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Abstract

Severe mental illnesses (SMI), including major depressive (MDD), bipolar (BD), and

schizophrenia spectrum (SSD) disorders have multifactorial risk factors and capturing

their complex etiopathophysiology in an individual remains challenging. Regional vul-

nerability index (RVI) was used to measure individual's brain-wide similarity to the

expected SMI patterns derived from meta-analytical studies. It is analogous to poly-

genic risk scores (PRS) that measure individual's similarity to genome-wide patterns in

SMI. We hypothesized that RVI is an intermediary phenotype between genome and

symptoms and is sensitive to both genetic and environmental risks for SMI. UK Bio-

bank sample of N = 17,053/19,265 M/F (age = 64.8 ± 7.4 years) and an independent

sample of SSD patients and controls (N = 115/111 M/F, age = 35.2 ± 13.4) were

used to test this hypothesis. UKBB participants with MDD had significantly higher

RVI-MDD (Cohen's d = 0.20, p = 1 � 10�23) and PRS-MDD (d = 0.17,

p = 1 � 10�15) than nonpsychiatric controls. UKBB participants with BD and SSD

showed significant elevation in the respective RVIs (d = 0.65 and 0.60; p = 3 � 10�5

and .009, respectively) and PRS (d = 0.57 and 1.34; p = .002 and .002, respectively).

Elevated RVI-SSD were replicated in an independent sample (d = 0.53,

p = 5 � 10�5). RVI-MDD and RVI-SSD but not RVI-BD were associated with child-

hood adversity (p < .01). In nonpsychiatric controls, elevation in RVI and PRS were

associated with lower cognitive performance (p < 10�5) in six out of seven domains

and showed specificity with disorder-associated deficits. In summary, the RVI is a
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novel brain index for SMI and shows similar or better specificity for SMI than PRS,

and together they may complement each other in the efforts to characterize the

genomic to brain level risks for SMI.
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1 | INTRODUCTION

Major depressive disorder (MDD), bipolar disorder (BD), and schizo-

phrenia spectrum disorder (SSD) are among the most common severe

mental illnesses (SMI) that inflict a tremendous burden on patients,

their families, and society. The genetic and brain imaging findings in

SMI have historically suffered from heterogeneity and poor reproduc-

ibility, but more recent large-scale studies have derived replicable pat-

terns of deficits (Ioannidis, 2014; Kochunov, Hong, et al., 2020;

Kochunov, Thompson, & Hong, 2019). In genetics, findings from large

meta-analyses have led to a shift from candidate gene research where

findings often failed to replicate, toward well-powered genome-wide

association studies (GWAS) that produced robust and reproducible

patterns of risk alleles (Bosker et al., 2011; Farrell et al., 2015). Poly-

genic risk scores (PRS) were developed to utilize these genome-wide

risk alleles for defining individual person's risk to a disorder, calculated

as the linear combination of the risk alleles of an individual weighted

by degree to which the alleles show case–control differences in large-

scale meta-analytic studies for a specific illness of interest. PRS has

been shown to be a more reproducible predictor of genetic risks and

to have higher effect sizes than single risk allele for all three SMI (Choi

et al., 2018; Colodro-Conde, Couvy-Duchesne, Whitfield, et al., 2018;

Kochunov, Huang, et al., 2019; Liebers et al., 2016; Toulopoulou

et al., 2018). Moreover, variance of PRS has also been associated with

brain integrity and cognitive performance in both SMI patients and

healthy controls (Choi et al., 2018; Colodro-Conde, Couvy-Duchesne,

Whitfield, et al., 2018; Kochunov, Huang, et al., 2019; Liebers

et al., 2016; Sabuncu et al., 2012; Toulopoulou et al., 2018).

In parallel, large-scale neuroimaging initiatives, including studies

performed by the Enhancing Neuro Imaging Genetics through Meta

Analyses (ENIGMA) consortium(Kelly et al., 2018; Schmaal

et al., 2016; Schmaal et al., 2017; van Erp et al., 2016, 2018) identified

highly reproducible structural deficit patterns across the brain, using

large, ethnically, and geographically diverse cohorts (Alnaes

et al., 2019; Kochunov et al., 2017; Kochunov, Fan, et al., 2020;

Kochunov, Thompson, & Hong, 2019; Koshiyama et al., 2019; Okada

et al., 2016). To extend these findings to individual level, we proposed

a regional vulnerability index (RVI), to parallel the PRS, to quantify the

agreement between an individual's structural pattern across brain

regions and the expected regional structural pattern for a disorder as

established by ENIGMA (Kochunov, Fan, et al., 2020; Kochunov,

Hong, et al., 2020). In SSD, RVI was found to be more robust and

reproducible than any single regional measurement and was predictive

of cognitive performance in modest samples of schizophrenia patient

(Kochunov, Fan, et al., 2020; Kochunov, Hong, et al., 2020), although

no PRS were available for comparison in those studies. Here, we pro-

posed a direct comparison of the power and the implications of the

brain-wide RVI approach versus the genome-wide PRS approach in

identifying overlap versus separation of diagnostic and cognitive indi-

ces among the three major SMI.

We hypothesized that RVI and PRS can be complementary in

understanding the genome-brain-illnesses axis as both indices circum-

vent the traditional individual region/locus approaches by utilizing the

whole-brain/whole-genome disease pattern information. Specifically,

RVI may serve as an intermediate phenotype in gene-brain-illnesses

axis. RVI is measure of alignment between the phenotypic pattern in

an individual and the expected pattern in a disorder based on large

and inclusive meta-analyses. Therefore, RVI is likely to be sensitive to

both genetic and environmental effects on the brain and thus may be

more robust for identifying disease-related features than PRS alone.

To test this, we compared RVI and PRS approaches in relation to

(1) detecting case–control differences, (2) specificity across SMI,

(3) association with developmental risk factors, and (4) cognitive func-

tion, including in unaffected controls. We used the UK Biobank

(UKBB) cohort because it is the largest publicly available dataset with

both genome-wide genetic data and high-quality brain MRI scans. To

further test their relative specificity, we also examined how RVI ver-

sus PRS can separate SMI from classic neurological illnesses using Alz-

heimer disease (AD) as an example. Importantly, RVI and PRS differ in

methodological details and biological interpretation (details see

Section 2). The PRS is fundamentally a genetic risk factor, while the

RVI measures the imaging phenotypic similarity to the illness-related

brain pattern. Therefore, RVI is hypothesized to be aggregates of the

consequences from both genetic and developmental risk factors on

the brain. Accordingly, we tested the hypothesis that RVI would also

be significantly influenced by both PRS and environmental risks for

SMI, while PRS should not be related to environmental risks.

Finally, although SMI are diagnosed based on symptomatology,

cognitive deficits are prominent in many SMI patients and are closely

associated with their functional disability(Bowie et al., 2010). Geno-

typic similarity to SMI as captured by PRS can predict cognitive per-

formance even in controls without psychiatric diagnoses (Liebers

et al., 2016). Accordingly, we hypothesized that RVI and PRS derived

from SMI can explain individual differences in cognitive performance

in this large general population sample even without SMI diagnoses.

The overall aim was to examine to what extent RVI can be used as a

PRS analog for brain imaging data, and whether a combination of RVI

and PRS may provide an even more powerful approach than PRS
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alone to aid our understanding of the genetic and neurobiological

underpinnings of SMI.

2 | METHODS

2.1 | Participants

2.1.1 | UKBB sample

Clinical, cognitive and neuroimaging data were available for N = 36,318

individuals (17,053/19,265 M/F). We used the UKBB parser software

(https://github.com/USC-IGC/ukbb_parser) to identify N = 3920

(1380 M/2540 F, age = 62.1 ± 7.4) subjects with ICD codes correspond-

ing to three SMI diagnoses (Table 1) who were free from other neurologi-

cal or psychiatric conditions besides a self-reported anxiety disorder.

Among participants with self-reported and ICD codes for psychiatric ill-

ness, we identified N = 3853 (1346 M/2507 F, age = 62.1 ± 7.4 years)

with a lifetime diagnosis of MDD, N = 56 with BD (28 M/28 F,

age = 62.6 ± 7.2), and N = 11 for SSD (6/5 M/F, age = 65.1 ± 7.1). For

psychiatric versus neurological illness specificity testing, we identified

N = 13 with AD (9/4 M/F, age = 71.0 ± 4.6) available in the UKBB data-

set. A total of 24,538 individuals (11,164/13,374 M/F, age = 63.3 ± 7.5)

in the overall sample were free of ICD codes of neurological or psychiat-

ric illnesses including MDD, BD, SSD, anxiety, AD, head trauma, stroke,

Parkinson disease, post-traumatic stress disorder, meningitis, multiple

sclerosis, migraines, and other demyelinating diseases were treated as

non-neuropsychiatric controls (Table 1). PRS analyses were limited to the

sample of N = 24,141 (10,967/13,274 M/F) of Caucasian descent,

because of the known biases in applying PRS estimates if combining

groups of different ancestry (Landi et al., 2021; Mather &

Thalamuthu, 2020). Data were collected between 2012 and 2019 in par-

ticipants recruited in the United Kingdom (Manolio et al., 2012; Table 1).

All participants provided written informed consent.

2.1.2 | SSD replication sample

Because SSD was only present in 11 UKBB participants, we further

compared RVI-SSD and PRS-SSD in an independent local sample of

N = 63 patients (age = 34.2 ± 11.1; 39 M/24 F) and N = 163 controls

(age = 35.5 ± 14.2; 76 M/87 F) of European ancestry collected at the

Maryland Psychiatric Research Center, with both imaging and genetic

data available. All participants had no current or past neurological con-

ditions or major medical conditions. Patients were diagnosed with

either DSM-IV schizophrenia or schizoaffective disorder. Controls had

no Axis I psychiatric disorder. All participants with SSD were evalu-

ated for their capacity to provide informed consent. All participants

gave written informed consent as approved by the University of

Maryland, Baltimore, Institutional Review Board.

2.2 | Imaging protocols and processing

In the UKBB sample, we examined regional cortical gray matter thick-

ness, subcortical gray matter structural volume and tract-wise measures

of fractional anisotropy (FA) values provided by the UKBB (see

Appendix S1). These phenotypes were extracted from neuroimaging data

collected with Siemens Skyra 3T scanner using a 32-channel head coil. It

included T1-weighted 3D MP-RAGE scans (resolution = 1 � 1 � 1 mm,

FOV = 208 � 256 � 256, duration = 5 min, sagittal, in-plane accelera-

tion iPAT = 2, prescan-normalize). Diffusion data were collected with a

resolution of 2 � 2 � 2 mm and two diffusion shells of b = 1000 and

2000 s/mm2 with 50 diffusion directions per shell and 5 b = 0 images

(FOV = 104 � 104 � 72, duration = 7 min).

The SSD replication sample was collected using a Siemens Trio 3T

scanner equipped with a 32-channel head coil. T1-weighted data were

collected at 0.8 � 0.8 � 0.8 mm resolution (matrix = 320 � 320,

224 sagittal slices, TR = 2300 ms, TE = 3.14 ms, TI = 900 ms, flip

angle = 9�, iPAT = 2). using a dedicated motion corrected protocol

(Kochunov et al., 2006). DTI data was collected using a gradient echo

sequence with a spatial resolution of 1.7 � 1.7 � 3.0 mm. The

sequence parameters were: TE/TR = 87/8000 ms, FOV = 200 mm,

axial slice orientation with 50 slices and no gaps, 64 isotropically distrib-

uted diffusion weighted directions, 2 diffusion weighting values (b = 0

and 700 s/mm2) and 5 b = 0 images.

2.3 | RVI calculations

The RVI uses effect sizes from independent case-controls imaging

meta-analyses that established stable deficit patterns for that illness.

TABLE 1 Demographic information for the UKBB sample analyzed in this research

Full sample Caucasian only

Group N (male/female) Average age ± SD N (male/female) Average age ± SD

SSD 11 (6/5) 65.1 ± 7.1 8 (4/4) 65.4 ± 5.9

BD 56 (28/28) 62.6 ± 7.2 45 (24/21) 63.1 ± 7.4

MDD 3853 (1346/2507) 62.1 ± 7.4 3316 (1201/2115) 62.3 ± 7.5

Total SMI 3920 (1380/2540) 62.1 ± 7.4 3369 (1229/2240) 62.2 ± 7.5

AD 13 (9/4) 71.0 ± 4.6 12 (9/3) 70.6 ± 4.5

Controls 24,538 (11,164/13,374) 63.3 ± 7.5 20,772 (9738/11,034) 63.4 ± 7.4
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Here, we used imaging deficit patterns for MDD, BD, and SSD

reported by ENIGMA. UKBB imaging data were processed using the

UKBB workflow that is based on ENIGMA imaging processing pipe-

lines. Briefly, the UKBB workflow provides brain imaging measure-

ments that included 24 regional white matter tract FA values,

33 regional estimates of cortical gray matter thickness, volumes of the

lateral ventricles, and 7 subcortical gray matter volumes per hemi-

sphere that corresponded to those derived by ENIGMA workflows.

Measures from the left and right structures were averaged. Details of

the image preprocessing and analysis are provided by UKBB (biobank.

ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). The SSD replication

sample data were processed using the ENIGMA-structural and DTI

analysis pipelines (http://enigma.ini.usc.edu/protocols/), which

includes quality control and assurance QC/QA steps (Jahanshad

et al., 2013).

RVI scores were calculated using the brain-wide structures from

cortical, subcortical, and white matter assessments based on the pro-

tocol documented in Kochunov, Zavaliangos-Petropuli, et al. (2020)

using the “RVIpkg” in [R] software. Briefly, the effects of age, sex,

the intracranial volume, and scanning site were regressed out from

the imaging phenotypes and then transformed to z scores based on

the average and SD of the controls. The Pearson's correlation coeffi-

cient was then calculated between a participant's z scores and corre-

sponding effect sizes for patient—control group differences

recorded by the ENIGMA consortium in MDD, BD, SSD, and effect

size for AD reported by ADNI. The RVI values were then Fisher's

z transformed to enhance normality. Both RVI and PRS can be

thought of in terms of vector algebra. RVI is methodologically equiv-

alent to the cosine of the angle in the multidimensional phenotype

space between a vector of an individual subject and the vector of

effect sizes for an illness.

2.4 | Genetic data

UKBB provided the whole genome association study (GWAS) data col-

lected using Affymetrix UK BiLEVE Axiom array that included 850,000

genotyped variants. The protocol may be found in the UKBB Quality Con-

trol Documentation (https://www.ukbiobank.ac.uk/wp-content/uploads/

2014/04/UKBiobank_genotyping_QC_documentation-web-1.pdf). Briefly,

low-quality single nucleotide polymorphisms (SNP) were filtered out

according to Affymetrix recommendations. SNP variants were

imputed with a merged UK10K and 1000 Genomes Phase 3 refer-

ence panel by a group headed by the Wellcome Trust Centre for

Human Genetics using the IMPUTE3 program. All of these steps are

detailed in the Imputation Documentation (https://www.ukbiobank.

ac.uk/wp-content/uploads/2014/04/imputation_documentation_May

2015-1.pdf).

The SSD replication data was genotyped using Illimina Omni2.5-8

BeadChip. The UKBB imputation steps were followed. Post-

imputation quality control consisted of filtering SNPs based on minor

allele frequency (MAF) (<0.01), Hardy–Weinberg Equilibrium

(<1 � 10�6), R2 (<.03), and call rate (<0.95).

2.5 | PRS analysis

In both samples, the PRS analyses were limited to Caucasian partici-

pants, based on genetic grouping provided by the UKBB (Table 1)

because PRS calculation algorithms were developed from the large

genetic association studies that were performed in people of Caucasian

ancestry (see below; Curtis, 2018). The PRS for MDD, BD, SSD, and AD

were calculated using PRSice software and the most recent GWAS sum-

mary statistics available to download from the Psychiatric Genomics

Consortium (PGC) (https://www.med.unc.edu/pgc/download-results/).

None of SMI GWAS summary statistics included the UKBB subjects.

The SSD PRS summary statistics in Ripke et al. (Schizophrenia Working

Group of the Psychiatric Genomics, 2014) were calculated from a sam-

ple of N = 152,805 (38,131 SSD/114,674 controls) including data from

52 PGC-SSD studies. For the BD PRS, the discovery GWAS meta-

analysis summary statistics(Mullins et al., 2021) were calculated from

cohorts in Europe, North America and Australia, including PGC-BD

working groups, the Integrative Psychiatric Research group and

deCODE genetics for a total sample of N = 41,917 BD and 371,549

controls of European ancestry. The summary statistics used in the MDD

PRS were from the PGC study by Howard et al. (2019) and contained

data from PGC-MDD USA and European sample sites, the deCODE

genetics, Generation Scotland, Genetic Epidemiology Research on Adult

Health and Aging, and iPSYCH datasets. When combined, this resulted

in N = 138,884 (43,204 MDD/95,680 controls) participants of

European descent. The AD summary statistics published by Jansen et al.

(2019) and downloaded from the Center for Neurogenomics and Cogni-

tive Research Complex Trait Genetics Lab GWAS summary statistics

(https://ctg.cncr.nl/software/summary_statistics), were compiled from

three PGC Alzheimer working groups in European twin datasets

(DemGene, TwinGene, and Swedish Twin Studies of Aging), the Interna-

tional Genomics of Alzheimer Project, the Alzheimer Disease Sequenc-

ing Project, and the UKBB AD-by-proxy data, which identified parental

AD status weighted by age, for a total of N = 455,258 (47,793 AD/AD-

by proxy/383,378 controls) individuals of European descent. More

information on the GWAS summary statistics can be found in the

Methods S1. SNPs were clumped according to PRSice, and thresholds

for significantly associated SNPs were set at p = .05. The PRS can be

approximated using vector algebra as a dot product between a vector

representing an individual genotype and the meta-analytical effects

from case–control studies weighted by the expected minor allele fre-

quency (MAF). The PRS scores are unnormalized and because MAF var-

ies by ethnicity, the PRS analyses in multiethnic studies can be heavily

biased by ethnic stratification. Therefore, the PRS analysis was restricted

to Caucasian samples because the above-mentioned, meta-analytical

GWAS effect sizes for calculating PRS were only available in Caucasians.

In ad-hoc analyses we calculated PRS scores for other ethnicities and as

expected, these scores showed significant (p = 10–8-75) differences

among ethnic lines. For the sake of comparing with RVI, the PRS results

in a full sample showed significant reduction in the effect sizes com-

pared with Caucasians, even after correcting for ethnic stratification by

using first 10 principle components of the genetic data as a covariate,

thus emphasizing this important caveat of the PRS approach.
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2.6 | Environmental risks: Childhood development

Some SMI are known to have strong environmental contributions,

and developmental risks during childhood are typically the most rele-

vant (Anglin et al., 2021; Barzilay et al., 2019; Colodro-Conde,

Couvy-Duchesne, Zhu, et al., 2018; Grattan et al., 2019; Kvarta

et al., 2021). UKBB participants completed an adverse childhood

experiences (ACEs) survey that was measured by five items adapted

from the Childhood Trauma Screener (CTS; Glaesmer, 2016). The

five ACEs items were summed, resulting in a total score ranging from

0 to 20.

2.7 | Cognitive assessment

UKBB participants completed the cognitive battery on a touchscreen

computer (Sudlow et al., 2015). We used nine tests in the current

study, covering cognitive domains of processing speed, cognitive flexi-

bility, working memory, visuospatial learning/memory, perceptual rea-

soning, executive functioning/planning, and fluid intelligence

(Table S1). As the UKBB cognitive tests were unsupervised, we fol-

lowed the suggested quality control steps to enhance validity (Sudlow

et al., 2015; Table S1).

2.8 | Statistics

All statistical analyses were performed using RStudio v3.6.3 [71]. All

measurements were preprocessed by regressing age and sex prior to

analyses. The effect sizes were computed using the effectsize package

[72]. The group-wise comparisons in RVI and PRS were performed

using Student's t-test using Bonferroni correction for multiple

comparisons.

The effects of genetics (PRS) and developmental environment

(adverse childhood events or ACEs) on RVI were evaluated using

Model 1:

RVI� βPRS �PRSþβACEs �ACEsþβPRS�ACEs �PRS �ACEs Model 1ð Þ

The relative effects of RVI and/or PRS on cognition were tested

using Model 2.

Cognition� βRVI �RVIþβPRS �PRS Model 2ð Þ

Model 2 examined whether being merely similar to SMI in genet-

ics and/or brain deficit patterns in non-neuropsychiatric controls,

even when there was no SMI diagnosis, could still be associated with

poorer cognitive performance. This approach also avoided the poten-

tial biases associated with possible secondary effects of disorders and

psychotropic medications on cognitive performance in participants

diagnosed with SMI. However, we also explored this effect in SMI

patients. We used Bonferroni approach throughout the study to cor-

rect for multiple comparisons.

3 | RESULTS

3.1 | Effect sizes of SMI on RVI versus PRS

Compared with non-neuropsychiatric controls, participants with each of

the three SMI, that is, MDD, BD, and SSD, had significantly elevated RVI

for the respective disorder (Cohen's d = 0.20, 0.65, and 0.61; p = 10�23,

3 � 10�5, and .009, respectively; Figure 1). Caucasian and non-Caucasian

participants were not significantly different in the frequency of disorder

versus control groups in any SMI (t = 1.8, 0.95, and 1.2, all p > .06 for

MDD, BD, and SSD). Likewise, there were no significant difference

between Caucasian and non-Caucasian participants for RVI for each of

the SMI (t = 0.09, 0.19 and 0.28, all p > .5 for MDD, BD, and SSD,

respectively). Therefore, RVI analyses were performed in the full sample.

The PRS (in Caucasians) for all three SMI were significantly ele-

vated in participants with the respective illnesses compared with non-

neuropsychiatric controls (d = 0.17, 0.56 and 1.34, p = 10�15, .002,

and .002, for MDD, BD, and SSD, respectively; Figure 1).

Comparing RVI and PRS, there were no significant differences in

the magnitude of effect sizes between the measures for respective

disorders (all z < 1.5; p > 0.2), suggesting that RVI as a brain vulnera-

bility index has similar power to PRS as a genetic vulnerability index in

separating patients from controls for each SMI (Figure 1).

3.2 | RVI versus PRS disease specificity among
the SMI

RVI values for controls were not significantly different from zero for

any of the three SMI RVIs (all p > .7; Figure 2a–c). The highest RVI-

F IGURE 1 Absolute values for effect size comparisons of RVI and
PRS among the three severe mental illnesses—comparing cases to
non-neuropsychiatric controls. Raw values are shown in Figure 2. BD,
bipolar disorder; MDD, major depressive disorder; PRS, polygenic risk
score; RVI, regional vulnerability index; SSD, schizophrenia spectrum
disorder. The p values are based on statistical comparisons to
controls. Error bars denote SE. The p values are very different
between diagnoses likely due to their different sample sizes; p values
are comparable between RVI and PRS within diagnosis.
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MDD was observed in participants with MDD (0.032 ± 0.001), fol-

lowed by BD (0.025 ± 0.03) and SSD (�0.023 ± 0.05) (Figure 2a).

The highest RVI-BD was observed among participants in SSD rather

than BD, ranked from SSD (0.16 ± 0.03), BD (0.13 ± 0.09) to MDD

(0.039 ± 0.003) (Figure 2b). The highest RVI-SSD was observed in

SSD (0.15 ± 0.08) and this was higher than BD (0.13 ± 0.03) and

MDD (0.028 ± 0.005) (Figure 2c). For patients with each illness, the

RVI for that illness always showed significant differences from

controls.

Controls showed the lowest PRS scores (more negative) in all

SMIs (Figure 2d–f). The highest PRS-MDD score was observed in

participants with BD followed by SSD, paradoxically with MDD

being the least (Figure 2d). The highest PRS-BD score was found in

SSD rather than BD, followed by BD and MDD (Figure 2e). However,

the highest PRS-SSD was found in SSD followed by BD and MDD

(Figure 2f). Overall, RVI and PRS appeared similar as they both can

significantly separate SMI patients from controls, although their

capacity for between-SMI separation was limited, with PRS perform-

ing worse.

3.3 | Comparisons of RVI versus PRS in separating
a neurological condition from SMI

UKBB participants with AD showed significantly elevated RVI-AD

compared with controls (d = 1.37; p = 10�6) (Figure 3a). Participants

with AD had numerically higher RVI-AD than RVI for each of the three

SMI (Figure 3a,b). In comparison, PRS-AD scores did not reach signifi-

cant difference compared with controls (d = 0.33, p = .3) (Figure 3a,

c), overall suggesting that RVI was more robust than PRS when it

comes to separating SMI from AD.

3.4 | RVI and PRS in SSD replication sample

Compared with non-neuropsychiatric controls, participants with SSD

also had significantly elevated RVI-SSD (p = 5 � 10�5), which were

not significantly different from those observed in UKBB sample

(Cohen's d = 0.53 vs. UKBB 0.61; effect size d comparison: Z = 0.6,

p > .1) (Figures S2). Participants with SSD also showed the highest

F IGURE 2 A cross-disease comparison of disease-specific regional vulnerability index (RVI) values and polygenic risk score (PRS) values
among the three severe mental illness and control participants. (a–c) RVI comparisons across the four groups. (d–f) PRS comparisons across the
four groups. The p values are significance levels for the statistical comparisons with controls. Error bars denote SE.
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RVI-SSD compared with RVI-BD, MDD, and AD (Cohen's d = 0.45,

0.46, and 0.37, respectively) versus controls that were also compara-

ble with UKBB findings. In comparison, these SSD participants did not

show significant elevation in PRS-SSD scores (d = 0.20) or PRS scores

for BD and MMD (0.24 and 0.08, respectively) compared with con-

trols (all p < .1), where the highest PRS scores were PRS-BD rather

that PRS-SSD. Overall, the replication sample further suggests that

the RVI findings were replicable while the PRS findings appeared

more variable and less specific.

3.5 | Contribution of genetic and environmental
risks to RVI

We used Model 1 to test the hypothesis that RVI as a brain anatomic

vulnerability index is sensitive to both genetic and environmental risk

factors in the combined UKBB sample. The ACE was the only signifi-

cant predictor for the RVI-MDD model (Table 2). The RVI-BD model

was not significant. For RVI-SSD, both PRS and ACE were significant

and positive contributors to RVI-SSD (Table 2). In no models did we

find a significant gene � environment interaction on RVI. Importantly,

the adverse childhood event (ACE) score was not significantly corre-

lated with any of the PRS scores (all p > .1), consistent with the envi-

ronmental nature of these events.

Fitting Model 1 separately in patients with SMI and controls, we

found that the model was not significant in combined SMI patients or

any of the SMI separately. This may be due to the small sample sizes

for these analyses. In controls, RVI-MDD showed only association

with ACEs (t = 2.9, p = .003); RVI-BD was not significant; and the

RVI-SSD showed significant associations with both PRS-SSD (t = 3.6,

p = 3 � 10�4) and ACEs (t = 3.8, p = 2 � 10�4), suggesting that find-

ings of ACE effects on RVI-MDD and genetic plus ACE effects on

RVI-SSD were primarily driven by findings in non-neuropsychiatric

controls. PRS-AD (t = 3.5, p = 4 � 10�5), but not ACEs (t = 1.1,

p = .2), was a significant predictor of RVI-AD.

3.6 | Effects of RVI and PRS on cognition

SMI are known to be associated with cognitive impairments, and

these cognitive deficits are present in the UKBB sample: individuals

with SMI showed significantly poorer performance across the avail-

able cognitive tasks (Figure S3). For the majority of the tasks, the

ranking of effect sizes of the impairment compared with controls fol-

lowed the order of SSD > BD > MDD (Figure S3). If RVI and PRS are

to be used as vulnerability markers in the general population, we

hypothesized that being similar to SMI's brain and/or genetic patterns

may be associated with impaired cognitive performance even when

F IGURE 3 A comparison of the effect sizes for RVI and PRS values in UKBB participants with Alzheimer disease (AD). (a) RVI-AD had larger
effect size than RVI-PRS compared with controls, while both RVI-AD and PRS-AD had larger effect sizes than RVI and PRS of any SMI. (b,c) A
comparison of control, SMI, and AD participants on RVI-AD (b) and PRS-AD value (c). The p-values are based on statistical comparisons with
controls. Error bars denote SE.

TABLE 2 The results of fitting Model 1 to evaluate the effects of genetics (PRS) and developmental environment (adverse childhood events:
ACEs) on RVI for three the SMI

RVI Full model ACE PRS ACE � PRS

RVI-MDD F = 6.3, p = .002 t = 4.1, p = 7 � 10�4 t = 1.1, p = .3 t = 0.4, p = .6

RVI-BD F = 1.9, p = .3 t = 1.5, p = .1 t = 0.2, p = .8 t = 0.3, p = .7

RVI-SSD F = 8.6, p = 1 � 10�5 t = 1.9, p = .03 t = 3.7, p = 1 � 10�4 t = 0.2, p = .9

Note: Bold values are signficant after correcting for multiple comparisons
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there is a lack of the symptoms necessary to make SMI diagnoses.

Model 2 was used to test this, and we found that the model was sig-

nificant for all but one cognitive measure for each SMI's RVI/PRS

combination (Figure 4, Table S3).

The most robust models were observed for the Digit Symbol Sub-

stitution (for processing speed) and the Fluid Intelligence tests where

RVI- and PRS-SSD were significant predictors (F = 61.9 and 59.4,

respectively, Figure 4a). Across all cognitive tests, brain and genetic

similarities with SSD were associated with the highest model strength

(F = 37.3 ± 6.5), followed by BD (25.8 ± 4.8), while similarity to MDD

had lower model strength (F = 15.8 ± 4.1), all of which were statisti-

cally significant (Figure 4a), indicating that cognitive deficit severity

levels known to be found in SMI patients, that is, SSD > BD > MDD,

are also observed even in healthy controls, based on the correspond-

ing whole-brain brain plus genomic vulnerability index.

The relative contributions from RVI and PRS were shown in

Figure 4b. Overall, RVI and PRS showed similar strength of association

with cognitive performance (Figure 4b, last panel). However, there

F IGURE 4 Contributions of RVI and PRS on cognition. (a) The model strength (F-values) of RVI and PRS association with cognition in non-
neuropsychiatric controls. (b) The predictive strength (t-values) of RVI versus PRS association with cognition in non-neuropsychiatric controls. All
comparisons are significant except the Tower test in MDD patients (Table S2). Error bars denote SE (for averaging the F or t values across the
models, tasks, and/or disorders).

KOCHUNOV ET AL. 4977



were task-specific contrasts. For instance, reaction time was explained

more by RVI of all SMI, while Fluid Intelligence was explained more by

PRS, specifically PRS-SSD. Again, RVI and PRS for SSD explained vari-

ance better across cognitive measures compared with BD and MDD.

Additional analyses of RVI and PRS for AD were provided in the

Table S3, where the highest associations were found in reaction time

(F = 24.1, p = 3 � 10�10) followed by Digit Symbol test (F = 21.2,

p = 7 � 10�10). In the case of AD, most of the variance on cognition

was explained by RVI rather than PRS-AD (Table S3).

4 | DISCUSSION

The RVI was developed to define brain vulnerability based on the sim-

ilarity in phenotypic patterns to these observed in the SMI. RVI was

tested in the largest available imaging and genetics dataset by com-

paring to the PRS. Overall, with a few notable exceptions, the RVI was

similar and complementary to PRS (1) in separating participants with

SMI from non-neuropsychiatric controls, (2) in explaining disease

specificity among SMI, and (3) in predicting cognitive performance in

a nonpsychiatric population.

Both RVI and PRS showed similar effect sizes in separating partic-

ipants with SMI from controls in the UKBB sample. The participants

with MDD showed the smallest effects for both RVI and PRS and pro-

gressively higher effect sizes were observed for BD and SSD. As the

UKBB sample contains only a few participants with SSD, we retested

the hypothesis in another sample and found that the RVI-SSD effect

sizes observed in UKBB were replicated in this independent sample of

SSD patients. The differences in effect sizes among SMI approximate

the clinical severity of these SMI where SSD is usually the most dis-

abling, followed by BD and MDD. The results suggest a possibility

that RVI based brain-wide indices can be as powerful as the PRS

based genome-wide indices for individual-level clinical

characterizations.

On specificity, MDD and SSD participants had the highest RVI

scores for the respective illnesses. In the SSD replication sample, RVI-

SSD also showed the largest effect size in SSD patients compared

with RVI-MDD or RVI-BD. For PRS, the highest scores for MDD and

BP were not found in the respective illnesses; and although the high-

est PRS scores for SSD were found in SSD patients in the UKBB sam-

ple, although even this was not replicated in the SSD replication

sample. In this regard, the RVI performed better for SMI disorder-

related specificity. However, neither RVI nor PRS achieved optimal

performance, as even for RVI, the highest RVI for BD were not

observed in participants with the corresponding illness and the sepa-

rations between some of the RVI values were small. For instance, sub-

jects with BD had significant elevation in RVI-SSD and subjects with

SSD showed significantly higher RVI-BD. This finding supports the

long going discussion on the continuum of mental illness versus exist-

ing of distinct diagnostic categories. The cross-elevation of RVI for

subjects with mental illness, especially between SSD and BD, parallels

the findings of overlap in risk factors and genetics of two illnesses

(Lichtenstein et al., 2009; Purcell et al., 2009), and the patterns brain

structural deficits (Anderson et al., 2013; Hulshoff Pol et al., 2012;

McIntosh et al., 2008; Rimol et al., 2010; Squarcina et al., 2017).

We further used a common neurological brain illness AD as a

“positive control” comparison to evaluate specificity of RVI and PRS.

The UKBB AD participants had the highest RVI- and PRS-AD com-

pared with SMI patients or controls, although RVI provided more

robust separation from controls than PRS (Figure 3). While AD

patients also had elevated RVI and PRS for SMI, there were numeri-

cally smaller than RVI and PRS for AD. These data support RVI and

PRS's disease specificity beyond SMI. As the sharing of the underlying

neurodegeneration mechanism in mental disorders and AD has been

debated since Kraepelin's definition of schizophrenia as dementia

praecox, or premature dementia (Hippius & Neundorfer, 2003), the

elevated RVI-SMI (Figure 3a) and to an even smaller extent the ele-

vated RVI-AD in SMI (Figure 3b) may suggest some similarities in defi-

cit patterns, including deficits in the temporal and parietal regions,

hippocampus, and white matter (Crossley et al., 2014; Kochunov,

Zavaliangos-Petropuli, et al., 2020) despite many clear differences

between SMI and AD. Overall, comparing SMI to neurological illness

AD, RVI still showed strong validity and provided similar or better sen-

sitivity and specificity than PRS.

RVI is a phenotypic similarity measure of brain patterns and we

hypothesized that RVI may act as an intermediate phenotype in gene-

brain-illnesses axis. RVI likely incorporates both genetic and environ-

mental effects on the brain and thus may be more robust for identify-

ing disease-related features versus PRS. RVI-SSD had significant

associations with both PRS and adverse childhood events (ACE). SSD

is a highly heritable disorder with �40%–80% of the diagnostic vari-

ance explained by additive genetic factors (Hilker et al., 2018; Lee

et al., 2013), and has complex environmental risk factors including

prenatal and perinatal complications and cumulative developmental

and lifetime stress (Anglin et al., 2021; Barzilay et al., 2019; Grattan

et al., 2019). The RVI may have captured the brain consequence of

the aggregated genetic and early life adversity factors for SSD. In con-

trast, MDD has low-to-modest heritability (reported h2 values range

from 5% to 50%) and environmental and other etiologies play propor-

tionally more prominent roles (Colodro-Conde, Couvy-Duchesne, Zhu,

et al., 2018; Kvarta et al., 2021). This may explain why ACE was the

only significant contributor to RVI-MDD. RVI-BD showed no signifi-

cant association with either PRS-BD or ACE. BD has high genetic

contributions—heritability is estimated at 70%–90% (Barnett &

Smoller, 2009; Gordovez & McMahon, 2020; Smoller & Finn, 2003).

This may explain the lack of significant contributions of childhood

adversity but the lack of association with PRS-BD is still unexplained.

Finally, AD is known to have a strong genetic component that was

confirmed by the significant association between RVI-AD and PRS-

AD with no association with childhood adversity.

The extension of the RVI- and PRS to explain potential vulnerabil-

ities in general population was supported by findings of these indices'

effects on cognition in nonpsychiatric controls. Cognitive deficits are

common and contribute to functional disability in patients with SMI

(Sheffield et al., 2018). Higher RVI and PRS were negatively associated

with cognitive performance in all nine cognitive measures but with
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significant variability across the indices (Figure 4). First, the PRS- and

RVI-SSD showed greater predictive power in explaining cognitive vari-

ance compared with the BD and MDD indices (the association

between MDD and the Tower test was not significant), replicating the

clinically observed SSD > BD > MDD cognitive deficit patterns. Cog-

nitive deficits in SSD are persistent and debilitating (Barch &

Sheffield, 2014; Fusar-Poli et al., 2012; Semkovska et al., 2019;

Sheffield et al., 2018; Terachi et al., 2017), conversely, cognitive defi-

cits in MDD show partial-to-full remission between depressive epi-

sodes and cognitive deficits in BD show intermediate findings

(Ahern & Semkovska, 2017; Semkovska et al., 2019; Zaninotto

et al., 2015). Across the cognitive tasks, RVI- and PRS-SSD explained

the most variance in information processing speed and learning tasks:

Digit Symbol, Fluid Intelligence, Trails A, and Reaction Time. This mir-

rors the reports in SSD where lower information processing speed

and impaired working memory abilities are the core of cognitive dis-

abilities in SSD (Dickinson et al., 2007; Faraone et al., 2000; Keefe

et al., 2005; Keefe et al., 2004; Knowles et al., 2010; Kochunov

et al., 2017). Our findings suggest that similarity to the SSD-and other

SMI related brain and genetic patterns without SMI diagnoses still

confers risk for cognitive deficits. As cognitive performance and brain

structures in controls are not affected by psychiatric illness processes

or psychotropic medications, these observations further support the

validity of RVI in indexing individual level vulnerability by their ana-

tomic similarity to SMI (Liebers et al., 2016). Overall, the brain and

genetic signatures for SMI may confer cognitive risks directly, rather

than being secondary effects of the active illness.

4.1 | Limitations

RVI is a simple concept that measures the linear similarity between

deficit pattern of a given individual to the disruption pattern esti-

mated from an independent case–control comparison. Therefore, it

lacks a topographical characterization for detailed brain regions and

may ignore heterogeneity across patients with the same disorder. This

study should stimulate research into more complex machine learning

approaches that could capture nonlinear topography of the effects of

illness on the brain. The UKBB recruitment is biased toward healthy vol-

unteer, reducing the number of participants with SMI as compared with

the population prevalence (Fry et al., 2017). Furthermore, the diagnostic

information provided in UKBB is based on self-report and hospitalization

records and maybe susceptible to misclassifications (Bycroft

et al., 2018). These factors likely affected the ability to perform SMI-

related comparisons. However, the RVI-SSD findings in UKBB were

readily replicated in an independent sample of SSD patients and con-

trols, suggesting that this may not be a critical limitation. The elevated

PRS-SSD values failed to reach significance in the replication sample.

However, the PRS effect size in that sample (d = 0.20) is more similar

to d-values reported in the literature for SSD (d = 0.01–0.4) (He

et al., 2021; Richards et al., 2019; Xavier et al., 2018), suggesting the

findings of high PRS for SSD in UKBB maybe an artifact of the small

number of SSD patients. Also in the AD group, the patients were

significantly older than the average UKBB age, while the replication

sample of SSD were much younger. As such some of the changes in

the brain could be attributed to age related changes. The MDD diag-

nosis group was also not divided into severe and more mild groups for

the analyses. Recent studies have found large difference in brain mor-

phology between BD patients with psychosis and without psychosis

(Anticevic et al., 2013), indicating a potential avenue of future

research in RVI, as it has already proven adepts at predicting treat-

ment resistance in SSD. Another important limitation is that PRS anal-

ysis was restricted to Caucasians given the ancestry related biases if

performed in ethnically diverse cohorts (Chatterjee et al., 2016;

Torkamani et al., 2018). There is a need to assemble large non-

Caucasian samples to validate these observations across ethnicities. In

addition, imputation protocols differed between UKBB and replication

protocols and this may have affected the calculation of PRS between pro-

tocols. Finally, the proposed validity of RVI in comparison to the

widely used PRS must be further tested beyond the cross-sectional

data used in this study, for example in longitudinal follow-up and also

in other brain diseases.

To summarize, the novel vulnerability construct, the regional vul-

nerability index, demonstrates the ability to transfer big data neuroim-

aging findings to the individual level and may play a complementary

role to a similar approach in genetics, the polygenic risk score, for

characterizing the vulnerability for SMI in both clinical and nonclinical

samples. These whole-brain and whole-genome level RVI and PRS

indices together should provide an even more powerful tool than PRS

alone in our search for the gene-to-brain-to-severe mental illness

pathways.
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