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Abstract

Background.—Stress and depression have a reciprocal relationship, but the neural 

underpinnings of this reciprocity are unclear. We investigated neuroimaging phenotypes that 

facilitate the reciprocity between stress and depressive symptoms.

Methods.—In total, 22 195 participants (52.0% females) from the population-based UK Biobank 

study completed two visits (initial visit: 2006–2010, age = 55.0 ± 7.5 [40–70] years; second visit: 

2014–2019; age = 62.7 ± 7.5 [44–80] years). Structural equation modeling was used to examine 

the longitudinal relationship between self-report stressful life events (SLEs) and depressive 

symptoms. Cross-sectional data were used to examine the overlap between neuroimaging 

correlates of SLEs and depressive symptoms on the second visit among 138 multimodal imaging 

phenotypes.

Results.—Longitudinal data were consistent with significant bidirectional causal relationship 

between SLEs and depressive symptoms. In cross-sectional analyses, SLEs were significantly 

associated with lower bilateral nucleus accumbal volume and lower fractional anisotropy of the 

forceps major. Depressive symptoms were significantly associated with extensive white matter 
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hyperintensities, thinner cortex, lower subcortical volume, and white matter microstructural 

deficits, mainly in corticostriatal-limbic structures. Lower bilateral nucleus accumbal volume 

were the only imaging phenotypes with overlapping effects of depressive symptoms and SLEs 

(B = −0.032 to −0.023, p = 0.006–0.034). Depressive symptoms and SLEs significantly partially 

mediated the effects of each other on left and right nucleus accumbens volume (proportion of 

effects mediated = 12.7–14.3%, p < 0.001–p = 0.008). For the left nucleus accumbens, post-hoc 

seed-based analysis showed lower resting-state functional connectivity with the left orbitofrontal 

cortex (cluster size = 83 voxels, p = 5.4 × 10−5) in participants with high v. no SLEs.

Conclusions.—The nucleus accumbens may play a key role in the reciprocity between stress 

and depressive symptoms.
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Introduction

Depression is a leading cause of disability worldwide with over 10% of the population 

experiencing one or more major depressive episodes in their lifetime (Bromet et al., 2011; 

World Health Organization, 2020). A well-known risk factor for depression is stress: 

individuals with a history of childhood adversity, stressful life events (SLEs), or trauma are 

more likely to develop depression, relapse, and become treatment resistant (Amital, Fostick, 

Silberman, Beckman, & Spivak, 2008; Chapman et al., 2004; Kendler, Karkowski, & 

Prescott, 1999; Widom, DuMont, & Czaja, 2007). The tie between stress and depression is 

also reciprocal: individuals with depression are at a higher risk of encountering stress in part 

due to their experience with depression and its sequelae including functional impairment 

(Conway, Hammen, & Brennan, 2012; Hammen, 1991, 2006; van Os & Jones, 1999). 

Despite this bidirectional relationship, the underlying neural substrates remain unclear. 

Identifying the neural basis of this reciprocal and potentially reinforcing loop may help 

develop more effective interventions that build resilience against both stress and depression.

Both depression and stress involve neurobiological pathways in the limbic, paralimbic, 

and prefrontal structures and their orchestrated regulation of stress-related hormones 

and neurotransmitters (Godoy, Rossignoli, Delfino-Pereira, Garcia-Cairasco, & Umeoka, 

2018; Gold, Machado-Vieira, & Pavlatou, 2015; Maletic et al., 2007). Neuroimaging meta-

analyses show that both major depression and stress-related conditions (e.g. childhood 

adversity, post-traumatic stress disorder) are associated with lower hippocampal volume, 

lower paralimbic cortical thickness or volume, reduced white matter integrity in the corpus 

callosum, and altered connectivity in frontostriatal, orbitofrontal, and limbic networks (Bao 

et al., 2021; Calem, Bromis, McGuire, Morgan, & Kempton, 2017; Dennis et al., 2021; 

Drysdale et al., 2017; Kraynak, Marsland, Hanson, & Gianaros, 2019; Lim, Howells, Radua, 

& Rubia, 2020; Lim, Radua, & Rubia, 2014; Logue et al., 2018; Schmaal et al., 2017, 2016; 

van Velzen et al., 2020; Wang et al., 2021). Despite these overlaps, few human studies have 

directly compared the neural correlates of stress and depression in the same individuals.
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In rodents, stress-induced depressive-like behavior has been linked to neurobiological 

changes in regions such as the hippocampus, amygdala, and ventral striatum (Brenes, 

Rodríguez, & Fornaguera, 2008; Hollis, Wang, Dietz, Gunjan, & Kabbaj, 2010; Zan et 

al., 2021). In humans, history of stress is found to independently contribute to hippocampal, 

prefrontal, temporal, and white matter alterations in depression (Chaney et al., 2014; Frodl, 

Reinhold, Koutsouleris, Reiser, & Meisenzahl, 2010; Kronmüller et al., 2008; Meinert et al., 

2019; Tozzi et al., 2020; van Harmelen et al., 2010; Vythilingam et al., 2002). However, a 

prevailing focus of existing neurobiological research is the unidirectional effect of stress on 

depression, while the reverse is over-looked where depression increases the vulnerability to 

stress. To our knowledge, no studies have attempted to identify overlapping brain regions in 

stress and depression and their role in the reciprocal stress–depression relationship. In this 

study, we explored this question in a large sample of community adults. We chose to study 

depressive symptoms, rather than clinical depression, as it can be measured continuously 

and fluctuate in individuals regardless of a diagnosis of depression. We hypothesized that 

SLEs experienced by individuals would predict their depressive symptoms over time and 

vice versa. We conducted brain-wide association analyses across multimodal neuroimaging 

phenotypes to capture brain structures shared between SLEs and depressive symptoms. 

Based on the literature, we predicted that SLEs and depressive symptoms would share 

neuroimaging correlates in structures including the hippocampus, amygdala, hypothalamus, 

ventral striatum, and prefrontal cortex (Brenes et al., 2008; Chaney et al., 2014; Frodl et al., 

2010; Hollis et al., 2010; Kronmüller et al., 2008; Meinert et al., 2019; Tozzi et al., 2020; 

van Harmelen et al., 2010; Vythilingam et al., 2002; Zan et al., 2021), which may be the key 

region(s) to understand their reciprocity.

Materials and methods

Participants

In total, 22 195 community adults (52.0% female) in the UK Biobank (UKBB)’s 

neuroimaging data release version 1.6 were included. We used data from the initial 

assessment visit (v0, 2006–2010) and the second visit with brain imaging (v2, 2014–2019). 

The first repeat assessment visit (v1), completed by only 24.5% participants, was not used. 

Participants’ age was 55.0 ± 7.5 (range 40–70) years on v0 and 62.7 ± 7.5 (44–80) years 

on v2. Interval between visits was 7.7 ± 1.5 (4–12) years. Behavioral and neuroimaging 

protocols were previously described (Miller et al., 2016; Sudlow et al., 2015). The UKBB 

was approved by the North West Multi-center Research Ethics Committee. All participants 

provided written informed consent. We received approval from the UKBB to access and 

analyze the data. The authors assert that all procedures contributing to this work comply 

with the ethical standards of the relevant national and institutional committees on human 

experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Stressful life events (SLEs)

The UKBB does not use a validated inventory for SLEs but includes a screening question 

on stressful events such as illness, injury, and bereavement. On both visits, participants 

reported if they experienced the following in the last two years: ‘serious illness, injury, 

or assault to yourself’, ‘serious illness, injury, or assault of a close relative’, ‘death of a 
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close relative’, ‘death of a spouse or partner’, ‘marital separation/divorce’, and ‘financial 

difficulties’. Research in the UKBB showed that SLEs measured by this question was 

significantly positively associated with psycho-pathology and chronic pain (Davis et al., 

2020; Macfarlane, Beasley, & Macfarlane, 2014). Following a previous study (Macfarlane 

et al., 2014), we defined SLEs as the number of events reported, and recoded values larger 

than 3 as 3 to reduce right skewness. Alternatively, we used log transformation to reduce 

skewness and reported findings in online Supplementary Results. In total, 97.1% of the 

participants had data for both visits.

As illustrated in online Supplementary Fig. S1, on both visits, most participants reported 

no SLEs. On average, around 30% of the participants reported one SLE; 8% reported two 

SLEs; and 1.5% reported three or more SLEs (3 SLEs: 1.3%, 4 SLEs: 0.2%, 5 SLEs: 

0.01%). The two most reported SLEs were ‘death of a close relative’ (around 20%) and 

‘serious illness, injury or assault of a close relative’ (around 13%). The least reported SLE 

was ‘death of a spouse or partner’ (less than 1.5%). On both v0 and v2, more SLEs were 

associated with younger age (r = −0.11 and −0.14, p < 2 × 10−16), female sex (B = 0.08 and 

0.10, p < 2 × 10−16), and non-White British ancestry (B = 0.06 and 0.04, p = 0.0002 and 

0.006).

Depressive symptoms

The UKBB does not use a validated tool to measure depressive symptoms on each visit. 

Following a previous study (Arnau-Soler et al., 2019), we measured participants’ depressive 

symptoms over the preceding 2 weeks with four touchscreen questions. Two questions 

were from the Patient Health Questionnaire (PHQ)-2 (Kroenke, Spitzer, & Williams, 2003) 

and measured core depressive symptoms of anhedonia (‘had little interest or pleasure in 

doing things’) and depressed mood (‘felt down, depressed, or hopeless’). One question was 

from the PHQ-9 (Spitzer, Kroenke, Williams, & Group, 1999) and measured fatigue (‘felt 

tired or had little energy’). The last question measured psychomotor agitation (‘felt tense, 

fidgety, or restless’). On both visits, participants rated their symptoms over the past 2 weeks 

from ‘not at all’ to ‘nearly every day’ (0–3). Cronbach’s α was 0.8 on v0 and 0.78 on 

v2. Following the previous study (Arnau-Soler et al., 2019), we transformed the sum of 

depressive symptoms to a four-point scale to correct for right skewness (0 = 0, 1 = 1–2; 2 

= 3–5, 3 = 6 or more). Findings when log transformation was used to correct for skewness 

were included in online Supplementary Results. In total, 88.4% of the participants had data 

for both visits.

To further examine the validity of the depressive symptoms measure, we compared 

depressive symptoms across participants with different lifetime history of depression (Smith 

et al., 2013). On both visits, participants with a history of probable recurrent depression 

had significantly more depressive symptoms than participants with a history of probable 

single episode depression, followed by subclinical depression and mood disorder controls, 

supporting the validity of the depressive symptoms measure. Details of this analysis, 

including criteria used to determine lifetime history of depression, can be found in the 

online Supplementary Methods.
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Online Supplementary Fig. S3 illustrates the distribution of depressive symptoms across the 

two visits. On average, around 42% of the participants reported no depressive symptoms; 

around 34% scored 1; 14% scored 2; and 3% scored 3. On both visits, more depressive 

symptoms were associated with younger age (r = −0.18 and −0.16, p < 2 × 10−16), female 

sex (B = 0.14 and 0.16, p < 2 × 10−16), and non-White British ancestry (B = 0.04 and 0.06, p 
= 0.04 and 0.007).

Adverse childhood experiences (ACEs)

As SLEs may be influenced by ACEs (Gheorghe, Li, Gallacher, & Bauermeister, 2021), we 

considered ACEs reported by a subsample of participants (71.3%). We measured ACEs as 

the responses to the Childhood Trauma Screener (Glaesmer et al., 2013; Witt et al., 2022), 

which surveys participants’ experiences of emotional neglect, physical neglect, emotional 

abuse, physical abuse, and sexual abuse in childhood. We dichotomized each item and 

summed them to result in total ACEs ranging from 0 to 5 (Gheorghe et al., 2021).

Multimodal imaging phenotypes

All participants completed multimodal neuroimaging on v2. Given that no neuroimaging 

was performed at v0, all analyses involving neuroimaging were cross-sectional using v2 

data. We examined 138 imaging phenotypes generated by the UKBB (online Supplementary 

Table S4), including (1) cortical thickness (CT) of 68 regions; (2) intracranial volume; (3) 

subcortical volume (SV) of 14 structures; (4) total volume of white matter hyperintensities; 

and (5) weighted-mean fractional anisotropy (FA) and mean diffusivity (MD) of 27 white 

matter tracts. Details of image acquisition, quality control, and processing were previously 

described (Alfaro-Almagro et al., 2018; Miller et al., 2016). Briefly, participants completed 

T1-MPRAGE (voxel size = 1 mm3), T2-FLAIR (voxel size = 1.05 × 1 × 1 mm3), and 

diffusion (50 × b = 1000 and 2000 s/mm2, voxel size = 2mm3) magnetic resonance imaging 

(MRI). CT, SV, and intracranial volume were derived from UKBB’s T1 pipeline (Alfaro-

Almagro et al., 2018) and generated with FreeSurfer (Desikan et al., 2006; Fischl et al., 

2004) and FSL’s FIRST tool (Patenaude, Smith, Kennedy, & Jenkinson, 2011). White matter 

hyperintensities were derived from UKBB’s T2 pipeline (Alfaro-Almagro et al., 2018). FA 

and MD were derived from UKBB’s diffusion pipeline (Alfaro-Almagro et al., 2018) and 

generated with FSL’s TBSS tool (Smith et al., 2006). For each phenotype, observations 

outside of six mean absolute deviations from the median were excluded.

Resting-state functional MRI (rsfMRI)

Participants completed 6 min of rsfMRI on v2 (TR = 735 ms, TE = 39 ms, flip angle = 52°, 

voxel size = 2.4 mm3). Images acquisition, quality control, and processing were previously 

described (Alfaro-Almagro et al., 2018; Miller et al., 2016), which included artifact removal 

with FMRIB’s ICA-based X-noiseifier (Beckmann & Smith, 2004; Griffanti et al., 2014; 

Salimi-Khorshidi et al., 2014). We additionally completed the following in FSL: spatial 

registration to the 2 mm MNI152 space, high-pass filtering (FWHM = 2355 s), and spatial 

smoothing (FWHM = 4 mm, iso-tropic Gaussian kernel).
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Statistical analysis

Figure 1a illustrates the data structure used to explore the longitudinal reciprocity between 

stress and depressive symptoms. We hypothesized that depressive symptoms on v0 would 

predict more subsequent SLEs when controlling for previous SLEs (here proxied by SLEs 

within 2 years before v2 and v0, respectively). We also hypothesized that SLEs within 2 

years before v2 would predict more subsequent depressive symptoms when controlling for 

previous depressive symptoms (here proxied by depressive symptoms within 2 weeks before 

v2 and v0, respectively). We implemented longitudinal structural equation modeling using 

the lavaan package (Rosseel, 2012) in R (R Core Team, 2019), with maximum likelihood 

estimation with robust standard errors and Satorra-Bentler scaled test statistics.

We identified imaging phenotypes associated with SLEs on v2 by regressing each 

standardized imaging phenotype on SLEs in R, correcting for 138 phenotypes with false 

discovery rate (FDR) q < 0.05 (Benjamini & Hochberg, 2000). The same analysis was 

repeated for depressive symptoms. We then identified which structure(s) were significantly 

associated with both SLEs and depressive symptoms.

To examine whether imaging phenotypes significantly associated with both SLEs and 

depressive symptoms were implicated in their reciprocity, we tested two mediation models 

using v2 data. One model tested the effect of depressive symptoms mediating the 

relationship between SLEs and imaging phenotypes. The other tested the effect of SLEs 

mediating the relationship between depressive symptoms and imaging phenotypes. We used 

the mediation package (Tingley, Yamamoto, Hirose, Keele, & Imai, 2014) in R with 1000 

nonparametric bootstraps.

We further performed post-hoc resting-state functional connectivity (rsFC) analysis on v2 

using structures significantly associated with both SLEs and depressive symptoms as seeds. 

RsFC was the Fisher’s z transformed Pearson’s correlation between a voxel’s timeseries 

and a seed’s mean timeseries. To reduce computational and storage burden, we selected a 

subsample a priori (N = 1932) to form a balanced 2 × 2 factorial design between SLEs 

and depressive symptoms. Specifically, we selected participants with high SLEs (HS, when 

SLEs ≥ 2) v. no SLEs (NS) and high depressive symptoms (HD, when depressive symptoms 

≥ 2) v. no depressive symptoms (ND). Among participants who completed rsfMRI, 483 

were HS and ND, 509 HS and HD, 1498 NS and HD, and 5795 NS and ND. The final 

subsample thus included 483 participants from each group, with NS and HD and NS and ND 

one-on-one matched to HS and ND for age (±3 years) and sex. Because the HS and HD pool 

was small, we could not fully match this group to HS and ND on age (HS and ND = 60.9 

± 6.7 years, HS and HD = 58.0 ± 6.5 years, p = 8.1 × 10−12) and sex (HS and ND = 59.0% 

female, HS and HD = 67.7%, p = 0.006), and we included age and sex as covariates. We 

set threshold contrasts for SLEs and depressive symptoms with the cluster command in FSL 

(voxelwise threshold: p = 0.001, clusterwise threshold: p = 0.05). A post-hoc power analysis 

suggested that with the current sample size, the voxelwise power to detect the main effect 

of SLEs or depressive symptoms on rsFC when effect size was small (i.e. Cohen’s f = 0.1, 

equivalent to d = 0.2) was 0.86.
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Table 1 summarizes the participants used in each analysis. All statistical analyses controlled 

for age, age2, sex, and White British ancestry. Models involving imaging also controlled for 

handedness (left/right/mixed), scanning site, and x, y, and z head positions in the scanner. 

Additionally, CT analysis controlled for whether T2_FLAIR was used with T1 in FreeSurfer 

preprocessing; SV analysis controlled for intracranial volume; rsFC analysis controlled for 

head motion. See details of covariates in online Supplementary Table S4.

Results

Relationship between SLEs and depressive symptoms

Structural equation modeling revealed a significant bidirectional relationship between SLEs 

and depressive symptoms (Fig. 1b). Controlling for SLEs reported on v0, depressive 

symptoms on v0 were positively associated with SLEs reported on v2 (β = 0.079, p < 

0.001), suggesting that more severe depression predicted more future SLEs. Conversely, 

controlling for depressive symptoms on v0, SLEs reported on v2 were positively associated 

with depressive symptoms on v2 (β = 0.112, p < 0.001), suggesting that past SLEs predicted 

depressive symptoms. An alternative model additionally supported a direct effect of SLEs 

reported on v0 on depressive symptoms on v2, consistent with lasting effects of SLEs on 

depressive symptoms (online Supplementary Fig. S4).

SLEs, depressive symptoms, and imaging phenotypes

More SLEs were associated with three imaging phenotypes (Fig. 2, online Supplementary 

Table S5), including lower forceps major FA (B = −0.039, pFDR = 0.023) and lower bilateral 

nucleus accumbens volume (left: B = −0.032, pFDR = 0.023; right: B = −0.030, pFDR 

= 0.034; B: differences in standardized imaging phenotypes when SLEs increased by 1). 

As expected, SLEs and ACEs were significantly positively correlated (r = 0.074, p < 2 

× 10−16). Among the three imaging phenotypes associated with SLEs, more ACEs were 

only associated with lower forceps major FA (B = −0.024, p = 0.0007), not bilateral 

nucleus accumbens volume (left: B = 0.0002, p = 0.97, right: B = −0.006, p = 0.35). After 

controlling for ACEs, the above effects of SLEs remained nominally significant but did 

not survive FDR correction (forceps major FA: B = −0.037, p = 0.003; nucleus accumbens 

volume left: B = −0.028, p = 0.008, right: B = −0.025, p = 0.019). Controlling for ACEs 

led to a reduction of the absolute B values by 5.7, 12.0, and 16.8%, respectively, which was 

expected as more ACEs are known to be linked to more SLEs in adulthood (Halonen et al., 

2017) that is also supported by their significant correlation in this cohort.

Higher depressive symptoms were associated with 44 imaging phenotypes including (1) 

thinner cortex in 23 regions with the strongest effects in the left rostral anterior cingulate 

and medial orbitofrontal cortices; (2) smaller volume in six subcortical structures with 

the strongest effects in bilateral nucleus accumbens; (3) higher MD in 11 tracts with the 

strongest effects in the bilateral anterior thalamic radiation; (4) lower FA in three tracts with 

the strongest effects in the bilateral posterior thalamic radiation; and (5) higher total white 

matter hyperintensities (Fig. 2, online Supplementary Table S5).
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Lower bilateral nucleus accumbens volumes were the only imaging phenotypes significantly 

associated with both depressive symptoms (left: B = −0.026, pFDR = 0.006; right: B 
= −0.023, pFDR = 0.016) and SLEs (see above). This remained true when using log 

transformation instead of the recoding method to correct for right skewness in SLEs and 

depressive symptoms (online Supplementary Results, Table S6).

Mediation effects

Depressive symptoms partially and significantly mediated the relationship between SLEs 

and bilateral nucleus accumbens volume (left: indirect effect = −0.004, p < 0.001, 95% 

confidence interval [CI] −0.007 to −0.001, 12.8% of the total effect was mediated; right: 

indirect effect = −0.004, p = 0.012, 95% CI −0.006 to −0.001, 12.7% mediated) (Fig. 

3a). Conversely, SLEs also partially and significantly mediated the relationship between 

depressive symptoms and bilateral nucleus accumbens volume (left: indirect effect = −0.004, 

p = 0.002, 95% CI −0.006 to −0.001, 14.3% mediated; right: indirect effect = −0.003, p = 

0.008, 95% CI −0.006 to −0.001, 14.3% mediated) (Fig. 3b). The mediation effects in both 

directions accounted for similar proportion of the total effects.

Ideally, the model in Fig. 3b would use depressive symptoms reported immediately prior 

to SLEs, while we used depressive symptoms on v2 as a proxy (Chiappelli, Nugent, 

Thangavelu, Searcy, & Hong, 2014). However, when using depressive symptoms on v0 

instead, the mediation effects remained largely the same (left: indirect effect = −0.003, 

p < 0.001, 95% CI −0.005 to −0.001, 14.5% mediated; right: indirect effect = −0.003, 

p = 0.004, 95% CI −0.004 to −0.001, 11.5% mediated), supporting that longitudinally 

experienced depressive symptoms may have influenced the nucleus accumbens via increased 

occurrences of SLEs. To further test this hypothesis, we tentatively categorized SLEs based 

on their likelihood to be a consequence of depressive symptoms (Brown & Harris, 1978; 

Paykel, 1987). Independent SLEs (iSLEs), or events that are more likely independent from 

depressive symptoms, were ‘serious illness, injury, or assault of a close relative’, ‘death of a 

close relative’, and ‘death of a spouse or partner’. Dependent SLEs (dSLEs), or events that 

are more likely partly dependent on depressive symptoms, were ‘marital separation/divorce’ 

and ‘financial difficulties’. ‘Serious illness, injury, or assault to yourself’ was excluded as 

it could be either an iSLE or dSLE. Consistent with our hypothesis, dSLEs significantly 

mediated the relationship between depressive symptoms and nucleus accumbens volume 

(left: indirect effect = −0.003, p = 0.05, 95% CI −0.005 to −0.001, 10.2% mediated; right: 

indirect effect = −0.003, p = 0.018, 95% CI −0.006 to −0.001, 13.3% mediated), but not 

iSLEs (left: p = 0.130; right: p = 0.360). However, caution must be taken to interpret this 

finding given the putative classification of SLEs.

Nucleus accumbens functional connectivity

Post-hoc rsFC analysis revealed significantly lower rsFC in HS than NS between the left 

nucleus accumbens seed and a cluster in the left orbitofrontal cortex (OFC) (Fig. 4; cluster 

size = 83, clusterwise p = 5.4 × 10−5, peak F value = 21.34, MNI coordinate = [−6, 62, 

−12]). No significant differences were found between HD and ND or for the right nucleus 

accumbens seed.
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Replication after excluding neurological cases

Finally, we repeated our analyses after excluding participants with neurological conditions 

(N = 448, 2.0% of the total sample; online Supplementary Table S7). Bilateral nucleus 

accumbens volume remained the only imaging phenotypes significantly and negatively 

associated with both SLEs and depressive symptoms (online Supplementary Table S8). 

Conclusions from the rsFC and mediation analyses were not affected.

Discussion

We examined the brain structures implicated in the reciprocal relationship between stress 

and depressive symptoms by studying SLEs and depressive symptoms in a large community 

sample. We replicated the bidirectional relationship between SLEs and depressive symptoms 

reported by prior studies (Amital et al., 2008; Chapman et al., 2004; Conway et al., 

2012; Hammen, 1991; Kendler et al., 1999; van Os & Jones, 1999; Widom et al., 2007). 

Neuroimaging correlates of SLEs included three structures and functional connectivity 

between the left nucleus accumbens and the left OFC. Neuroimaging correlates of 

depressive symptoms included widespread morphological and white matter microstructural 

changes. Bilateral nucleus accumbens were the only regions with overlapping effects of 

SLEs and depressive symptoms, and SLEs and depressive symptoms partially mediated 

the effect of each other on nucleus accumbens volume. The nucleus accumbens may be 

a neurobiological nexus for the bidirectional relationship between stress and depressive 

symptoms.

Stress exposure has long been recognized as a risk factor for depression (Amital et al., 

2008; Chapman et al., 2004; Kendler et al., 1999; Widom et al., 2007). Reciprocally, the 

stress generation hypothesis posits that depressive symptoms put an individual at a higher 

risk for stressful experiences due to depression-related symptoms, behaviors, characteristics, 

and social context (Hammen, 1991, 2006). Structural equation modeling of longitudinal data 

was consistent with this reciprocity between SLEs and depressive symptoms. Bidirectional 

causal relationship is difficult to test because the proposed causal event, by definition, can be 

affected by the proposed consequence. Using a longitudinal design allowed this reciprocity 

to be examined.

We found SLEs to be associated with lower white matter integrity in the forceps major, a 

tract that involves the splenium part of the corpus callosum. Disruptions in the macro- and 

microstructure of the corpus callosum are well documented in stress and trauma (De Bellis 

& Keshavan, 2003; De Bellis et al., 2002; Dennis et al., 2021; Jensen et al., 2018). One 

mechanism can be stress-induced glucocorticoid increase that affects myelination (Huang, 

Harper, Evans, Newnham, & Dunlop, 2001). We also found SLEs to be associated with 

weaker rsFC between the left nucleus accumbens and the left OFC, an area central to 

emotion regulation and decision making (Bechara, Damasio, & Damasio, 2000). OFC 

alteration has been previously reported in stress (Hanson et al., 2010; Muhammad, Carroll, 

& Kolb, 2012) and reduced coordination between the OFC and the nucleus accumbens may 

reflect impaired self-regulation after stress exposure (Meyer & Bucci, 2016).
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We replicated widespread alterations associated with depressive symptoms reported by 

previous studies (Milak et al., 2005; Schmaal et al., 2017, 2016; Shen et al., 2020; van 

Velzen et al., 2020). Some discrepancies, such as significantly lower hippocampal volume in 

recurrent depression (Schmaal et al., 2016) but not in the current sample, may be explained 

by our focus on depression symptomatology as opposed to diagnosis in an older, mostly 

subclinical population. Most of the imaging associates of depressive symptoms were not 

significantly associated with SLEs, which is expected as depressive symptoms can result 

from various factors other than SLEs (Saveanu & Nemeroff, 2012). One caveat though is 

that the brief UKBB SLEs assessment could not have captured all sources of stress, and 

additional brain correlates of stress may not have been discovered.

Animal models of post-traumatic stress disorder and major depression overlap extensively 

in hippocampus, ventral striatum, PFC, and hypothalamic-pituitary-adrenal axis pathology 

(Ploski & Vaidya, 2021). Here, we found that the nucleus accumbens was the only brain 

region associated with both SLEs and depressive symptoms. Notably, both the left and 

right nucleus accumbens showed overlapping effects of SLEs and depressive symptoms 

after multiple comparison correction, suggesting that this finding is unlikely fortuitous. 

Moreover, SLEs partially mediated the effect of depressive symptoms on bilateral nucleus 

accumbens volume and vice versa. While neuroimaging studies have shown that the brain 

abnormalities in depression can be attributed to previous history of stress (Meinert et al., 

2019; Vythilingam et al., 2002), to our knowledge this is the first study to show the reverse, 

i.e. the neural associates of stress may be accounted for by preexisting depressive symptoms. 

Furthermore, we show that the mediation effect of SLEs was stable using depressive 

symptoms measured across two visits several years apart and was only significant for SLEs 

that are more likely influenced by depressive symptoms (i.e. dSLEs). Thus, our results are 

consistent with the stress generation theory of depression.

There are strong neurobiological and psychopathological bases for why the nucleus 

accumbens stood out as a brain structure involved in stress, depressive symptoms, and 

their reciprocity. The nucleus accumbens has been associated with stress and depression in 

humans (Edmiston et al., 2011; Gheorghe et al., 2021; Liu et al., 2021; Wacker, Dillon, & 

Pizzagalli, 2009; Walsh et al., 2014; Whittle et al., 2014). It plays a central role in the brain’s 

mesolimbic neurotransmission pathways (Baik, 2020; Fox & Lobo, 2019) by receiving 

dopaminergic, GABAergic, and glutamatergic projections from the ventral tegmentum, 

amygdala, and other areas for salience, reward, and punishment processing (Bongioanni 

et al., 2021; Kohls et al., 2013; Lowes et al., 2021). It is connected to essentially all 

limbic areas for emotional/motivational responses (Floresco, 2015; Saddoris, Cacciapaglia, 

Wightman, & Carelli, 2015). The nucleus accumbens is therefore a hub for converging 

neural processes that regulate stress response and depression formation and the impact of 

stress (depressive symptoms) on this region increases the vulnerability to the other. Smaller 

nucleus accumbens volume may be the macroscopic manifestation of these underlying 

processes.

This study has several limitations. First, the measures of SLEs and depressive symptoms 

have not been previously validated and are susceptible to recall bias (Monroe, 1982; 

Monroe, Slavich, Torres, & Gotlib, 2007) (although both have been used in previous 
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studies, see Arnau-Soler et al. [2019]; Davis et al. [2020]; Harshfield et al. [2020]; 

Lehto et al. [2020]; Macfarlane et al. [2014]). Moreover, given restraints imposed by the 

UKBB design, we could only probe the longitudinal effects between SLEs and depressive 

symptoms with proxy measures. These issues, although practical for a very large sample, 

have likely introduced noises and compromised the size of relationships that could be 

observed, which cannot be fully compensated for by sample size. Second, while we used 

longitudinal analysis to probe the relationship between SLEs and depressive symptoms, it 

cannot be taken as direct evidence of causality. Similarly, our neuroimaging findings used 

cross-sectional data and can only be interpreted as correlational. Third, the 138 imaging 

phenotypes surveyed in our analyses were not exhaustive and additional shared neural 

correlates between SLEs and depressive symptoms may exist, such as rsFC phenotypes. 

Machine-learning approaches with unsupervised learning may be better suited to identify 

distributed networks that link SLEs and depression (Genon, Eickhoff, & Kharabian, 2022; 

Marek et al., 2022). Fourth, the effect sizes were small, and the SLEs findings did not 

survive FDR correction after controlling for ACEs, suggesting that findings in this study 

may also be partly attributed to early stressful experiences. Fifth, our analyses did not 

account for factors such as medication use, psychotherapy, and physical comorbidity. Last, 

the UKBB sample was predominantly healthy white volunteers (Fry et al., 2017), and 

generalizability to groups with more pathology and lower socioeconomic status is unclear.

To summarize, a reciprocal relationship between SLEs and depressive symptoms was 

supported using a longitudinal epidemiological dataset, and this bidirectional susceptibility 

was found to be associated with the nucleus accumbens. To our knowledge, this is the first 

study to identify the neural underpinnings of the bidirectional stress–depressive symptoms 

relationship in humans. Further research may be important for developing new therapeutics 

to disrupt this relationship and increase resilience for both stress-induced depressive 

symptoms and depressive symptoms-related stressful experiences.
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Figure 1. 
Relationship between SLEs and depressive symptoms based on structural equation 

modeling. (a) Timeline of repeated assessments across two visits and four time windows. (b) 

Structural equation model showing bidirectional relationship between depressive symptoms 

and SLEs. SLEs: stressful life events. β, standardized coefficient; S.E., standard error; v0, 

initial assessment visit; v2, second visit that included brain imaging.
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Figure 2. 
Imaging phenotypes associates of depressive symptoms and SLEs. All p values were false 

discovery rate (FDR) corrected. Dashed line: −log(p) corresponding to corrected p = 0.05. 

CT, cortical thickness; ICV, intracranial volume; SV, subcortical volume; WMH, white 

matter hyperintensities; FA, fractional anisotropy; MD, mean diffusivity; SLEs, stressful life 

events. For names of the imaging phenotypes, see online Supplementary Table S4.
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Figure 3. 
Mediation effects. (a) Depressive symptoms significantly mediated the relationship between 

SLEs and bilateral nucleus accumbens volume. (b) SLEs significantly mediated the 

relationship between depressive symptoms and bilateral nucleus accumbens volume. 

Depressive symptoms and SLEs were measured at v2. All paths controlled for age, age2, 

sex, and White British ancestry. Paths involving the nucleus accumbens volume additionally 

controlled for handedness, scanning site, x, y, and z head positions in the scanner, and 

intracranial volume. SLEs: stressful life events. L, left; R, right; Vol, volume. B values may 
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be slightly different from those reported in online Supplementary Table S5 due to slightly 

different numbers of cases with complete data.
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Figure 4. 
SLEs were associated with lower resting-state functional connectivity (rsFC) between the 

left nucleus accumbens region-of-interest (green) and the left orbitofrontal cortex (red). 

Voxel-wise threshold, p = 0.001, cluster-wise threshold, p = 5.4 × 10−5. Imbedded box is 

the plot comparing rsFC in the high SLEs (HS) and no SLEs (NS) groups. RsFC values 

are residuals after regressing out age, age2, sex, and White British ancestry, handedness, 

scanning site, x, y, and z head positions in the scanner, and head motion. L, left; R, right; 

SLE, stressful life event.
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Table 1.

Demographics of the participants included in each analysis

Analyses Bidirectional relationship, structural phenotypes, mediation Functional connectivity

N 22 189 1932

Age (years, v2) 62.7 ± 7.5 58.8 ± 6.6

% Female 52.0% 65.6%

White British ancestry (%) 86.1% 84.2%

College education 47.7% 48.4%

Household income 2.8 ± 1.1 2.8 ± 1.1

Note: Household income: (1) less than £18 000; (2) £18 000–£30 999; (3) £31 000–£51 999; (4) £52 000–£100 000; (5) greater than £ 100 000.
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