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Abstract

Introduction and establishment of non-indigenous species (NIS) has been accelerated on a

global scale by climate change. NIS Magallana gigas’ (formerly Crassostrea gigas’) global

spread over the past several decades has been linked to warming waters, specifically during

summer months, raising the specter of more spread due to predicted warming. We tracked

changes in density and size distribution of M. gigas in two southern California, USA bays

over the decade spanning 2010–2020 using randomly placed quadrats across multiple inter-

tidal habitats (e.g., cobble, seawalls, riprap) and documented density increases by 2.2 to

32.8 times at 7 of the 8 sites surveyed across the two bays. These increases in density were

coincident with 2–4˚ C increases in median monthly seawater temperature during summer

months, consistent with global spread of M. gigas elsewhere. Size frequency distribution

data, with all size classes represented across sites, suggest now-regular recruitment of M.

gigas. Our data provide a baseline against which to compare future changes in density and

abundance of a globally-spread NIS of significant concern.

Introduction

Climate change has accelerated the introduction and establishment of non-indigenous species

(NIS) on a global scale [1]. Range expansions of warm-adapted species have been recorded on

every continent, creating novel interactions among species within the recipient communities

[2, 3]. Additionally, anthropogenic responses to climate change may unintentionally favor

NIS. For instance, the construction of coastal infrastructure to counter rising sea levels and

erosion can create habitats that may favor the recruitment and spread of NIS [4, 5]. Simulta-

neously, sea surface temperatures (SSTs), are projected to rise between 0.25–0.50˚C per decade

[6] and are positively correlated with stress and mortality in some native marine species [7, 8]

while rapid shifts in seasonal temperatures can favor NIS timing of recruitment [9]. As native
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species are unable to compete or are no longer physically present to occupy the niche they

once held [10], their communities become more susceptible to colonization by NIS. Success of

initial NIS can facilitate the success of future invaders, resulting in large scale community shifts

dominated by NIS [11, 12], posing a significant threat to the persistence of native communities

[13].

The Pacific oyster, Magallana gigas [formerly Crassostrea gigas; 14], is a NIS whose global

expansion may have been facilitated by climate change. Magallana gigas is native to Japan but

was introduced to several countries as an aquaculture fishery [15], including into the USA

along the Pacific coast of North America following the collapse of the native Olympia oyster

(Ostrea lurida) fishery [16]. Magallana gigas was introduced as an ideal aquaculture fishery

into some cold-temperate waters under the premise that it could successfully grow in cold

waters but could not complete its life cycle [17] and thus posed little risk for feral escape. How-

ever, warming seawater during summer has facilitated the spawning and increased recruit-

ment of M. gigas [18] into regions outside its historical range along European coasts [19–21].

Based on projected rises in seawater temperature, M. gigas is expected to expand its range pole-

ward along the Northwest European Shelf, with the majority of the coastline experiencing suit-

able thermal conditions for successful recruitment by 2100 [22]. These range expansions have

not been limited to European coasts; M. gigas have been introduced to every continent aside

from Antarctica [16]. In North America, increases in M. gigas recruitment since 1945 are

strongly correlated with warming waters [23] and have been observed in estuaries across Brit-

ish Columbia, the U.S. West Coast, and Baja California, Mexico [24].

While evidence for M. gigas range expansion in response to climate change is strong, the

ecological impact on recipient communities is less clear, ranging from positive to negative.

Their impact appears to be dependent on substrate type, the amount of physiological stress

experienced by recipient community members, and whether native engineering species are

already present within the affected ecosystem [16]. Magallana gigas modify existing habitats

through gregarious settlement; they cement their shells together and can create a reef [25]. By

providing vertical relief [26] and microhabitats where larvae can settle [27], these reefs can

facilitate increases in species diversity [25]. In the Oosterschelde estuary in the Netherlands,

M. gigas reefs aid in preventing erosion and, therefore, help to protect native intertidal bivalves

and fauna, as well as providing foraging grounds for seabirds [25]. In Patagonia, shorebirds

have been found to spend more time foraging in M. gigas reefs, likely due to higher prey avail-

ability [28]. On the other hand, native clams recruiting to M. gigas reefs experience higher pre-

dation than those on native habitats because the M. gigas reefs supported higher densities of

predatory crabs [29]. In the Bay of Brest, France, areas of bare mud were dominated by suspen-

sion feeders; however, when M. gigas transformed the mud into an oyster reef, carnivores

became the dominant trophic group, and suspension feeder abundance declined dramatically

[20]. Magallana gigas have displaced local mussel populations in several European countries

[30], often decimating other native organisms in the process. Introduced M. gigas in Australia

rapidly overgrew native oysters at mid and low intertidal heights [31], although the native spe-

cies escaped competition at higher tidal elevations. In Washington, USA, M. gigas may cause

native O. lurida to recruit to a higher tidal elevation than is optimal for the species, leading to

thermal or desiccation stress for the native oyster [32]. Magallana gigas aquaculture in Wash-

ington state also introduced a predatory gastropod Ocinebrellus inornatus [formerly Tritonalia
japonica; 33] as well as a parasite, Mikrocytos mackini, that may infect O. lurida [34]. Because

M. gigas has had significant impacts as a NIS, ranging from positive and negative, its introduc-

tion and population demographics in new areas should be carefully monitored.

Magallana gigas was first introduced to northern California, USA through aquaculture in

the 1920s and in southern California a decade later in Newport Bay [35]. Despite multiple
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intentional plantings of M. gigas into southern California locations from the 1930s through to

the 1980s [35–37], there were no consistent reports of established populations until 2000 when

wild M. gigas observations were recorded first in Los Angeles Harbor and San Diego Bay [38].

This was followed by reports of M. gigas in Alamitos Bay [39], San Diego Bay and Mission Bay

[39, 40], and Tijuana Estuary and Oceanside Harbor [40] with multiple size classes observed

across embayments throughout San Diego County indicating recent reproduction [40]. The

first quantitative data on M. gigas densities were reported from San Diego Bay and Newport

Bay, California between 2010 and 2013 [41] and established a baseline against which any

changes in population density could be compared.

Here, we examine the status of M. gigas densities in two southern California bays to address

the following questions: Have M. gigas densities increased over the decade since the quantita-

tive baseline was established? Is there evidence of regular recruitment, or is the establishment

of this species the result of rare recruitment events? Can putative changes in M. gigas density

be linked to changes in SSTs?

Methods

Overview

From 2010 to 2020, we surveyed M. gigas densities and size frequency distributions at 4 sites

each in Newport Bay and San Diego Bay, California, USA (Fig 1, Table 1). Sites were surveyed

two to six times throughout the decade (median = 3). The habitats among the sites varied and

included pier piles, seawalls, riprap, cobble, mudflat, and chain link fence (Table 1). A Califor-

nia Department of Fish and Wildlife scientific collecting permit (SCP-3027) required to com-

plete this research was issued to author D. Zacherl and all appropriate approvals were obtained

for the research.

Fig 1. Site locations surveyed from 2010–2020 in Newport Bay (left panel) and from 2013–2020 in San Diego Bay (right panel), California, USA. Squares

indicate locations where temperature data were collected and circles reference sites surveyed with site codes as in Table 1. Basemap and service layer content is

the intellectual property of Esri and is used herein with permission. Copyright © 2023 Esri and its licensors. All rights reserved.

https://doi.org/10.1371/journal.pone.0302935.g001
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Table 1. Details for Southern California, USA surveys conducted from November 2010 to June 2020, including bay, site names and codes, habitat types, years sur-

veyed, GPS coordinates, tidal range surveyed (m MLLW), tidal range used in statistical comparisons (m MLLW), and M. gigas/m2 with standard error (SE) and sam-

ple size (n) included. NOAA Tide Prediction Station for Newport Bay sites was 9410580 and for San Diego sites was 9410152.

Bay Site Code Habitat Type Year Date(s) Surveyed GPS Coord. Tidal

Range

Surveyed

(m MLLW)

Tidal

Range

Compared

(m MLLW)

M. gigas/m2 (SE,

n)

Min Max Min Max

Newport Aquatic

Center

AC Riprap 2012 9-Jan-2012, 8-Feb-2012 33.6234,

-117.8934

-0.3 0.65 -0.3 0.65 4.50 (1.6, 30)

Riprap 2015 25-Nov-2015 33.6234,

-117.8935

-0.3 0.55 -0.3 0.55 5.90 (2.2, 13)

Riprap 2016 24-May-2016 33.6234,

-117.8936

-0.49 0.7 -0.49 0.7 5.90 (2.4, 15)

Riprap 2020 6-Jun-2020 33.6234,

-117.8937

-0.11 0.86 -0.11 0.86 12.30 (2.5, 15)

Coney Island CI Natural Cobble 2010 5-Nov-2010 33.6195,

-117.8921

-0.12 0.48 -0.12 0.48 0.53 (0.25, 30)

Natural Cobble 2016 14-Dec-2016 33.6195,

-117.8922

-0.17 0.51 -0.17 0.51 2.67 (0.67, 30)

Natural Cobble 2017 29-May-2017 33.6195,

-117.8923

-0.15 0.75 -0.15 0.49 2.27 (0.48, 60)

15th Street FS Pier Piling 2010,2011 6-Nov-2010, 17-Jan-2011 33.6082,

-117.9202

-0.01 1.24 -0.01 1.24 1.75 (0.63, 16)

Seawall 2012 5-Mar-2012 33.6082,

-117.9203

-0.02 0.94 -0.02 0.94 1.85 (0.86, 13)

Seawall 2016 29-Dec-2016 33.6082,

-117.9204

-0.02 0.94 -0.02 0.94 8.80 (4.53, 10)

Seawall 2017 30-May-2017 33.6082,

-117.9205

-0.1 0.85 -0.1 0.85 7.59 (1.13, 59)

Pier Piling 2019 28-Sep-2019 33.6082,

-117.9206

0.01 1.07 0.07 1.07 68.25 (7.77, 59)

Pier Piling 2020 22-Feb-2020 33.6082,

-117.9207

-0.23 0.96 -0.23 0.96 57.32 (8.37, 67)

Lido Island LI Seawall/Pier Piling 2011 19-Jan-2011, 20-Jan-2011,

19-Feb-2011

33.6132,

-117.9156

33.6115,

-117.9119

-0.39 0.78 -0.39 0.78 11.45 (1.26, 44)

Seawall 2013 29-Apr-2013, 30-Apr-2013 33.6132,

-117.9156

33.6115,

-117.9120

-0.39 0.78 -0.39 0.78 8.44 (1.50, 27)

Seawall 2016 7-Jun-2016 33.6132,

-117.9156

33.6115,

-117.9121

-0.36 0.8 -0.36 0.8 25.28 (3.21, 25)

San

Diego

Chula Vista

WR

CV Cobble 2013 28-May-2013 32.6143,

-117.1138

0.1 0.38 0.1 0.38 7.00 (3.08, 24)

Cobble 2017 27-May-2017, 25-Jul-2017 32.6143,

-117.1139

-0.3 1.06 0.11 0.59 4.76 (2.48, 37)

Cobble 2020 8-Jun-2020 32.6143,

-117.1140

-0.29 1.81 0.04 0.56 28.33 (4.36, 12)

Glorietta Bay GB Fence 2014 26-May-2014 32.6751,

-117.1674

0.2 1.11 0.2 1.11 58.09 (9.69, 23)

Fence 2017 26-Jul-2017 32.6751,

-117.1675

0 1.25 0.2 1.1 150.40 (25.21,

25)

(Continued)
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Density

All surveys occurred within the intertidal zone during low tide at tidal elevations ranging from

-0.49 m to +1.81 m MLLW, although the tidal range surveyed varied across years and sites,

with broader ranges of elevations surveyed in more recent years, particularly in San Diego Bay.

Standardization of tidal ranges for statistical comparisons among years is addressed below (see

Statistical Analyses, Table 1); data recorded at tidal elevations not included in this study are

available upon request to the corresponding author.

From 2010–2016, we surveyed replicate randomly placed 0.5 m x 0.5 m (0.25 m2) quadrats

along a 50-m transect placed in the middle of the visible oyster zone parallel to the water line.

We surveyed randomly selected elevations for each quadrat placed within a 1–4 m band above

and below the transect line; the band width depended upon the slope of substrate surveyed.

Tidal elevation was estimated for the entire transect at each location with RTK-GPS or a Laser-

Mark LM-30, with maximum and minimum elevations recorded (see Table 1 for tidal range

surveyed). For pier piles, we did not lay a transect, instead we randomized the pile and side of

pile surveyed, and elevation surveyed.

Once we established that tidal elevation played a significant role in oyster distributions [41],

we recorded tidal elevation of every randomized quadrat in all subsequent surveys (2017–

2020). We also modified sampling on habitats with steep slopes (seawall, pier pile and fence

habitats) to more precisely account for tidal elevation by using quadrats sized 0.5 m length X

0.15 m height (0.075 m2). These smaller-area quadrats are as long as those used prior to 2017,

but not as high, thus sampling a more constrained tidal range on a vertical surface. In 2020, we

sampled across a much broader tidal elevation range relative to previous years (e.g., see Table 1

for tidal ranges surveyed) but constrained among-year comparisons of density data to com-

monly surveyed tidal elevations.

Within each quadrat, we identified and counted all live M. gigas that were at least 50%

inside of the quadrat. We used internal and external shell characteristics to identify M. gigas.
External characteristics that differentiated NIS M. gigas from native O. lurida (the only other

oyster species present in our surveyed estuaries) included larger maximum height, thicker

body, and the presence of shell foliations. Internal characteristics included a chalky white inte-

rior shell color and absence of chomata; presence of chomata is a generic-level trait for Ostrea
[42, 43]; also see Fig 1 of [24]. We recorded the heights and lengths of as many M. gigas

Table 1. (Continued)

Bay Site Code Habitat Type Year Date(s) Surveyed GPS Coord. Tidal

Range

Surveyed

(m MLLW)

Tidal

Range

Compared

(m MLLW)

M. gigas/m2 (SE,

n)

Min Max Min Max

Fence 2020 10-Jun-2020 32.6751,

-117.1676

0.08 1.2 0.22 1.11 222.67 (34.03,

30)

Grand Caribe GC Sand/Riprap 2013 25-Jul-2013 32.6263,

-117.1297

0.39 0.93 0.39 0.93 44.13 (8.74, 30)

Sand/Riprap 2017 13-Jan-2017, 28-May-2017 32.6263,

-117.1298

-0.3 0.81 0.3 0.81 34.00 (5.26, 30)

Sand/Riprap 2020 9-Jun-2020 32.6263,

-117.1299

-0.04 1.19 0.37 1.09 35.20 (12.44, 20)

Pond 11

North

PN Mud with Concrete

Rubble

2013 13-Dec-2013 32.6027,

-117.1178

0.15 0.44 0.15 0.44 0.00 (0, 30)

Mud with Concrete

Rubble

2020 23-Jun-2020 32.6027,

-117.1179

-0.26 1.01 0.16 0.59 8.35 (4.55, 23)

https://doi.org/10.1371/journal.pone.0302935.t001
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encountered as was practical given low-tide time constraints (n = 31–308 oyster lengths

recorded per survey, median = 112); height of each oyster was measured from the umbo to the

furthest lip of the oyster shell. When oyster densities were low (i.e., prior to 2015), every oyster

encountered was measured. When oyster densities were high (2015 and later) it became

impossible to measure all oyster heights within a single tide; surveyors were instructed to sys-

tematically work across the quadrat and only measure the heights of the first 5 oysters

encountered.

Size frequency distribution

Oyster shell heights were used to visualize changes in size frequency distributions before and

after 2015 as an indicator for recruitment through time. Shell height measurements were

recorded at three sites in Newport Bay (FS, LI, and AC), and one site in San Diego Bay (CV).

Heights were binned into 10 mm increments (i.e., 10–19 mm, 20–29 mm, etc.) and distribu-

tions were compared within each site before and after 2015. Shell heights < 10 mm were

excluded. Oyster sizes from recruitment plates in San Diego Bay, deployed yearly from May

through September [44] indicate that oysters less than ~40 mm can generally be considered

Year 0 (young of the year) and those> 40 mm considered Year 1 or older, though growth is

known to vary broadly across sites [45] based upon food availability, temperature and salinity

[46].

Sea surface temperature

We downloaded publicly available sea surface temperature (SST) data from the Shore Stations

Program [47] at Newport Beach Pier (open coast near Newport Bay, 33.606414˚N,

117.929997˚W), Scripps Pier (open coast near San Diego Bay, 32.866692˚N, 117.257496˚W),

and from the National Data Buoy Center [48] for NOAA station IIWC1 at the US Midway

(inside of San Diego Bay, 32.713889˚N 117.176667˚W). All SST temperature data spanned

from January 1, 2010, to December 31, 2020. Some SST data were missing from each year at

Newport Beach and Scripps Piers, especially during June (18 days) and July (11 days), 2014 at

Newport Beach Pier. Temperature data at Newport Beach Pier were recorded once per day

sporadically between 06:00–18:00 (Pacific time), at Scripps Pier once per day between 07:00–

18:00 (Pacific time), and hourly at NOAA station IIWC1. Since M. gigas is known to settle and

recruit in southern California during summer from June to September [44], we focused our

temperature data exploration during those months. We reviewed the daily SST data from 2010

through 2020 to look for a noticeable difference in summer water temperatures that may have

correlated with increasing local M. gigas densities.

Statistical analyses

To account for discrepancies in tidal elevation sampled among survey years, with some earlier

survey years constrained to a smaller subset of elevations surveyed, we standardized the ranges

of elevations so that consistent elevations were compared within each site across years, but not

necessarily across sites (e.g., elevations surveyed at CV were lower than those at GC, see

Table 1 for the full range of sites surveyed versus the standardized range used in statistical anal-

yses). For each site, we examined whether oyster density changed across time using 1-way

ANOVA (time treated as categorical factor) in JMP v16.0.0. We did not combine sites into the

same statistical analysis because each site had a unique history of years surveyed and standard-

ized elevations that could be used. Most data were log-transformed [Log (X+ 1)] to address

heteroscedasticity prior to analysis (Table 2). The log-transformations greatly improved issues

with heteroscedasticity and non-normality as was evidenced by visual inspection of plots of
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residuals by predicted, studentized residuals, and residual by normal quantiles. Statistical anal-

yses were not performed on the SST and size frequency distribution data; qualitative trends

were elucidated via visual inspection of the data.

Results

Density

From 2010 to 2020, M. gigas density increased by 2.2 to 32.8 times at 7 of the 8 sites surveyed

across two southern California bays (Fig 2).

In Newport Bay, M. gigas densities significantly increased over time at all 4 sites. At AC,

density increased 2.7 times from 4.53 ± 1.64 (SE) to 12.27 ± 2.48 oysters/m2 (Tables 1–3, Fig 2,

ANOVA, p = 0.0033). At CI, density increased 23.2 times from 0.53 ± 1.64 to 12.27 ± 2.48 oys-

ters/m2 (Tables 1–3, Fig 2, p = 0.0112). At LI, density increased 2.2 times from 11.45 ± 1.26 to

25.28 + 3.21 oysters/m2 (Tables 1–3, Fig 2, p< 0.0001). At FS, density increased 32.8 times

from 1.75 ± 0.63 to 57.32 ± 8.38 oysters/m2 (Tables 1–3, Fig 2, p< 0.0001).

In San Diego Bay, M. gigas densities increased over time at 3 of the 4 sites. At PN, density

increased from 0.00 ± 0.00 to 8.35 ± 4.55 oysters/m2 (Tables 1–3, Fig 2, p = 0.0127). At CV,

density increased 4.1 times from 7.00 ± 3.08 to 28.33 ± 4.36 oysters/m2 (Tables 1–3, Fig 2,

p = 0.0026). At GC, density was stable over time and averaged from 35.20 ± 12.44 to

44.13 ± 8.74 (1 SE) oysters/m2 (Tables 1 and 2, Fig 2, p = 0.0994). At GB, density increased 3.8

times from 58.09 ± 9.69 to 222.67 ± 34.03 oysters/m2 (Tables 1–3, Fig 2, p = 0.0003).

Table 2. One-way ANOVA test results and data transformations comparing M. gigas densities across years for sites within Newport and San Diego Bays, CA, USA.

DF = degrees freedom, MS = mean squares, Significant findings bold.

Bay Site Transformation Source DF MS F Ratio Prob > F

Newport Bay AC Log (X+1) Year 3 7.14099 5.0367 0.0033

Error 69 1.4178

C. Total 72

CI Log (X+1) Year 2 3.4840 4.673 0.0112

Error 117 0.7456

C. Total 119

FS Log (X+1) Year 5 49.1874 17.2692 < .0001

Error 248 2.8483

C. Total 253

LI Log (X+1) Year 2 11.2178 14.4689 < .0001

Error 93 0.7753

C. Total 95

San Diego GB None Year 2 176324 9.2075 0.0003

Error 75 19150

C. Total 77

PN Log (X+1) Year 1 5.9306 6.6696 0.0127

Error 51 0.8892

C. Total 52

CV Log (X+1) Year 2 11.6770 6.4669 0.0026

Error 70 1.8056

C. Total 72

GC Log (X+1) Year 2 6.9650 2.3795 0.0994

Error 77 2.9271

C. Total 79

https://doi.org/10.1371/journal.pone.0302935.t002
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Size frequency distributions

From 2010 through 2015, M. gigas in the 10-mm size class, representing very recent Year 0

recruitment, were not detected at the three sites surveyed in Newport Bay nor at CV in San

Diego Bay (Fig 3). All sites showed increased proportions of this size class following 2015,

ranging between 0.8% at FS and 4.2% at AC. At three of four sites (LI, AC and CV), there were

also higher proportions of oysters (6%– 9.3%) in size classes from 20 mm to 40 mm (also likely

Year 0) relative to before 2015. Unlike at the other three sites, proportions of oysters in most of

the smaller size classes (20–50 mm) at FS in Newport Bay decreased between 0.6% and 19.9%

after 2015. All sites showed evidence of Year 0 size classes (< 40 mm, see methods) both before

and after 2015 (Fig 3).

Sea surface temperature

Overall, median summer SST increased between 2010 and 2014 and has been consistently

warmer since 2014 (Fig 4). In both Newport Bay and San Diego Bay, the coolest average

Fig 2. Average M. gigas densities per m2 from 2010–2020 in Newport (upper panel, dashed lines) and San Diego

(lower panel, solid lines) Bays, CA, USA. Y-axis is log scale. Site colors reference the relative distance to the mouth of

the bay (cooler colors = closer, warmer colors = farther). PN was surveyed in 2013 and M. gigas was not detected,

therefore its 2013 density cannot be graphed on a log scale. Error bars are ± 1 standard error.

https://doi.org/10.1371/journal.pone.0302935.g002
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monthly temperatures occurred in 2010. From 2010 to 2014 there was a clear 2–5˚C shift

upwards in the median monthly temperatures, most notable during the summer months of

July–September (Fig 4). The greatest shifts in median water temperature occurred in August

and September, with 4˚C shifts in Newport Bay, and 3–5˚C shifts in San Diego Bay. Between

2010–2014, Newport Bay and San Diego Bay saw an increase in the average SST (not shown)

during summer months (June–Sept) of 3–4˚C and 2–3˚C, respectively. After 2014, median

temperatures in all summer months varied among years, but were consistently warmer by ~2–

3˚C relative to the 2010–2014 time period.

Discussion

The density of a globally-spread and often invasive NIS, M. gigas, increased substantially (up

to 33 times) at a vast majority of sites across multiple habitat types within two major southern

California estuaries during a decade where median SST increased approximately 2–4˚C during

summer months. The impact of this NIS on southern California estuarine communities is so

far unknown, but given its potential for significant impacts elsewhere [e.g., 30], including on

native oyster species [31], and its ability to substantially alter the habitat [20], these docu-

mented density increases should elevate the species’ profile among resource managers enabling

decision-making about whether management actions should be implemented [49, 50].

The warmer median seawater temperatures we reported can be partly attributed to the

combined effects of southward movement of the warm temperature anomaly, "The Blob",

Table 3. Post-Hoc Tukey-Kramer HSD test results. Letters that are not shared indicate significant differences

between years within study sites (Fig 2).

Bay Site Year Letters

Newport Bay AC 2012 A

2015 AB

2016 AB

2020 B

CI 2010 A

2016 B

2017 B

FS 2010–2011 A

2012 A

2016 A

2017 AB

2019 BC

2020 C

LI 2010 A

2013 A

2016 B

San Diego GB 2014 A

2017 B

2020 B

P11N 2013 A

2020 B

CVWR 2013 A

2017 A

2020 B

https://doi.org/10.1371/journal.pone.0302935.t003

PLOS ONE Intra-decadal increase in globally-spread Magallana gigas in southern California

PLOS ONE | https://doi.org/10.1371/journal.pone.0302935 May 8, 2024 9 / 17

https://doi.org/10.1371/journal.pone.0302935.t003
https://doi.org/10.1371/journal.pone.0302935


from the Gulf of Alaska [51] and an El Niño event in 2015/16. These events have been linked

and implicated in an extreme warm sea surface temperature event that started in 2013 and pro-

gressed through 2016 throughout the Northeast Pacific Ocean [52]. Subsequently, Lonhart

et al. [53] documented local patterns of extreme warming in 2018 in southern California loca-

tions including San Diego Bay and Tijuana River. Another persistent marine heat wave in the

Northeast Pacific occurred during 2019–2020 [54]. In aggregate, these warming events con-

tributed to nearly a decade of extreme warm seawater temperatures.

Temperature is a significant factor in marine invertebrate development [55], and as water

temperatures increase, we are likely to observe local increases in the abundance of warm-water

species [56]. For many sessile species that inhabit the sublittoral zone and have planktotrophic

larvae, an increase in seawater temperatures may increase larvae production thereby resulting

in increased local abundance and possible expansion of their distributional ranges [57]. Barry

et al. [58] recorded significant shifts towards warm-water species in the invertebrate fauna of a

rocky intertidal community over a 60-yr period in Monterey, CA, USA coincident with an

increase in mean maximum summer temperatures by 2.2˚C. Lonhart et al. [53] implicated

marine heat waves with range expansions, extensions, and increases in abundances of 28 spe-

cies between central California, USA and the Baja California Peninsula, MX within the same

decade as our study. The non-indigenous barnacle, Austrominius modestus, was introduced to

Fig 3. Relative size frequency distributions (proportions) of M. gigas individuals per 10-mm size bin for the time

periods 2010–2015 versus 2016–2020 in Newport (sites LI, AC, FS) and San Diego (CV) Bays, CA, USA.

https://doi.org/10.1371/journal.pone.0302935.g003
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southern Britain but remained rare for several decades until populations grew substantially by

2007; increased temperatures during summer months may have enhanced breeding success

[59]. Lastly, and most relevant to our study, Diederich et al [19] implicate warm summer

waters with accelerating the invasion of M. gigas in the northern Wadden Sea.

The decadal-scale window of anomalous warming provided optimum conditions for M.

gigas to spread throughout southern California. Warming temperatures positively impact M.

gigas larval growth [60, 61] and settlement rates [62]. The changes in density we recorded

Fig 4. Sea Surface Temperatures for Newport (NP) and San Diego (SD) regions, CA, USA across years (2010–2020) during months June (top panel) through

September (bottom panel). Dark blue = Newport Beach Pier (NP), light blue = Scripps Pier (SD), and orange = US Midway (SD). Quartiles displayed in the

box plot; median is middle line; points are outliers.

https://doi.org/10.1371/journal.pone.0302935.g004
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coincident with warming waters are consistent with global increases in M. gigas recruitment

and abundances that also occurred in association with warming summer water temperatures

[e.g., 63]. Dutertre et al. [18] and Thomas et al. [21] noted that the expansion of M. gigas along

the European Atlantic coast was attributable to warmer water temperatures during the sum-

mer months that provided optimal thermal and spawning condition, which increased the rate

of successful reproduction, larval development, and recruitment. Similarly, Smaal et al. [64]

attributed the establishment and expansion of M. gigas in the Oosterschelde Estuary to

increased recruitment success driven by higher seawater temperatures. Magallana gigas abun-

dance also increased in the Wadden Sea after a period of successful recruitment that coincided

with above-average temperatures in July and August [19]. Our size frequency distribution data

in aggregate suggest that southern California populations have been experiencing recruitment

success throughout the decade of study but increases in the proportions of smaller size classes

after 2015 at 3 of 4 sites suggest greater recruitment success in the latter part of the decade,

coincident with warmer summer seawater temperatures.

With density increases come increases in the total abundance of this NIS, which can be sub-

stantial bay-wide and particularly at sites with large habitat areas. For example, CV contained

the most habitat area (5,750 m2) of any site surveyed in this study; the 4 times mean increase in

density we recorded translates to an abundance increase from 40,250 to 162,898 M. gigas indi-

viduals. Based on the error in measurement we recorded, the abundance could have ranged

from a low of 22,540–57,960 in 2013 to a high of 137,828–187,967 in 2020, a 2 to 8 times

change in abundance. These are likely conservative estimates of abundance change for the site

because it is based upon our reported density in a constrained range of tidal elevations (neces-

sary here to standardize among-year comparisons) where M. gigas density is substantially

lower relative to upper intertidal elevations [41]. In fact, Perog et al. [65] recently provided the

first bay-wide abundance estimate for M. gigas in San Diego Bay at greater than 30 million oys-

ters, a remarkable number when considering that consistent reports of established populations

of M. gigas in southern California were not recorded until 2000.

In addition to changes in thermal regime, other factors may have contributed to a lag in sig-

nificant population growth from the first reported intentional plantings in the 1930’s through

2000. Exotic species are known to experience lags in population growth [66] due to a number

of factors including changes in vector activity, impacts of already established invaders, biotic

resistance, and genetic adaptation, among others [67]. In fact, it is possible that changes in any

of a number of these other factors, including especially, changes in vector activity, may account

for the increases in M. gigas density we observed over the past decade, but warmer summer

seawater temperatures surely provided a favorable window of opportunity. Whatever the delay

in and cause(s) for proliferation, it is clear that M. gigas is now common and abundant in

southern California estuaries. The impact of this NIS is yet unclear, but Parker et al. [68]

emphasize that abundance is among the most significant factors determining the impact of an

invader and once a threshold is crossed, the whole structure of a community can be irreparably

altered, leading to even more dramatic impacts.

It is also possible that the presence of M. gigas itself may sometimes beget more M. gigas. As

M. gigas invades and establishes itself in a new habitat, its shells may alter the thermal regime

[e.g., 16], hydrodynamic regime [69], and settlement induction regime [70, 71] in such a way

as to create a positive feedback loop where, once this NIS becomes established, the habitat

becomes more attractive for future generations of recruits. However, M. gigas density per se

was not positively correlated with location-specific population growth rates. For example, den-

sities of M. gigas at the two sites in Newport Bay with highest starting density actually increased

at a lower rate (LI and AC, 2.2 and 2.7 times increases) than densities at the two sites with the

lowest starting density (CI and FS, 23 and 32 times increases, Fig 2). Our study also did not
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record site-specific temperatures but rather used regionally-available temperature data sets

(i.e., one within-bay temperature station per bay, plus a bay-adjacent open-coast temperature

station) as a proxy for regional thermal conditions. An expanded focus on a suite of local con-

ditions at each site (e.g., site-specific thermal regime, hydrodynamics, air temperatures, settle-

ment, recruitment and mortality rates), beyond the scope of this study, could reveal the factors

that controlled site-specific changes in density.

The data presented here provide a critical benchmark against which to compare future

increases in abundance of M. gigas. Under future climate change, we expect increases in M.

gigas abundances as their rate of proliferation increases in temperate regions [72] along with

their chances of spawning and surviving [73]. Future studies should examine the relative con-

tributions of seawater temperature, shifts in phytoplankton availability, and other factors

known to affect reproductive success of this globally-spread NIS.
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