alternate allele frequency is used 
as the flipping probability, using the binomial function 
Bin

(

n
(a;b)
alt , n

(a;b)
ref ; p = AF

(bulk)

alt

)

 , where n(a;b)
ref  and n(a;b)

alt  
denote the number of reads supporting the reference and 
alternate alleles, respectively, for the corresponding vari-
ant. This binomial P-value estimates the significance for 
enrichment of alternate allele-supporting reads in clump 
b, when compared to randomly assigning reads to all cells 
with the probability, p = AFbulk.

Assessment of cellular‑level alternate allele expression 
enrichment in clumps
Next, XCVATR computes enrichment of alternate AFs 
at the cell level. At scale a, XCVATR counts the cells in 
clump b having alternate AFs above η. XCVATR then 
counts the number of cells in the whole sample for 
which the alternate AF is above η. These values are used 
to compute significance for enrichment of alternate 
alleles at the cell level with Fisher’s exact test, by build-
ing a contingency table of cell counts in the bulk sample 
and in each clump, as follows:
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Variant k Number of  
cells whose AF > η

Number of
cells whose AF 
< η

Clump b identified at 
scale a

c(a;b)
η (j) c

(a;b)
0

(j) − c(a;b)
η (j)

Bulk c(bulk)
η c

(bulk)
0

− c(bulk)
η

where c(a;b)η (j) indicates the number of cells in clump b 
at scale a, with AF > η, and c(bulk)

η  indicates the number 
of all cells (i.e., bulk sample) for which AF > η. Fisher’s 
exact test evaluates enrichment of a clump’s AF statistics 
in comparison to the whole bulk sample. In particular, 
this test filters out cases where one cell in a small clump 
displays a high AF, while other cells in the clump express 
the alternate allele only at low levels, which may still 
pass the read-level enrichment filter. Thus, the read-level 
and cell-level enrichment estimates are used to filter out 
clumps (with P < 0.05) exhibiting low levels of enrichment 
in comparison to the bulk sample at the read and cell (or 
sample) level.

Finally, XCVATR computes the effective radius for each 
clump by iterating over the cells closest to the clump’s 
center cell. In this way, cells in the neighborhood sur-
rounding the clump’s center are analyzed as they expand 
in radius. For each neighborhood, the area where cell-
level enrichment is maximized (i.e., Fisher’s exact test 
P-value is minimized) is selected as the effective radius 
of the clump. Finally, the clump centers and the scale at 
which they are identified, permutation z-scores, alter-
nate allele enrichment statistics, and effective radii are 
reported in the output.

Visualization
XCVATR provides visualization of the clumps on the 
embedding coordinates for each variant. This enables 
users to manually evaluate the variants and can also be 
helpful for visualizing cell-type specifications and pheno-
typic properties in relation to the clumps. Visualization 
utilities are implemented in R and directly make use of 
the data generated by XCVATR.

Analysis of detected variants and clump testing
To investigate the frequencies of identified variants from 
existing RNA-seq data, we measured the alternative 
AFs of detected variants in bulk (from 160 meningioma 
patients [42]) and scRNA-seq datasets (BT_S2 glioblas-
toma sample from Darmanis et al. [43]) using XCVATR. 
We generally observed that the detected variants in the 
bulk dataset exhibit an AF spectrum that is dominated 
by alternate AFs of 0 and 100% (Fig.  2a), with a slight 
enrichment at 50%. For the single-cell dataset, consist-
ent with previous studies [26], we found that a substantial 

proportion of the mutations are expressed in a small frac-
tion of cells (Fig. 2b,c). Thus, our results provide evidence 
justifying the development of XCVATR.

We next tested our hypothesis that variant clumps are 
present in t-SNE embeddings. Although we can manually 
observe these clumps, it is useful to have automated and 
objective tools for validating their existence and measur-
ing their prevalence. To determine whether such variant 
clumps frequently occur in embedding coordinates, we 
computed the average distance between cells contain-
ing variants with high alternate AFs. If these cells are 
closer to each other than expected by random chance, 
this provides empirical evidence for detectable gen-
eral clumping behavior of variants. Using the Darmanis 
et  al. BT_S2 dataset [43], we computed the distribution 
of distances between the closest cells that contain vari-
ants with alternate AFs greater than η. We also computed 
the same distribution in shuffled data, such that the AF 
shuffling is performed in a RD aware manner to prevent 
RD bias (Fig.  2d–f). We found that for SNVs/indels, as 
the AF cutoff, η, increases, cells containing variants with 
high alternate AFs are closer to each other relative to the 
shuffled data (Fig. 2f ). Notably, this clumping behavior is 
much clearer when we performed the same analysis with 
CNVs (Fig. 2d,e). In this case, we computed the cell–cell 
distance distributions for cells containing CNVs (i.e., 
amplifications and deletions) and found that the distri-
bution of distances is much smaller in the real compared 
to the shuffled datasets for both deletions and amplifica-
tions (Fig.  2d,e). This observation that CNVs exhibit a 
much stronger clumping effect than SNVs and indels may 
result from the fact that CNVs have a stronger impact 
on the transcriptional state of the cells. Critically, these 
results provide evidence for the general clumping of cells 
with respect to SNV, indel, and CNV frequencies.

Robustness of local statistics
We further evaluated the robustness of local distance 
statistics from the t-SNE coordinates that are used for 
embedding of scRNA-seq data. This is necessary because 
as a probabilistic embedding technique, t-SNE requires 
a seed for the pseudorandom-number generator [44]. 
When the seed is changed, or when t-SNE is ran twice 
with the same seed, the embedding coordinates are 
changed. However, robustness of sample locality is essen-
tial for XCVATR clumping analysis, as this algorithm is 
designed to detect the local clumping of cells harbor-
ing variants with high alternate AFs. Therefore, to test 
the local robustness of t-SNE embedding coordinates, 
we first ran t-SNE on the Darmanis et  al. dataset [43], 
using the SEURAT package [45] with default parameters. 
The t-SNE coordinates are generated 100 times, chang-
ing the seed number with every run. Next, for each cell, 
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we identified neighborhoods of increasing size, con-
taining up to 600 of the closest neighboring cells (out 
of 1170 cells total). For each of the 100 embeddings, we 

computed the number of unique cells within these neigh-
borhoods and plotted the average number of unique cells 
at each neighborhood size (Fig.  2g). We also compared 

Fig. 2 Clumping and variant statistics for existing RNA-sequencing (RNA-seq) datasets. a Read-level alternative AF distribution of variants from 
bulk meningioma RNA-seq data [42]. b Read-level frequencies of variants from single-cell (sc)RNA-seq data using the BT_S2 sample glioblastoma 
sample from Darmanis et al. [43] c Distribution of the fractions of cells containing variants in single-cell data; the x-axis shows the fraction of cells 
that contain variants, and the y-axis shows the density. d Clumping statistics for large-scale deletions and for e large-scale amplifications. Boxplots 
show the distribution of distances between the nearest CNV-harboring cells (red) and same plot with shuffled AF data (blue). f Clumping statistics 
for SNVs/indels in the BT_S2 dataset; x-axis shows the read-level AFs for selecting cells used in the analysis. Boxplots are shown for each AF cutoff, 
corresponding to read-level (red) and AF-shuffled (blue) data. g Number of unique cells (y-axis) at closest-neighbor rank in neighborhoods of 
increasing size (x-axis) for the BT_S2 dataset over 100 independent t-distributed stochastic neighbor embedding (t-SNE) runs generated by SEURAT. 
Numbers of unique neighbors for randomized (blue) and real data (red) are shown. h Simulated clump detection accuracy. Clump detection 
sensitivity (left), number of detected clumps (middle), and distance between real and detected clumps are shown (right); x-axes show the distance 
weight, and colors indicate the AF weight used for clump simulation. i Distribution of variant-harboring cell enrichment, with (red) and without 
(blue) RD-aware shuffling for clump detection
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this locality information with an identifier-shuffled 
dataset, where we permutated the cell identities at each 
embedding and then computed locality preservation for 
each neighborhood size. We found that, compared to 
the shuffled data, real data show strong preservation of 
the embedding. At each neighborhood size, which deter-
mines the rank or strength of locality, the real dataset 
contains, on average, between one and three unique cells 
among their closest neighbors. In addition, this average 
does not change with increasing neighborhood size (i.e., 
increasing closest-neighbor rank in Fig.  2g). For shuf-
fled data, the average number of unique cells is as high 
as 60 cells at small localities. It should be noted that these 
results only attest to the robustness of locality statistics. 
For neighborhoods covering more than 25% of the cells, 
the randomized and real locality statistics are very simi-
lar, which suggests that clumps containing more than 
25% of the cells (i.e., neighborhoods with approximately 
300 cells in Fig.  2g) may be non-robust and non-repro-
ducible between different runs of t-SNE.

Accuracy of clump detection
Next, we tested the accuracy of our multiscale clump 
detection approach by simulating clumps and running 
XCVATR to detect these simulated clumps. To ensure 
realistic data, we simulated variant clumps on the t-SNE 
embedding coordinates with the AFs of known variants 
identified within the 1170 cells from Darmanis et  al. 
[43] (See Methods). For this analysis, a cell is randomly 
selected and designated as the known clump center. We 
use two parameters to define a clump: the first is the scale 
parameter, which determines the radius of the simu-
lated clump, and the second is the strength of the clump 
(referred to as “AF weight”). AF weight is tuned by a 
parameter that forces high AFs to be assigned closer to 
the center of the simulated clump and thus determines 
strength of the AF distribution around the clump. Given 
the clump center cell, we assign a “sampling weight” to 
every other cell, which depends on the distance to the 
center cell and the AF of the current cell. These sampling 
weights are used to shuffle the AFs on the embedding, 
such that cells with high sampling weights (i.e., close 
to the clump center and having a high AF) are shuffled 
close to the clump center (See Methods). This simulation 
strategy allows us to make use of existing data rather than 
generating synthetic datasets, which can introduce syn-
thetic biases.

We simulated five different distance weights and six 
different AF weight parameters, and for each parameter 
combination, we chose 100 randomly selected clump 
centers. To illustrate the effect of the parameters, con-
sider two cells whose respective AFs are 0.99 and 0.01. 
The simulation assigns sampling weights equal to 0.997 

and 0.238, respectively, when (AF weight, distance 
weight) is set to (0.4, 0.005) and distance to the clump 
center is at 5% of the embedding radius. When the dis-
tance weight is increased to 0.05, the sampling weights 
are 0.999 and 0.858, respectively, indicating that the cells 
have a more similar probability of being sampled at this 
distance. When AF weight is decreased to 0.2, the sam-
pling weights become almost identical at 0.999, and 
0.926, respectively. Thus, shuffling generates non-trivial 
and challenging clumps for testing XCVATR.

For each simulation, an alternate read count matrix is 
generated from the shuffled AF data for the 1170 cells in 
the simulated dataset and is input to XCVATR. Accuracy 
of the simulation is then evaluated by comparison of the 
known clump centers to the clump centers detected by 
XCVATR. Any clump that is detected within less than 
1% of the whole embedding space radius is deemed a 
match. We evaluated the fraction of times XCVATR was 
able to correctly identify the cells at the center of the 
clumps (Fig. 2h, left) and recorded the number of clumps 
identified by XCVATR (Fig.  2h, right). In addition, we 
measured the distance between simulated and detected 
clumps (Fig. 2h, right). Overall, we found that XCVATR 
can accurately identify and summarize clump centers, 
with a sensitivity higher than 90% for most parameter 
combinations, and the number of clumps is bound at 
fewer than 15 clumps. For less challenging cases (i.e., low 
distance weights and higher AF weights), we observed 
an increase in detection accuracy, fewer total detected 
clumps, and decreased distance between simulated and 
predicted clumps.

We also evaluated how RD-aware permutation impacts 
the identified clumps. To this end, we identified clumps 
from the Darmanis et  al. dataset [43] with and without 
RD-aware shuffling. We then plotted the distribution of 
cell-level enrichment of alternative alleles, as determined 
by Fisher’s exact test P-values, for the clumps detected 
with and without RD-aware shuffling (Fig. 2i). We found 
that RD-aware shuffling enables detection of clumps 
with a greater enrichment for cells expressing alternative 
alleles. This analysis provides evidence that RD-aware 
shuffling can be helpful for identifying clumps that are 
enriched for cells expressing alternative alleles.

XCVATR analysis of a glioblastoma scRNA‑seq dataset
To demonstrate data analysis with XCVATR, we first 
used the dataset generated by Darmanis et al. [43], which 
contains scRNA-seq of tissue from four patients with 
glioblastoma brain tumors, sequenced using Smart-Seq2 
technology [46]. A key advantage of Smart-Seq2 is that 
it provides more uniform coverage compared to tech-
nologies such as Drop-Seq and 10X Genomics, in which 
there is a 3′-bias on the transcript [47]. While this bias 
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can potentially affect the variant detection step, XCVATR 
does not require the variants to be complete, as each one 
is analyzed independent of other variants.

Here, we found 3590 cells from the metadata (in all 
samples) that were processed and mapped using Hisat2 
and used the embedding coordinates from the t-SNE 
analysis performed in the original study. After initial 
inspection of the samples, we focused on one with the 
id “BT_S2”, which contains the most impactful events in 
terms of CNVs, SNVs, and indels. After calling variants 
with XCVATR for 1170 cells, XCVATR identified 201,600 
mutations in total that are annotated. After filtering with 
respect to allele frequencies, 74,575 mutations remained. 
Further filtering of the mutations with respect to impact, 
776 mutations are found to be damaging. The final gene-
level summarization of the mutations yielded 687 genes 
that harbor a damaging mutation (Methods). We first 
focused on the rare variant fractions in each cell by filter-
ing out variants whose dbSNP population AFs are greater 
than 1%, as we hypothesized that variants with very low 
population frequencies are either sample-specific muta-
tions (de-novo or singletons) or somatic mutations. We 
found that rare variants are more highly represented in 
the immune cells and less represented in the neurons 
(Fig. 3a).

We next ran XCVATR on the CNVs (identified by 
CaSpER) and short variants. We focused on the large-
scale CNVs and evaluated the initial clump centers 
detected by XCVATR in the first pass of the multiscale 
decomposition for amplifications (Fig. S1) and deletions 
(Fig. S2). As expected, XCVATR decreases the search 
space substantially by focusing the clump search on a 
sparse set of cells. After clump scoring, we assessed the 
final set of clump calls. Figure 3b shows an example of a 
clump that is detected by XCVATR for a deletion of chro-
mosome arm 17q, which is identified as the top clump 
among other large-scale deletions. This is a well-known 
deletion that is observed in glioblastoma tumors, and 
two clumps with the 17q deletion are identified for this 
population of malignant cells. We included distributions 
of representative clumps that are detected for deletions 
on chromosome arms 17p, 10q, and 22q (Fig. 3c), which 
are reported as the top CNVs. In addition, XCVATR 
identified clumps identified by deletions of chromo-
some arms of 4 and 13 (Table S1) and amplifications of 

chromosomal arms of 7, 20, and 21 (Table S2), which are 
frequently altered in tumors. While these results are par-
tially expected, they also corroborate the clump detection 
performed by XCVATR.

We next analyzed the SNVs and indels identified by 
XCVATR. XCVATR identified numerous clumps that 
form in the embeddings at different scales (Table S3). 
One of the top deleterious variants detected by XCVATR 
is in TP53 (tumor protein 53), which encodes the well-
known DNA-repair protein p53 (Fig. 3d). This mutation 
is also marked as deleterious in the Catalogue of Somatic 
Mutations in Cancer (COSMIC) database [48]. Smoothed 
AF signals indicate that there is a clear enrichment of the 
alternate allele in malignant cells. The RD at which each 
cell harbors the variant is shown in the bottom panel 
(Fig. 3d), thereby allowing users to manually inspect for 
RD biases. We also identified variants in several other 
genes, including TCTN3 (tectonic family member 3) [49] 
and MTG1 (mitochondrial GTPase 1), which form sig-
nificant clumps on the same set of cells (Fig. 3e). Interest-
ingly, these genes are also mutated in some of the normal 
cells, as observed on the t-SNE embedding, which could 
result from misclassification of cells. Critically, these 
results suggest that clump detection can provide addi-
tional insight in analysis of tumor scRNA-seq datasets.

We next focused joint analysis and visualization of 
multiple variants. This is advantageous to evaluate the 
effect of a set of variants that can collectively impact 
global expression levels concordantly and help identify 
cell types or transcriptional programs. We focused on the 
COSMIC catalogue of variants as they are most relevant 
to cancer literature. We calculated the average fraction 
of the 363 expressed COSMIC variants in each cell and 
visually evaluated the smoothed fractions on the embed-
ding using XCVATR’s smoothing function (Fig.  3f ). We 
found that there is a clear enrichment of the COSMIC 
variant expressions that coincide with neoplastic cell 
populations in the embedding. As a baseline, we selected 
363 random variants from the detected variants and per-
formed pooling and computed the expressed fraction of 
random variants. We repeated this permutation 20 times. 
Overall, the maximum of the expressed variant fraction 
is on average much smaller for the randomly selected 
variants compared to the actual COSMIC variants (0.05 
vs 0.0082+/− 0.0012). This result demonstrates that 

Fig. 3 XCVATR analysis of the BT_S2 glioblastoma sample from the Darmanis et al. scRNA-seq dataset [43]. a Boxplots showing the distribution of 
expressed rare allele fractions in the corresponding cell types. Middle whiskers show the median, and the bottom and top whiskers indicate the 
1st and 3rd quartiles, respectively. b Example of a clump with the 17q deletion. Clumps detected by XCVATR are shown with blue ellipses; each dot 
represents a cell, with the AF indicated by color (red, high; white, low). c Examples of other large deletions detected by clumps; plots show AFs. d 
Mutation in TP53 (tumor protein 53) that is identified as a clump in the tumor cells. The smoothed AF is shown on the right, and the RD for each cell 
is shown below. e SNVs in the TCTN3 (tectonic family member 3) and MTG1 (mitochondrial GTPase 1) genes. Top plots show the AFs, and bottom 
plots show the RD for each cell. f Distribution of expressed COSMIC variant fraction on cells

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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COSMIC variant pooling is substantially different from 
a permuted set and potentially contains biologically rel-
evant signal. In summary, this analysis demonstrates 
that analysis and visualization of different variant sets 
can provide useful insight into detection of different cell 
types with respect to their expressed variant profiles.

Copy number variant analysis of a meningioma scRNA‑seq 
dataset
We next analyzed new scRNA-seq datasets generated by 
our group that include two samples (referred to as fron-
tal and postal) obtained from the brain of a patient with 
meningioma tumors. The frontal sample is from the pri-
mary meningioma tumor. This primary tumor metasta-
sized within the patient’s brain to another location, and 
the metastasized tumor was extracted to yield the postal 
sample. Both samples were sequenced using the 10X 
Genomics scRNA-seq platform, and reads were mapped 
with the CellRanger software suite. The SEURAT pack-
age was then used to filter out low-quality cells (i.e., 
those with low coverage, high mitochondrial reads, and 
potential doublets) and to generate the t-SNE embedding 
coordinates from CellRanger read counts. We identi-
fied CNVs in these samples with CaSpER, and using the 
embedding data and the CNVs, we performed clump 
detection in XCVATR. For these samples, we also identi-
fied the CNVs from an existing genotyping array of the 
bulk tumor samples using the DNAcopy algorithm [50]. 
We analyzed the CNVs identified in both the scRNA-
seq and genotyping array datasets and found that tumor 
cells predominantly contain the 1p and 22q large-scale 
(i.e., chromosome arm) deletions (Fig.  4a, b). As such, 
XCVATR does not assign high clumping scores to these 
deletions.

We then focused on the 11p, 14q, and 18q deletions 
(Fig.  4c–h) that were identified in both the genotyp-
ing array and the scRNA-seq data. XCVATR identified 
strong overlapping clumps for these deletions, and the 
smoothed AFs indicate a clear enrichment of these dele-
tions in tumor cells. When clumping patterns in the fron-
tal and postal samples are compared, notable differences 
are observed, with the postal samples (Fig.  4f–h) show-
ing additional clumps compared to the frontal samples 
(Fig.  4c–e). These clumping differences in frontal and 

postal samples are more visible when the smoothed AF 
plots are compared (Fig.  4c–h). Based on these obser-
vations, we hypothesize that differential or comparative 
visualization analysis with XCVATR can provide a com-
plement to existing computational methods and yield 
additional insights.

We also examined segment-level events in the fron-
tal and postal scRNA-seq samples using XCVATR. For 
this analysis, we used the segment-level CNVs reported 
by CaSpER and visualized these events in XCVATR by 
mapping the clumping z-scores on the genomic coordi-
nates. Among the 5623 deletion segments, in the frontal 
sample, we found that segment-level deletions at 1p.36 
(a well-known locus deleted in tumors) exhibit higher 
clumping scores relative to the other segments in chro-
mosomal arm 1p (Fig.  4i). Additionally, deletions in a 
relatively short segment covering 1p.22.1 and 1p.22.2 
(described previously) are assigned high clumping scores 
in the frontal sample (Fig. 4j). However, these regions do 
not exhibit high clumping scores in the postal sample 
(Fig.  4k). Chromosome arm 22q exhibits more uniform 
clumping behavior [51] in both the frontal and postal 
samples, whereas arms 14q and 18q show differences in 
clump scores at the segment level.

We also analyzed the potential impact of dropout 
events on clump identification. Drop-outs refer to obser-
vation of zero read count on genes and are caused by 
stochastic sampling of RNA molecules from the library. 
While drop-outs have been treated wide as technical 
factors, number of studies have found that they provide 
biologically useful information about cell clustering [52] 
(Additional  file  1), and identification of rare cell types. 
We estimated drop-out rates for each chromosome in 
our samples by calculating the fraction of protein-coding 
genes with exactly zero RNA-seq reads in each cell and 
found approximately 86% overall drop-out rate. When 
dropouts are estimated for each chromosome, we found 
that dropout events reflect the deletion patterns on the 
chromosomes 22, 10, 18, 14, 11, and 1 (Fig. S3).

XCVATR analysis of bulk meningioma RNA‑Seq samples
Lastly, we used XCVATR to analyze SNVs and indels 
in an existing bulk RNA-seq dataset obtained from a 
cohort of 160 meningioma patients [42]. Variants were 

(See figure on next page.)
Fig. 4 Analysis of the expressed variants and CNV clumps in our meningioma scRNA-seq dataset. Clumps identified for the a 1p and b 22q 
deletions. Bottom plots show the counts of cells harboring the CNVs. Clumps identified for the c 11p, d 14q, and e 18q deletions in the frontal 
sample. Clumps are highlighted by the blue ellipses, smoothed AFs are shown in the middle row, and distribution of smoothed AFs are shown 
in bottom row. Clumps identified for the f 11p, g 14q, and h 18q deletions in the postal sample. Clumps are highlighted by the blue ellipses, 
and smoothed AFs are shown in the bottom row. i Segment-level deletions on chromosome 1p in the frontal sample; x-axis shows the genomic 
coordinates, and y-axis shows the z-scores assigned by XCVATR to each segment. Cytobands on the genomic coordinates are indicated by 
rectangles of alternating colors, with the cytoband name shown at top. The segments on 1p36 and 1p22 with higher clumping scores are boxed in 
red, dashed rectangles. Clumping scores for segments on chromosome 1p in the frontal j and postal k sample are shown
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Fig. 4 (See legend on previous page.)
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detected and annotated with XCVATR (See Methods) 
and filtered with respect to impact and population fre-
quency (See Methods); identified variants were sum-
marized to gene-level events. We then constructed the 
gene expression matrix, performed t-SNE to generate the 
embedding coordinates of the data, and ran XCVATR to 
identify strong variant clumps. In order to evaluate the 
effect of t-SNE parameters (i.e., the perplexity parameter, 
number of top variable genes, and minimum expression 
cutoff) on clump detection, we ran t-SNE with 180 dif-
ferent parameter combinations and then ran XCVATR 
with each of the resulting embeddings. Analysis of the 
genes associated with the top-scoring clumps revealed 
that these clumps are associated with mutations in the 
KLF4 (Kruppel-like factor 4), AKT1 (AKT serine/threo-
nine kinase 1), and TRAF7 (TNF receptor-associated 
factor 7) genes (Fig.  5a–d). These were the genes most 
frequently reported by XCVATR among the 180 differ-
ent embedding parameter combinations used, and nota-
bly, mutations in these genes are extensively reported as 
recurrent events in meningioma tumors [53]. In contrast, 
clumps associated with mutations in NF2 (neurofibromin 
2), a common driver of meningioma, scored lower in the 
XCVATR clump analysis (Fig. 5e). Upon inspection of the 
data, we conclude that this likely results from low cover-
age of the NF2 gene in most samples, which also contain 
chromosome 22 deletions. Overall, these results provide 
evidence that XCVATR can help to uncover biologically 
relevant mutations in bulk RNA-seq samples.

Discussion
In this study, we present XCVATR, a method that ana-
lyzes the spatial enrichment of expressed variant alleles 
in bulk and scRNA-seq data to identify local clumps in 
cell and sample embeddings. XCVATR makes use of local 
spatial geometry from the embedding and multiscale 
analysis to provide a comprehensive workflow for detect-
ing expressed variant clumps. By visualizing these clumps 
on the embeddings, they can provide insight into driver 
genes and key mutations underlying pathophysiological 
states.

Critically, to provide maximal levels of user control, 
XCVATR integrates variant detection, annotation, filter-
ing, and clump detection in one package and therefore 
does not explicitly require any particular variant-calling 
methods, such as GATK [54]. We believe that this high 
level of control on variant calls is especially important to 

make variant calling as relaxed as possible and provide 
a comprehensive set of variant calls, which can then be 
stringently filtered at the clump-detection stage. This 
allows rare somatic variants in cancer samples to be 
more inclusively analyzed relative to existing pipelines 
that may miss rare variants with their default calibrated 
parameters [55].

One of the current limitations of our method is that the 
concept of a clump needs more refinement and should be 
more discretely defined (Additional  file  1). In addition, 
the different embedding strategies should be surveyed to 
evaluate how embedding strategy and dimensions impact 
clump identification. The concept of a clump is similar to 
peak in ChIP-Seq analysis (1D clumps) [56, 57] and blob 
detection (2D clumps) in image analysis [41, 58]. New 
methods can be proposed that make use of multiscale 
decomposition of graphs using Gaussian and wavelet-
based techniques to build multiscale pyramid represen-
tations and statistical modeling of the clumps in these 
representations. On a separate note, the technical factors 
such as drop-out can have complex impact on detection 
and analysis of CNVs and should be carefully analyzed 
and interpreted because they can provide useful biologi-
cal insight into detection of malignant cells and rare cell 
populations [52].

It is useful to place XCVATR in the context of other 
tools that use variants detected from RNA-seq data for 
downstream applications, such as building phylogenetic 
trees and cell clustering [27], identifying phenotype-
genotype associations [59], and measuring allele-specific 
expression [60]. Critically, although variant detection 
and variant-level analysis of scRNA-seq data have been 
reported in a number of studies, XCVATR can be dis-
tinguished from other available methods based on two 
major differences. First, these methods require variants 
to be identified a priori using specialized pipelines that 
require variant callers, such as GATK or Mutect. How-
ever, we believe that these pipelines can be too strin-
gently tuned, and thus may miss low-frequency variants, 
such as those present in tumor samples [61]. This is rea-
sonable since these pipelines aim to identify variants that 
can be used in any context. Appropriate stringency is 
particularly important for detecting somatic variants vs. 
germline variants (i.e., those present in normal tissues), 
as somatic variants may be expressed at very low AFs 
in RNA-seq data. To circumvent this, XCVATR utilizes 
a general and relaxed variant detection approach and 

Fig. 5 Analysis of an existing bulk RNA-seq dataset containing 160 meningioma samples. a Graph showing the average number of clumps for each 
gene detected by XCVATR with 180 different t-SNE parameter combinations. Genes are shown on the x-axis, and the average hits for each gene are 
shown on the y-axis. The top-three genes are boxed in the dashed, red rectangle. Clumps detected by XCVATR for the b AKT1 (AKT serine/threonine 
kinase 1), c TRAF7 (TNF receptor-associated factor 7), and d KLF4 (Kruppel-like factor 4) genes. Read coverage is shown at bottom. e Clumps 
associated with mutations in the NF2 gene. Read coverage is shown in the bottom plot

(See figure on next page.)



Page 15 of 21Harmanci et al. BMC Genomics          (2022) 23:841  

Fig. 5 (See legend on previous page.)



Page 16 of 21Harmanci et al. BMC Genomics          (2022) 23:841 

allows user control of the SNV/indel detection param-
eters. In addition, these variants are used only in the con-
text of clump detection and are filtered by the XCVATR 
downstream clump-detection criteria. We therefore 
expect that XCVATR will be most useful for samples with 
high somatic heterogeneity, such as tumor samples.

A second feature that distinguishes XCVATR from 
other methods is that many of these existing approaches 
focus primarily on SNVs and indels, with only very lim-
ited attention to CNVs. Although these other methods 
could be adapted to cluster cells with respect to CNVs, 
this is not a trivial change, as CNVs exhibit very different 
statistics compared to SNVs/indels. We have accounted 
for these differences in XCVATR and included CNV 
analysis as an integral part of our pipeline. Overall, we 
show that XCVATR provides a complete workflow for 
detection, annotation, filtering, analysis, and visualiza-
tion of large- and small-scale variants in both bulk and 
scRNA-seq data, which is advantageous for ease of usage 
and installation. Further, our data suggest that XCVATR 
can provide valuable insight into associations between 
variant alleles and cellular transcriptional states, particu-
larly for heterogeneous samples containing rare variants, 
such as tumors.

Conclusions
Detection of variant association within expression 
embedding provides important insight into how tran-
scriptional programs are impacted by variation. In addi-
tion, our analysis has provided evidence that variants 
detected at the cellular level can be useful for comparing 
different cell types in terms of variant impact and burden. 
The presented method is flexible and can be integrated 
into analyses of single and bulk-level RNA-sequencing 
datasets.

Methods
XCVATR takes aligned BAM-formatted mapped-read 
files as input. Bulk datasets that contain many BAM files, 
such as those with one BAM file per sample, can also be 
input to XCVATR. XCVATR makes use of SAMtools to 
process BAM files and depends on a SAMtools installa-
tion. XCVATR also depends on an R installation for visu-
alization of results.

Quantification and distance matrix generation
As the first step, reads for each gene from each cell (or 
sample) are counted. XCVATR makes extensive use of the 
“CB:Z:” tag that is assigned by the CellRanger software 
suite for assigning reads to different cells. This tag is also 
used internally by XCVATR to process bulk samples, so 
that the same implementation can handle single-cell and 
bulk samples. The count matrix is used for generating an 

embedding of the cells in lower dimensions that will be 
used for detection of variant clumps on the embeddings. 
The count matrix can also be used for building a cell-to-
cell distance matrix. Currently, XCVATR is able to gener-
ate t-SNE- and UMAP [62]-based embeddings of cells in 
lower dimensions and can use the distances from these 
embeddings. For single-cell datasets, XCVATR can also 
use the SEURAT package to generate the t-SNE/PCA/
UMAP-based embeddings, and for bulk samples, it uti-
lizes the “rtsne” function in R.

Variant detection and annotation
XCVATR generates coverage pileups for each nucleo-
tide at each position to detect variants. This step can be 
optionally skipped if there is an existing variant call set 
(i.e., a VCF file) generated by another pipeline, such as 
GATK [34] or Mutect [35]. Users can provide these as 
input and skip the variant detection step.

SNV detection
To identify SNVs, reads are first deduplicated (by default 
using SAMtools) and mapping-quality filtered reads (map-
ping quality > 30, by default) from all cells are used to gener-
ate strand-specific pileups at each position on the genome. 
That is, reads mapping only to the positive and negative 
strand are used to build the positive-strand and negative-
strand pileups, respectively. Next, positions on the pileups 
are filtered with respect to a minimum alternate AF cutoff 
and a minimum number of reads that support alternate 
alleles. XCVATR also filters variants with respect to strand 
bias, using the strand-specific pileups. Stranded RNA-seq 
signals must be analyzed without the strand bias parameter. 
By default, XCVATR uses a total read coverage of at least 
10 and a minimum of four mutation-supporting alternative 
reads, with a minimum alternative AF of 0.2. This filtering-
based variant calling method is similar to that used by the 
VarScan suite of variant callers. For single-cell datasets, 
XCVATR identifies variants from a BAM file containing 
the reads from all cells, whereas for bulk datasets, XCVATR 
analyzes each file/sample separately.

Indel detection
XCVATR scans all reads and identifies those that support 
indels by inspecting CIGAR strings in each read. Indel-
containing reads are clustered to identify insertions and 
deletions and then filtered with respect to mapQ, AF, and 
strand bias.

Variant annotation
XCVATR uses a GTF- or GFF-formatted annotation file 
and annotates variants based on their impact on protein-
coding sequences. Currently, XCVATR does not annotate 
impact of non-coding elements. XCVATR maps variants 
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onto the transcripts that are specified in the GTF/GFF files. 
Variants are then classified with respect to their location: 
coding sequence (CDS), splice site (two nucleotides at the 
5′ and 3′ ends of introns), start/stop codons. CDS muta-
tions are mapped onto the gene sequence, and impacts on 
coding are evaluated. For SNVs, variants are classified as 
synonymous, non-synonymous, splice-altering, or start/

stop loss; these are the most important impacts that can 
be assessed in XCVATR. For indels, variants are classified 
as frameshift/in-frame (CDS-overlapping length in a mul-
tiple of three indicates in-frame), splice-altering, or start/
stop loss. We have performed extensive comparison of 
XCVATR annotations to annotations provided by VEP and 
observed very high concordance.

Variant filtering
The mutations that are detected in previous step are fil-
tered to decrease computational burden. XCVATR filters 
the variants by:

1) dbSNP allele frequency lower than 1%
2) Variant annotation belonging to one of the damaging 

classes, which are one of the classes

a. non-synonymous,
b. nonsense (Early stop codon anywhere on the 

transcript),
c. splice loss by acceptor/donor variants,
d. inframe/frame-shift indels,
e. stop-disruption.

Allele counting
For SNVs and small indels, XCVATR counts the number 
of reads that support the corresponding variants from 
the BAM file. The “CB:Z” tag is used to assign reads to 
cells. For each variant, XCVATR tracks the number of 
reads supporting the alternate and reference alleles.

CNV variants are first separated into amplifications 
and deletions (Fig. 1b). For large-scale (chromosome arm 
length) CNVs, XCVATR makes use of the call matrix 
and generates a count matrix (similar to the allele count 
matrix) that indicates the existence of a deletion/amplifi-
cation for the each of the 44 chromosomal arms. For seg-
ment-level CNVs, breakpoints of all CNV segments from 
all cells are pooled and sorted. The sorted breakpoint list 
is used to define the minimal set of CNV segments whose 
coordinates do not overlap with breakpoints (Fig.  1b), 

and this minimal set of segments is used to build a binary 
count matrix similar to the large-scale matrix.

Gene‑level summarization of SNVs/Indels
Following allele counting, XCVATR iterates over each 
cell and each gene and assigns allele counts from muta-
tions with the highest impact to each gene, as follows:

where the summarized AF for gene gl is set as the AF of 
the variant k whose impact is highest among the variants 
that overlap with gl, which are denoted by Vgl . This gene-
level summarization accounts for the positioning of the 
variants and removes some of the information. It is worth 
noting that summarization is an optional step, as clump 
detection can be performed at the variant level.

COSMIC variant frequency assignment to cells
XCVATR can also be used to summarize multiple muta-
tions to analyze different variant-sets. We used COS-
MIC catalog of cancer variants as it is most prevalent 
to cancer genomics. XCVATR first overlaps all the 
detected mutations with COSMIC catalog of variants. 
Next, for each cell, XCVATR calculates the fraction of 
COSMIC variants that harbor expression above a cer-
tain cutoff. Finally, each cell is assigned an “expressed 
COSMIC variant fraction” that is calculated as the 
total number of COSMIC variants expressed in the cell 
divided by all of the COSMIC mutations in the sample.

Smoothing scale selection on the embedding
Each scale in the multiscale clump analysis defines the 
neighborhood around a cell and is used to determine the 
size of the Gaussian filter around the center cell. Scales are 
selected to match the scale of the distance metric (or the 
embedding coordinates). For each cell, XCVATR identi-
fies the Nν cells that are closest neighbors and calculates 
neighborhood sizes that cover between 1% (or 10 cells, if 
lower) and 10% of the cells in the sample (Ncells), as follows

It then computes each neighborhood radius, which is 
defined as the distance from the furthest cell to the cur-
rent center cell. The minimum and maximum scales (σmin, 
σmax) are defined as the median of the neighborhood radii 
of all cells computed at the minimum and maximum neigh-
borhood sizes Nν defined above. These scales are used for 
smoothing the AFs and identifying the variant clumps.

sAFgl ,celli = max
{

∀ var∈Vgl

}

(

vAF
vark
celli

| vAF
vark
celli

> 0; ∀varm ∈ Vgl , impact(vark) > impact(varm)

)

(0.1 × Ncells) > Nν > max (0.01 × Ncells, 10)
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Variant clump candidate selection
Given a smoothing scale σa at the scale a, XCVATR com-
putes a smoothed AF value for each cell using Gaussian fil-
tering around the cell, as follows:

where φj denotes that alternative AF of the variant in the 
jth cell (1 > φj > 0), di, j denotes the distance between the ith 
and jth cells in the sample, and N (a)

ν (i) indicates the set of 
indices for the cells that are in the vicinity of the ith cell 
for the scale a. XCVATR then identifies candidate clump 
centers as the cells whose smoothed AF is a local maxi-
mum among its neighbors (Fig. 1c, step 2), as follows:

where Ca denotes the indices of cells that are clump 
centers.

Specification of position and size of clumps
The scale at which a clump is discovered (i.e., σa) is used to 
define the initial size of each clump.

Variant clump evaluation by RD‑aware permutation
For clump center candidate cell Ca (ath scale), XCVATR 
permutes the AFs Κ times and computes the smoothed AF 
for every candidate. XCVATR then computes a z-score that 
is used to rank the clumps, as follows:

AFs of cells whose coverage is greater than τ are used for 
shuffling, whereas other cells are not shuffled and are not 
used for the permutation test. This allows XCVATR to con-
trol for RD biases.

Read‑level enrichment of alternate allele expression 
in clumps
XCVATR first counts the total number of alternative and ref-
erence reads in all cells. These represent the baseline (bulk) 
read-level alternate AF. For each clump, the total alternate 
allele-supporting reads and total reads are counted. At scale 
a, for the bth clump, these are used to compute the read-level 
modified binomial P-value, as follows:

�
(a)

i
=

1
|
|
|
N

(a)
� (i)

|
|
|

×
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k∈N
(a)
� (i)�i
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(

−
d2
i,j

�2
a

)
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(a;b)
alt − r

)

(

n
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ref + n

(a;b)
alt

i

)

pr×(1 − p)t

where n(a;b)
ref  and n(a;b)

alt  denote the number of reads that 
support alternate and the reference alleles, respectively. 
For the corresponding variant in the bth clump identified 
in scale a:

where N (a;b)
v  denotes the neighborhood of the cell at the 

center of clump b at the scale a, and nref(j) indicates the 
number of reference alleles in cell j. In the above equa-
tion, the flip probability is chosen as 
p = AFbulk =

n
(bulk)

alt

n
(bulk)

alt +n
(bulk)

ref

 , which represents the alterna-

tive AF of the variant in the whole bulk sample. The bino-
mial P-value estimates enrichment of the alternative 
allele-supporting reads in the clump b when compared to 
randomly assigning reads to all cells with probability 
p = AFbulk.

Cell‑level enrichment of alternate allele expression 
in the clumps
At scale a, XCVATR counts the cells in clump b with alter-
native AFs above η (By default 0.5). Next, XCVATR counts 
the number of cells in the whole sample for which the alter-
native AF is above η. These values are used to compute a 
significance of the enrichment of alternative alleles at cell 
level using Fisher’s exact test, as follows:

where c(a;b)η (j) indicates the number of cells in clump b at 
scale a, for which AF exceeds η:

and c(bulk)
η  denotes the number of cells among all the cells 

(i.e., bulk) for which the AF exceeds η. The read-level 
and cell-level enrichment estimates are used to filter out 
clumps that exhibit low levels of enrichment in compari-
son to the bulk sample at read and cell (or sample) level.

Filtering of the clumps detected by XCVATR 
We recommend downstream filtering of the clumps 
identified by XCVATR and further visualization to 
make sure relevant clumps are properly assessed. We 
suggest using the assigned clump z-score (greater than 

n
(a;b)
ref =

∑

j∈N
(a;b)
v

nref (j), n
(a;b)
alt =

∑

j∈N
(a;b)
v

nalt(j)

FE(a;b) = FE
(

c(a;b)η (j), c
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η , c
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j
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φ
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.
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2), number of cells that harbor the mutation (greater 
than 10), and cell-level and read-level significance 
p-values (Smaller than 5%). The users can choose to 
adjust these filters since different datasets may have 
higher or lower coverage of mutations and some cell 
populations may be rare.

Visualization
XCVATR makes use of R scripts to visualize clumps on 
the embedding coordinates. The visualization utilities are 
implemented in R and directly make use of the data gen-
erated by XCVATR.

Clump simulation for testing clump detection accuracy
Clump simulation starts by selection of a random cell 
among the 1170 cells in BT_S2 sample of Darmanis 
et  al. dataset [43]. Given the simulated clump center 
cell, we then shuffle the AFs of all other cells based on 
their distance and AFs. This shuffling is performed 
by starting from the closest neighbor of the clump 
center, randomly sampling a cell to this position (with-
out replacement), then moving to the next neighbor. 
It is repeated until no cells are left without an AF. To 
simulate a clump shape, we used two parameters while 
sampling: “distance weight”, δ, and “AF weight”, α. 
Given that we are sampling the AF for the cell whose 
distance to the clump center is di, the weight of the cell 
is assigned as:

where wi denotes the weight for the ith cell, and 
pow(a, b) = ab. Sampling weights are proportional to the 
probability of selecting the cells, and at long distances 
(i.e., large di), the sampling weights of all cells (regardless 
of φi) are almost equal to each other (i.e., wi = 1). When 
the distance to the simulated clump center is small, sam-
pling weights for cells with higher AFs are higher com-
pared to sampling weights for cells with lower AFs, such 
that shuffling “attracts” high AFs closer to the clump 
center. After sampling weights are assigned to all cells, a 
cell is randomly selected, whereby the probability of the 
selected cell i is proportional to wi. The selected cell’s 
alternative and reference allele counts are copied to the 
current cell-of-focus (at distance di), and the selected cell 
is removed from the list of cells to ensure the same cell 
is not assigned twice. This sampling process is continued 
until all cells are assigned with an AF.

CNV calling by CaSpER
The CaSpER [11] algorithm was used to detect CNVs. For 
each dataset, normal cells (e.g., immune cells) are used as 
controls to identify somatic CNVs in tumor cells.

wi = pow(φi,α · exp (−1 · δ · di)),

Single‑cell meningioma analysis
Postal and frontal meningioma samples were sequenced 
at the MD Anderson Epigenetics Core. CellRanger was 
run with default parameters, and we then used default 
parameters in the SEURAT package to filter out dead 
cells and doublets and generate the UMAP embedding 
of tumor cells.
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