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Abstract: Genetic variation in the mitochondrial genome is linked to important biological functions
and various human diseases. Recent progress in single-cell genomics has established single-cell
RNA sequencing (scRNAseq) as a popular and powerful technique to profile transcriptomics at the
cellular level. While most studies focus on deciphering gene expression, polymorphisms including
mitochondrial variants can also be readily inferred from scRNAseq. However, limited attention
has been paid to investigate the single-cell landscape of mitochondrial variants, despite the rapid
accumulation of scRNAseq data in the community. In addition, a diploid context is assumed for
most variant calling tools, which is not appropriate for mitochondrial heteroplasmies. Here, we
introduce MitoTrace, an R package for the analysis of mitochondrial genetic variation in bulk and
scRNAseq data. We applied MitoTrace to several publicly accessible data sets and demonstrated its
ability to robustly recover genetic variants from scRNAseq data. We also validated the applicability
of MitoTrace to scRNAseq data from diverse platforms. Overall, MitoTrace is a powerful and
user-friendly tool to investigate mitochondrial variants from scRNAseq data.

Keywords: mitochondrial genetic variation; heteroplasmy; single-cell RNA sequencing; lineage
tracing; R package

1. Introduction

RNA sequencing (RNAseq) is one of the most popular molecular profiling modalities.
Its versatility enables diverse analyses including differential gene expression, alternative
splicing, allele-specific expression, alternative polyadenylation, copy number variation and
variant calling, among others [1].

Previous studies have shown that bulk RNAseq data can be used to infer mitochondrial
DNA (mtDNA) alterations and mtDNA mutations have been linked to a plethora of human
diseases [2,3]. Mitochondrial diseases, in fact, represent the most prevalent category of
inherited metabolic disorders and rank among the frequently encountered types of inherited
neurological disorders [4]. For example, MELAS syndrome (mitochondrial encephalopathy,
lactic acidosis, and stroke-like episodes) is caused by a mutation in the mitochondrial gene
MT-TL1, which is responsible for encoding a transfer RNA molecule essential for protein
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synthesis within mitochondria. This mutation leads to impaired energy production and
affects various organs, particularly the brain, resulting in symptoms such as recurrent
strokes, seizures, muscle weakness, and cognitive impairments [5].

Therefore, computational frameworks for the study of mtDNA in RNAseq data will
significantly expand analytical possibilities and may lead to novel insights which improve
our understanding of biology and human disease.

Since mitochondria carry their own mtDNA and hundreds to thousands of mtDNA
copies exist in each individual cell [6], different mitochondrial polymorphisms can co-
exist within an individual cell. These polymorphisms are referred to as mitochondrial
heteroplasmies. The level of these heteroplasmies plays a crucial role in determining the
extent to which mitochondrial mutations are pathological [7,8]. For example, the MELAS
disease burden is strongly associated with the heteroplasmy level for 3243A>G in blood [9].

Previous work has shown that the mitochondrial heteroplasmy detection limit in
bulk RNAseq is about 0.1% [10]. Due to the increased mutation rate and high RNAseq
read coverage of the mitochondrial genome, recent studies have leveraged mitochondrial
heteroplasmies for in silico lineage tracing of single cells.

For example, Xu et al. developed EMBLEM for cell lineage tracing using mitochondrial
mutations derived from ATAC-seq data, and showed that cell lineage can be reconstructed
using the mitochondrial mutation profiles at single-cell resolution [11]. Similarly, Leif
et al. demonstrated the use of mitochondrial mutations in single cells for in silico lin-
eage tracing [12]. Later, Lareau et al. developed mitochondrial single-cell ATAC-seq for
mtDNA genotyping and chromatin profiling, and implemented mGATK, a computational
method for extracting mitochondrial genetic variation [13]. The authors applied their
method to clonally trace thousands of cancer cells to establish connections between epige-
nomic variability and subclonal evolution inferring the cellular dynamics of differentiating
hematopoietic cells. In 2022, Kwok et al. developed MQuad for the identification of in-
formative mitochondrial variants from single-cell RNA (scRNAseq), DNA, or ATAC-seq
data [14]. MQuad uses a binomial mixture model to identify mitochondrial genetic variants
with both high sensitivity and specificity and is broadly applicable to various single-cell
sequencing technologies complementing single-nucleotide and copy-number variation to
extract finer clonal resolution.

Here, we present MitoTrace, a user-friendly R package that enables the study of genetic
variants and heteroplasmies in the mitochondrial genome in scRNAseq data. MitoTrace
is based on the SAMtools framework [15], which was among the best performing variant
calling methods for scRNAseq in a recent systematic comparison [16]. MitoTrace can be
applied to both well-based and droplet-based scRNAseq data formats and thus provides
universal compatibility with all major scRNAseq technologies. We demonstrate the validity
and usage of our computational framework in a number of exemplary analyses of existing
publicly available data sets.

2. Materials and Methods
2.1. MitoTrace

MitoTrace takes as its input aligned BAM files as well as the mitochondrial genome
sequence in FASTA format and makes good use of the Rsamtools R package which is
based on the SAMtools framework [15] (Figure 1a). MitoTrace runs a pileup command
which extracts the base at each genomic position within each individual read. The out-
puts are stored in two matrices. The first matrix contains the count of reads harboring
the non-reference allele. The second matrix contains the read coverage at each genomic
position for each sample (Figure 1b). The MitoTrace() function is used to calculate the read
coverage and alternative allele counts across all positions in the mitochondrial genome.
The calc_allele_frequency() function calculates the allele frequency of alternative alleles at
each position in the mitochondrial genome. Those outputs can be used to perform standard
analysis techniques, including heatmap visualization or dimension reduction via principal
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component analysis (Figure 1c). The MitoDepth() function is used to plot the read coverage
across the mitochondrial genome (Figure 1d).
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Figure 1. Overview of MitoTrace. (a) The sequencing reads are aligned to the mitochondrial ref-
erence genome. (b) MitoTrace generates pileup output for one or multiple alignment files. Each
individual cell or sample file produces a separate pileup output, which is captured in the columns
of the generated allele frequency matrix. (c) MitoTrace identifies mitochondrial genetic variation in
scRNAseq sequencing data. The extracted allele frequencies can be visualized using heatmaps or
subjected to dimension reduction such as principal component analysis. For example, MitoTrace can
be used to differentiate cells from two distinct cell lines, Jurkat (blue) and HEK293T (red). (d) One
built-in function plots the read coverage across the mitochondrial genome, including mitochondrial
gene annotations.

The user needs to define the following parameters in MitoTrace’s main function. The
user must provide the path to the mitochondrial reference sequence in FASTA format. This
parameter extends MitoTrace to multiple species. For droplet-based scRNAseq data, there
are many more unique barcodes than actual cells. Many barcodes represent empty droplets.
In order to exclude these empty droplets, the user can either provide a list of barcodes or
define a minimum detection cutoff to speed up processing. Please see our Github repository
for detailed documentation and usage tutorials.

2.2. Preprocessing and Bulk DNAseq and scRNAseq Comparison

The prefetch and fastq-dump functions from the SRA Toolkit (version 2.9.6) were
used to download the raw sequencing files from GEO. Raw RNA sequencing reads in
FASTQ format were mapped to the human reference genome GRCh38 using STAR (ver-
sion 2.7.0d) with the following parameters: --runThreadN 20 --runMode alignReads --
outSAMtype BAM SortedByCoordinate --outFilterMultimapNmax 1 --readFilesCommand
--genomeLoad LoadAndKeep --limitBAMsortRAM 200258540544. SAMtools (version 1.10)
is used to extract the reads mapping to the mitochondrial genome. In order to identify
uniquely discriminative variants, we performed the following analysis using the bulk
DNAseq data. For each nucleotide position, we fitted a linear regression model as imple-
mented in the R lm() function. The patient identifiers and alternative allele frequencies
were defined as dependent and independent variables, respectively. Next, we selected
variants with an alternative allele frequency greater than 0.9 in only one individual. The
resulting p-values were used to sort variants displayed in Figure 2c.
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Figure 2. MitoTrace robustly recovers genetic information from scRNAseq data. (a) Boxplots display
the number of total reads (left) and mitochondrial read density (right) for both bulk DNAseq and
scRNAseq data. (b) Scatter plot stratifies mitochondrial alleles along the read coverage (x-axis) and
alternative allele count (y-axis). Alleles are colored by allele frequency with red and blue colors
reflecting high and low values, respectively. (c) Heatmaps display the allele frequency of bulk
DNAseq samples (left) and scRNAseq (right). For both heatmaps, rows represent 93 discriminative
alleles and are ordered by discriminatory power across the patients. Columns are ordered by patient.
High and low allele frequencies are reflected by red and blue colors, respectively.

2.3. Dimension Reduction and Random Forest Predictions

To perform dimension reduction on the mitochondrial variant profiles, we first iden-
tified the 500 most highly variable variant sites. Next, we calculated the Pearson cor-
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relation between all pairwise cell–cell combinations. One minus the absolute values of
this correlation matrix was used as the input into the Rtsne() function of the R Rtsne
package. “Perplexity” and “check_duplicates” parameters were set to 10 and FALSE, re-
spectively. tSNE coordinates based on the transcriptome data were downloaded from the
Supplemental Materials [16]. We applied random forest models as implemented in the R
package randomForest. A random forest classifier is an ensemble learning algorithm that
combines multiple decision trees to classify data by taking a majority vote from the individ-
ual trees’ predictions [17]. The outcome variable and input features were the identifiers
and alternative allele frequencies, respectively.

2.4. Identification of Informative Variants

To identify variants carrying information to classify the cells by patient, we used
analysis of variance as implemented in the aov() R function. The patient identifiers and
alternative allele frequencies were defined as dependent and independent variables, respec-
tively. Variants with a p-value less than 1 × 10−100 were selected for display in Figure 3c.
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Figure 3. MitoTrace identifies personal genetic variants. (a) Boxplot shows the read coverage of
individual cells across chromosomes measured in reads per base pair, highlighting high coverage on
the mitochondrial chromosome. (b) tSNE visualization of the cell–cell distance matrix derived from
mitochondrial allele frequency profiles readily separates the four patients. tSNE visualizations of the
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transcriptomic profiles colored by patient (c) and cell type identity (d) illustrate that cells cluster
mainly by cell type. (e) Heatmap displays allele frequencies of discriminative variants across cells
from the four patients. For visualization purposes, 100 cells were randomly sampled from each patient.
Columns and rows represent individual cells and variant sites, respectively. Both columns and rows
are ordered based on unsupervised hierarchical clustering. (f) Boxplots display the heteroplasmic
profiles of four exemplary discriminative variants (highlighted in heatmap with bold font).

2.5. Data Sets

The Chung et al. [18] data set profiled single cells from primary cancer and lymph
nodes of the same patient bulk whole exon sequencing (WES) were downloaded from Gene
Expression Omnibus (GEO) with the accession number GSE75688. Individual cells were
captured using the Fluidigm C1 advanced microfluidic platform. This system provides
automated procedures from total RNA isolation to preamplification of synthesized cDNAs.
A total of 579 single-cell cDNAs were subjected to scRNAseq. The Darmanis et al. [19] data
set profiled 3589 single brain tumor cells from 4 glioblastoma patients and was downloaded
from the GEO with the accession number GSE84465. Brain tissue samples were collected
from patients, then dissociated into single-cell suspensions. These single-cell suspensions
were transferred to a fluorescence-activated cell sorting (FACS) buffer for single-cell sorting.
After cDNA synthesis and library preparation, single cells were sequenced using paired-end
sequencing mode.

The 10× Genomics scRNAseq data set was taken from the study by Kang et al. [20].
This data set contained an equal mixture of Jurkat and HEK293T cells and was downloaded
from UCSF Box (https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k) for the
analysis in April 2023. The Enge et al. [21] data set profiled human pancreas cells from
eight different human individuals, and 998 T cells were selected for the analysis and
corresponding BAM files were downloaded from the GEO with the accession number
GSE81547. Human islet samples were dissociated into single-cell suspensions. Those single
cells were sorted on a FACS machine. Next, those sorted single cells were collected directly
into 96-well plates for downstream single-cell RNA-seq libraries preparation.

3. Results

MitoTrace works on readily aligned single-cell and bulk RNA-seq data. The main
MitoTrace function MitoTrace() takes as its input either a single BAM file or a list of BAM
files and extracts the read coverage and alternative allele counts at every position of the
mitochondrial genome. These data structures provide the foundation for the analyses of
mitochondrial genetic variation outlined in this manuscript.

3.1. Agreement between Bulk DNAseq and scRNAseq

To validate our method, we assessed the agreement between genetic variants detected
by scRNAseq and bulk DNA sequencing (DNAseq) data. Chung et al. [18] studied tumor
heterogeneity in eleven breast cancer patients and their data contained profiles from
both bulk DNAseq and scRNAseq of the same individuals. After downloading the raw
sequencing data, all reads were aligned to the human genome (GRCh38). Despite being
sequenced at higher depth, the mitochondrial genome showed lower read density in the
bulk DNAseq data compared to the scRNAseq data (Figure 2a).

Next, we applied MitoTrace to extract the read coverage and alternative allele count
at each position. Stratification of alleles along these two axes, clearly separated germline
mutations from potential sequencing noise or heteroplasmies in the bulk DNAseq data.
Figure 2b illustrates this separation for one exemplary bulk DNAseq sample. Germline
variants fall along the diagonal line (red points). In order to identify germline variants, we
performed differential frequency analysis testing for mitochondrial variants with signif-
icantly different allele frequency across individuals (Table S1). Indeed, analysis of these
variants revealed common haplotype groups (Table S2). We identified a total of 93 mi-
tochondrial variants, which uniquely identified each patient in the bulk DNAseq data

https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k


Genes 2023, 14, 1222 7 of 12

(Figure 2c). Using these informative variants, we set out to test if we could accurately
predict the originating patient of each cell. Therefore, a random forest model was trained
on these 93 alleles using MitoTrace-derived allele frequencies as its input to predict the
individual patient on a cellular level. The model achieved 99% accuracy, demonstrating
that the genetic information embedded in the bulk DNAseq data can be robustly recovered
in the scRNAseq data using MitoTrace.

3.2. Discovery of Personal Genetic Variation

Next, we tested if MitoTrace can distinguish cells from different donors without first
deriving informative variants from bulk DNAseq. Therefore, we re-analyzed publicly
available data profiling the single-cell transcriptomes of four glioblastoma patients using
Fluidigm C1 technology [19]. In the respective study, the authors provided a detailed
dissection of glioblastoma cell types to improve our understanding of tumor formation
and migration. We downloaded raw sequencing data and aligned all reads onto the hu-
man genome. Only the mitochondrial genome (average 6.2 reads per base pair) showed
sufficient read coverage to enable variant calling on the cellular level compared to all
nuclear chromosomes (average 4 × 10−4 reads per base pair) (Figure 3a). After applying
MitoTrace to this data set, we calculated pairwise cell–cell distances based on the allele
frequencies of the 500 most variable alleles. The visualization of this distance matrix in
reduced dimensions using t-distributed stochastic neighbor embedding (tSNE) showed
many subgroups and neighboring subgroups were derived from the same patient, suggest-
ing that the mitochondrial allele frequencies can be used to distinguish patients (Figure 3b).
Of note, the transcriptional profiles of the cells did not distinguish the patients and mainly
clustered by cell type (Figure 3c,d). Therefore, the mitochondrial allele frequency profiles
contained information that is complementary to the transcriptional information.

To identify personal variants without the integration of bulk DNA information, we
statistically analyzed the allele frequencies. The analysis of variance identified 44 alleles
with differential frequencies across the four patients (Figure 3e). These sites were character-
ized by the exclusive detection of the non-reference allele in practically all cells of a given
patient, representing bona fide germline variants (Figure 3f, Table S3). Indeed, analysis of
these variants revealed common haplotype groups (Table S4). Analogous to the analysis in
Figure 1, using the frequencies at these alleles, a random forest model correctly predicted
the patient with very high accuracy for every cell (99%). These results demonstrate that
even without any bulk DNA sequencing information, scRNAseq can be used to detect
informative alleles in an unsupervised fashion and subsequently assign individual cells to
the patient of origin with very high accuracy.

3.3. Detection of Heteroplasmies

After having demonstrated that MitoTrace enables discovery of personal genetic
variation, we set out to test whether MitoTrace can be used to discover mitochondrial
heteroplasmies. Therefore, we reanalyzed publicly available scRNAseq data profiling
human pancreas cells from eight different individuals [21]. In order to avoid bias introduced
by comparison of different cell types, we restricted the analysis to one of the major cell
groups in the data set consisting of 998 T cells. We downloaded the raw sequencing data and
performed alignment. Next, we applied MitoTrace to the generated BAM files. Analogous
to the analysis described above, we identified several personal variants. We then excluded
these sites and focused on alleles with an average alternative allele frequency greater than
1% and less than 25% per individual. Among the remaining sites, we tested for differential
allele frequencies across individuals. For example, we identified four sites that showed
differential alternative allele frequency (Figure 4a). All four sites showed robust coverage,
yet alternative allele frequency per cell was clearly distinct between different individuals
(Figure 4b), demonstrating that MitoTrace can detect mitochondrial heteroplasmies specific
to an individual.
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Figure 4. MitoTrace detects mitochondrial heteroplasmies. (a) Boxplots display alternative allele
frequency (y-axis) for heteroplasmies 15938C>A, 8477T>G, 13053C>G, and 2157T>A (from left to
right) of cells derived from various individuals (x-axis). Red color highlights individuals with robust
heteroplasmies. (b) Scatterplots depict read coverage (x-axis) and alternative allele frequency (y-axis)
of cells corresponding to the heteroplasmic sites in panel (a). Red color highlights cells derived from
individuals 6yr_male, 54yr_male, 21yr_male, and 44yr_female matching the order in (a) (from left
to right).

3.4. Compatibility with Droplet-Based scRNAseq Data

In recent years, two types of scRNAseq technologies have been developed: well-based
and droplet-based scRNAseq. All the studies analyzed in this manuscript so far used
well-based technologies to generate the scRNAseq data. Well-based technologies are able
to capture reads from the entire length of the transcripts but are limited by the number
of wells on the chip [22]. The advent of droplet-based scRNAseq technologies enabled
the molecular profiling of thousands of cells [23,24]. Droplet-based scRNAseq applies
unique molecular identifiers (UMIs) to aggregate next-generation sequencing reads across
molecules. These technologies capture molecules based on the polyA tail and therefore
read coverage is limited to the 3′ end of a gene.

The underlying data structure between well and droplet-based scRNAseq technologies
is also different. In well-based scRNAseq data, the reads for each cell are stored in a separate
BAM file. In droplet-based scRNAseq data, on the other hand, reads coming from all cells
are stored in a single BAM file. Instead of generating one alignment file per cell, reads
from all cells are saved in one alignment file with specific barcodes embedded in the file
marking each cell. MitoTrace can be applied to both of these data formats and thus provides
universal compatibility with all major scRNAseq technologies.

To demonstrate that MitoTrace can be applied to droplet-based scRNAseq data, we
downloaded a publicly available scRNAseq experiment provided by 10× Genomics. This
platform captures RNA molecules using the polyA tail and therefore transcript read
coverage is biased towards the 3′ end. Moreover, read coverage per cell is generally
lower in droplet-based compared to well-based scRNAseq data. For these reasons, the
power to call genetic variants is decreased in droplet-based compared to well-based
scRNAseq technologies.

Next, we set out to test whether MitoTrace could detect mitochondrial genetic variation
in data derived from the 10× Genomics sequencing technology. Therefore, we analyzed an
experiment which profiled an equal mixture of Jurkat and 293T cells. These two cell lines
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differ genetically and therefore can be used to test MitoTrace on droplet-based scRNAseq
data [23]. After application of MitoTrace, we identified the 20 most highly variable alleles
across all cells in an unsupervised manner (Figure 5a). Of note, some of these alleles showed
large variation across all cells independent of cell line. For example, variant 12139T>A
showed high variance in both Jurkat and 293T cells. However, the set of highly variable
alleles also contained discriminatory sites, such as 3197T>C and 9698T>C, most likely
representing germline differences between these two cell lines. Performing unsupervised
clustering of these highly variable alleles separated the cells into two distinct clusters
corresponding to Jurkat (blue) and 293T (red) cells (Figure 5b). These results demonstrate
that MitoTrace robustly extracts genetic information from droplet-based scRNAseq data in
an unsupervised fashion.
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Figure 5. MitoTrace identifies mitochondrial genetic variation in 10× Genomics scRNAseq data.
(a) Heatmap displays allele frequencies of the 20 most highly variable alleles across a mixture
of Jurkat and 293T cells. Columns and rows represent individual cells and variant sites, re-
spectively. Both columns and rows are ordered based on unsupervised hierarchical clustering.
(b) Principal component analysis groups cells by origin. Jurkat and 293T cells are colored in blue and
red, respectively.

4. Discussion

Recent advancements in single-cell sequencing have opened up new possibilities
for studying mitochondrial genetic variation at the single-cell level. In order to facilitate
this analysis, MQuad [14], mGATK [13], and EMBLEM [11] have been developed. Both
MQuad and EMBLEM require the use of specific variant calling tools such as GATK [25]
or cellSNP [26] prior to analysis. Therefore, users cannot complete the analysis in a single
programming language. In addition, mGATK is a command line tool and is disconnected
from downstream analysis software. Finally, all these tools are implemented, to varying
extents, in Python or Perl.

In this manuscript, we introduced MitoTrace, a novel method implemented using the
widely adopted R statistical software. This distinctive feature offers users the convenience
of performing the entire analysis within the same programming language, setting it apart
from other existing tools. Our R-based tool integrates into a rich ecosystem of packages
specifically designed for statistical analysis and data visualization including dimension
reduction, random forest predictions, analysis of variance, and heatmap visualizations, as
demonstrated in this manuscript.
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Our study showcases the versatility of MitoTrace in detecting germline variations with
remarkable accuracy, enabling the classification of cells by individuals. Furthermore, we
demonstrated that MitoTrace is proficient in identifying mitochondrial heteroplasmies. It
is worth noting that MitoTrace can readily be applied to various types of next-generation
sequencing alignment data, including RNAseq, ATACseq, and DNAseq, both at the bulk
and single-cell levels, making it a user-friendly tool for investigating mitochondrial genetics.

It is important to acknowledge that our analysis solely focuses on mitochondrial ge-
netic variation, which might overlook informative genetic variation occurring in the nuclear
genome. However, this limitation comes with notable benefits in terms of computational
efficiency and speed. By narrowing the focus to the mitochondrial genome, MitoTrace
streamlines the analysis process, making it more efficient for researchers. Given the high
accuracies achieved in classifying cells originating from different individuals, we foresee
the usage of MitoTrace as an efficient alternative for genetic barcoding with the purpose of
demultiplexing cells from different donors or doublet identification in scRNAseq data.

Estimating accurate heteroplasmy levels is challenging due to various factors such
as sequencing errors, amplification biases, and the presence of nuclear mitochondrial
DNA [27]. The following strategies can be considered to increase the accuracy of het-
eroplasmy identification and quantification. Firstly, researchers can generate technical
replicates by performing independent sequencing runs of the same sample. Secondly,
stringent quality control measures can be applied to remove low-quality reads and sequenc-
ing artifacts. Thirdly, sophisticated statistical models can be developed for heteroplasmy
estimation by accounting for sequencing errors, base-calling quality scores, consensus
sequence, and other relevant factors to provide more accurate estimates.

Our comprehensive tutorial available on GitHub (github.com/lkmklsmn/MitoTrace)
provides various usage examples including the discovery of personal mitochondrial vari-
ants in SMART-seq2 data and the distinction of different cell lines in 10× Genomics data.
In addition, we demonstrated that MitoTrace can reproduce the results from a previous
study by Leif et al. [12] using just a few lines of R code.

In conclusion, MitoTrace is a user-friendly R package compatible with all scRNAseq
technologies which accurately detects germline mitochondrial variation and mitochondrial
heteroplasmies from bulk and scRNAseq data. Therefore, MitoTrace represents a powerful
tool for researchers interested in studying mitochondrial genetics and thus presents a
valuable contribution to the field of bioinformatics and mitochondrial biology.
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