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Abstract

Year-round virological characterization of circulating epidemic influenza viruses is conducted
worldwide to detect the emergence of viruses that may escape pre-existing immunity or acquire
resistance to antivirals. High throughput phenotypic assays are needed to complement the
sequence-based analysis of circulating viruses and improve pandemic preparedness. The recent
entry of a polymerase inhibitor, baloxavir, into the global market further highlighted this need.
Here, we optimized a cell-based assay that considerably streamlines antiviral and antigenic
testing by replacing lengthy immunostaining and imaging procedures used in current assay with
measuring the enzymatic activity of nascent neuraminidase (NA) molecules expressed on the
surface of virus-infected cells. For convenience, this new assay was named IRINA (Influenza
Replication Inhibition Neuraminidase-based Assay).

IRINA was successfully validated to assess inhibitory activity of baloxavir on virus replication by
testing a large set (>150) of influenza A and B viruses, including drug resistant strains and viruses
collected during 2017-2022. To test its versatility, IRINA was utilized to evaluate neutralization
activity of a broadly reactive human anti-HA monoclonal antibody, F16, and post-infection ferret
antisera, as well as the inhibition of NA enzyme activity by NA inhibitors. Performance of IRINA
was tested in parallel using respective conventional assays.
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IRINA offers an attractive alternative to current phenotypic assays, while maintaining
reproducibility and high throughput capacity. Additionally, the improved turnaround time may
prove to be advantageous when conducting time sensitive studies, such as investigating a new
virus outbreak. This assay can meet the needs of surveillance laboratories by providing a
streamlined and cost-effective approach for virus characterization.
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1.

Introduction

Influenza viruses are respiratory pathogens of high consequence to public health as they

are responsible for near annual epidemics of various severity and can sporadically cause
pandemics. Infection control measures include non-pharmaceutical interventions (masking,
social distancing, etc.), vaccination, and use of antivirals. Virological surveillance is carried
out year-round to identify influenza viruses in circulation (e.g., types, subtypes) and
characterize representative viruses using an array of laboratory methods (Jester et al., 2018).
CDC conducts influenza virological surveillance in the United States (US) and participates
in the World Health Organization’s Global Influenza Surveillance and Response System
(WHO GISRS) as one of the seven WHO Collaborating Centers (https://www.cdc.gov/flu/
weekly/overview.htm).

In recent years, high throughput sequence-based methods, such as codon-complete gene
segment next generation sequencing (NGS), became a primary tool in global influenza
surveillance. NGS allows for simultaneous monitoring of virus evolution, gene reassortment,
and detecting previously established molecular determinants associated with antigenic drift,
antiviral resistance, and other viral properties. Special attention is given to antigenicity

of circulating and emerging viruses, their relatedness to vaccines, and susceptibility to
antivirals. Seasonal vaccines require frequent updates to their composition, especially the
A(H3NZ2) subtype component. For many years, the hemagglutination inhibition assay has
been the gold standard assay for antigenic analysis. However, ability of recent A(H3N2)
viruses to agglutinate RBCs has decreased due to changes in their receptor binding
characteristics. Thus, hemagglutination inhibition is no longer considered as a reliable
method for characterizing A(H3N2) viruses (Lin et al., 2015). Instead, microneutralization
assays with various modifications have been employed for antigenic analysis (Gross et

al., 2017; Lin et al., 2015; van Baalen et al., 2017). In general, implementing cell-based
assays is challenging as they often tend to show less than desirable inter- and intra-assay
consistency and this affects their validation and utility. Recently, we developed a single-
cycle cell-based assay known as high content imaging-based neutralization test (HINT), in
which we introduced several innovative modifications that allowed for greater consistency in
testing outcomes (Jorquera et al., 2019). This assay has successfully been used to conduct
antigenic analysis (Jorquera et al., 2019; Mohan et al., 2021) and generate surveillance data
for the WHO vaccine composition consultations.
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Notably, cell-based assays have not been used widely to monitor susceptibilities to older
classes of approved influenza antivirals, M2 inhibitors and neuraminidase (NA) inhibitors
(NAIs). For M2 inhibitors, markers of resistance are well-established and common for all
type A viruses (e.g., M2-S31N), hence susceptibility monitoring has primarily been confined
to sequence-based analysis (Deyde et al., 2007). For NAls, cell-based assays were shown
to be unreliable (Gubareva, 2004; Tisdale, 2000). Instead, a surrogate phenotypic test based
on the inhibition of NA enzyme activity (NA inhibition, NI) has been used in conjunction
with NA sequence analysis. Notably, numerous NA substitutions or deletions and their
combinations have been reported to affect susceptibility to one or more NAls, and this
necessitates continuous testing of virus isolates using NI assay (https://cdn.who.int/media/
docs/default-source/2021-dha-docs/1.-updated-hum_nai_rsm-table_03.05.22_to-post.pdf).

With the recent approval of the polymerase inhibitor, baloxavir marboxil, the use of cell-
based assays for monitoring susceptibility has become a necessity. The active metabolite,
baloxavir acid (baloxavir), exerts antiviral activity by binding to the polymerase acidic (PA)
subunit of viral RNA polymerase, hindering the cap-dependent endonuclease activity and
hence virus replication (Noshi et al., 2018). Both multi-cycle focus reduction assay (FRA)
and single-cycle HINT have successfully been used to monitor susceptibility to baloxavir
(Govorkova et al., 2022; Gubareva et al., 2019; Takashita et al., 2018). The baloxavir
effective concentration yielding 50% reduction in virus replication (ECsg) differs between
the two assays; however, they have good consistency in fold increase associated with PA
amino acid substitutions (Takashita et al., 2020b). This allows for the harmonization of test
results for global surveillance purposes (Govorkova et al., 2022; Gubareva et al., 2019).
While there is no established threshold for reporting resistance to baloxavir, a provisional
threshold for reduced susceptibility has been set at >3-fold (Govorkova et al., 2022;
Gubareva et al., 2019). Based on the current available data, this threshold is likely to capture
>95% of potential baloxavir-resistance conferring mutations (Ince et al., 2020). Moreover,
this threshold is successfully being employed by WHO-antiviral working group members
in their global update to describe findings on phenotypic susceptibility testing of influenza
viruses to baloxavir conducted by the Atlanta and Tokyo WHO Collaborative Centers using
HINT and FRA, respectively (Govorkova et al., 2022). Amino acid substitutions at residue
38 of PA protein are considered the primary pathway for the emergence of baloxavir
resistance, with the change of isoleucine (1) to threonine (T) being most frequently reported
(Hayden et al., 2018; Omoto et al., 2018). Changes at other PA residues (e.g., E23G) have
also been detected following baloxavir treatment, albeit at low frequency (Ince et al., 2020).
PA substitutions are shown to confer a wide range of fold increases in ECsg, and this

effect may depend on virus type and subtype (https://cdn.who.int/media/docs/default-source/
influenza/summary-of-polymerase-acidic-(pa)-protein-amino-acid-substitutions-analysed-
for-their-effects-on-baloxavir-susceptibility.pdf).

Like other assays, HINT consists of two steps: 1) determination of virus working dilution
(normalization of virus inoculum), and 2) assessment of virus replication in the presence
of either an antiviral (inhibition) or antibody (neutralization, which is commonly assessed
after pre-incubation of virus with antibody). Some of the salient improvements HINT
introduced were: 1) skipping preparation of a cell monolayer prior to inoculation by adding
a cell suspension directly to a well containing virus (or virus-antiviral/antibody mixture),

Antiviral Res. Author manuscript; available in PMC 2023 April 30.


https://cdn.who.int/media/docs/default-source/2021-dha-docs/1.-updated-hum_nai_rsm-table_03.05.22_to-post.pdf
https://cdn.who.int/media/docs/default-source/2021-dha-docs/1.-updated-hum_nai_rsm-table_03.05.22_to-post.pdf
https://cdn.who.int/media/docs/default-source/influenza/summary-of-polymerase-acidic-(pa)-protein-amino-acid-substitutions-analysed-for-their-effects-on-baloxavir-susceptibility.pdf
https://cdn.who.int/media/docs/default-source/influenza/summary-of-polymerase-acidic-(pa)-protein-amino-acid-substitutions-analysed-for-their-effects-on-baloxavir-susceptibility.pdf
https://cdn.who.int/media/docs/default-source/influenza/summary-of-polymerase-acidic-(pa)-protein-amino-acid-substitutions-analysed-for-their-effects-on-baloxavir-susceptibility.pdf

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Patel et al.

2.

Page 4

2) using inoculum at low multiplicity of infection (~0.03), 3) limiting virus replication to a
single-cycle by omitting trypsin from virus growth media, thereby minimizing inconsistency
due to varying replicative rates of different viruses, and 4) employing specialized imaging
platforms (automated microplate digital microscopy) for improved accuracy in counting
virus-infected cells (Gubareva et al., 2019; Jorquera et al., 2019). However, certain
procedures that are required at both steps of HINT (e.g., immunostaining with primary
anti-nucleoprotein (NP) antibody followed by incubation with secondary antibody and DNA
dye) are laborious and time consuming. This cumbersome procedure and the need for
specialized equipment lengthens the assay turnaround time and hinders prospects for wider
implementation.

In this study, we aimed to find solutions to overcome these limitations of HINT, while
preserving its utility, consistency, and other valuable attributes. Measurement of NA enzyme
activity as an indicator of virus replication in cell culture has previously been recognized
as an appealing approach (Eichelberger et al., 2008; Hassantoufighi et al., 2010; Jorquera
etal., 2019; Lin et al., 2017; Nayak and Reichl, 2004). In an earlier study, NA activity
was used during development of a downstream process for the purification of equine
influenza virus in vaccine manufacturing (Nayak and Reichl, 2004). Our laboratory, as
well as others, routinely measure the NA activity in cell culture supernatants to determine
when to harvest virus isolates for characterization (Jorquera et al., 2019; Lin et al., 2017).
Furthermore, a virus neutralization assay that used NA activity to quantify influenza
replication was developed (accelerated viral inhibition assay with NA as readout — AVINA
assay). Its usefulness was demonstrated for high throughput screening of antivirals with
different mechanisms of action and quantifying HA and NA-inhibiting antibody responses
(Eichelberger et al., 2008; Hassantoufighi et al., 2010). However, we were unable to

find published reports indicating that this assay can meet requirements of virological
surveillance.

Consequently, we explored whether consistent testing outcomes delivered by HINT can be
maintained when immunostaining and cell counting are replaced by measuring NA activity.
In this study, we determined experimental conditions that allow for using enzyme activity
of nascent NA molecules expressed on the surface of virus-infected cells as a reliable and
consistent indicator of virus replication. For convenience, the new assay was named IRINA
(ifluenza Replication /Mhibition Aeuraminidase-based Assay) to distinguish it from the
conventional HINT. We also demonstrated that IRINA has a potential to improve virological
surveillance by providing a streamlined unifying approach for comprehensive antiviral and
antigenic testing.

Materials and methods

2.1. Viruses

Influenza viruses used in this study were submitted to the WHO Collaborating Center
for Surveillance, Epidemiology and Control of Influenza at the CDC by US public health
laboratories (PHLSs) and other laboratories participating in WHO-GISRS.
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Most A(HLN1)pdmQ9 and type B viruses were propagated in MDCK cells, whereas
A(H3N2) and a few A(H1N1)pdmO09 (from 2021) viruses were propagated in MDCK-SIAT1
cells (Matrosovich et al., 2003). A set of 96 epidemic viruses, representing two A subtypes
and two B lineages (n = 24 for each subtype and lineage), collected during 2017-2021 was
used in this study. These viruses were selected to represent the diverse genetic groups of
viruses in circulation. In addition, a separate set of A (H3N2) viruses (n = 53) collected in
the US during the 2021-2022 season was tested as specified in Results.

CDC antiviral susceptibility reference virus panels (International Reagent Resource (IRR);
FR-1678 and FR-1755) and other viruses displaying reduced susceptibility to baloxavir and
NAIs were also tested (Supplementary methods).

2.2. Neuraminidase substrate

2.3.

NA activity was measured using a conventional NA assay, whereby the cleavage of substrate
2-(4-(methylumbelliferyl)-a-D-N-acetylneuraminic acid (MUNANA) results in the release
of the fluorescent product 4-methylumbelliferone (4-MU). NA substrate from NA-Fluor™
Influenza Neuraminidase Assay Kit (Applied Biosystems) was used to prepare a 200 uM
working solution in assay buffer (alternatively, 200 uM MUNANA (Sigma Aldrich) in 33.3
mM MES buffer, 4 mM CaCl,, pH 6.5). A 4-MU (Sigma Aldrich) calibration curve (100-
3200 pmol) was used to establish the relationship between target NA activity of reference
viruses and pmol of 4-MU.

Influenza replication inhibition neuraminidase-based assay (IRINA)

For the initial step of virus titration (inoculum normalization), the test viruses were serially
diluted in a 96-well microplate (black clear-bottom plate, Agilent) from 1071 to 1077 in
virus growth medium (VGM; DMEM supplemented with 0.2% bovine serum albumin,

25 mM HEPES, 100 U/mL penicillin, 100 pg/mL streptomycin) without TPCK-trypsin to
achieve single-cycle virus replication as described for HINT (Supplementary methods, Fig.
S1 IRINA workflow). After adding a 50 uL single-cell suspension of MDCK-SIAT1 into
wells (0.3 x 10° cells/well) containing 100 pL diluted virus, the microplates were incubated
at 37 °C in 5% CO, for 24 h. Supernatants were then aspirated and 50 uL of NA substrate
(200 uM) was added on top of the infected cell monolayer followed by incubation at 37

°C in 5% CO, for 1 h. The reaction was stopped by adding 50 pL of NA-Fluor™ stop
solution (alternatively, 0.2 M Nay,COg3, pH 11.5) to each well and fluorescence measured
from the bottom surface of plates using Cytation 7 (BioTek) with an excitation filter (A =
360 nm) and an emission filter (A = 460 nm). The NA activity-based virus dilution yielding
fluorescence signal equivalent to ~1750 or ~900 pmol/well of 4-MU for type A and type

B viruses, respectively (rationale for this is described below in Results section 3.1), was
determined and used in the next inhibition step (Fig. S1).

For inhibition by baloxavir, 3-fold serially diluted baloxavir at 3X in VGM without TPCK-
trypsin (~0.02-333 nM; with a final concentration of ~0.006-111 nM) was used. 50 uL of
each baloxavir dilution was mixed with 50 pL of diluted virus (based on NA activity as
described above) in a 96-well microplate, followed by addition of 50 pL of cell suspension
without pre-incubating virus-baloxavir mixture. Plates were incubated at 37 °C in 5% CO,
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for 24 h followed by determination of NA activity of infected cells as described above

for titration step. To test neutralization by monoclonal antibody (mAb) or ferret antisera
raised against cell-propagated vaccine reference viruses, 2-fold serially diluted mAb at 2X
(0.16-20 pg/mL; final concentration of 0.08-10 pg/mL) or antiserum (starting at 1/40; final
starting dilution of 1/80), both diluted in VGM without TPCK-trypsin, was mixed 1:1 with
diluted virus and incubated for 1 h at RT prior to the addition of cells. The rest of the steps
were same as described for baloxavir (Fig. S1).

After inhibition, the relative fluorescence unit (RFU) readouts were curve-fitted using
nonlinear regression to determine ECsg values or neutralization titers as previously described
(Okomo-Adhiambo et al., 2013; Jorquera et al., 2019).

2.4. Nl assay and IRINA to assess susceptibility to NAls

NI assay was carried out as previously described (Okomo-Adhiambo et al., 2013). To assess
susceptibility to NAIs using IRINA, the initial set-up was identical as described above for
baloxavir, but in the absence of any antiviral (Fig. S1). Following 24 hpi, supernatants were
aspirated; 50 L of serially 2X half-logq diluted NAIs (0.06-2000 nM) were added to
corresponding wells with infected cell monolayers and plates were incubated for 1 h at 37
°C in 5% CO». Next, 50 pL of NA substrate (200 pM) was added to each well (final NAI
concentration 0.03—-1000 nM) followed by incubating plates at 37 °C in 5% CO, for 1 h. The
reaction was stopped by adding 100 uL of stop solution to each well and fluorescence was
measured as described above.

Determination of drug concentration required to inhibit NA activity by 50% (I1Csq) was
carried out as described above (Okomo-Adhiambo et al., 2013). Fold changes in 1Cgq were
determined by comparing the 1Csq values of test viruses with those of the NA sequence-
matched control viruses and were interpreted according to WHO classification criteria
(WHO 2012).

3. Results

3.1

Normalization of virus inoculum based on NA activity

We hypothesized that HINT can be streamlined if the immuno-staining and digital
microscopy utilized to count virus-infected cells are replaced with the NA activity
measurement. To achieve this, we needed to demonstrate that: 1) NA protein synthesized
under HINT experimental conditions has sufficient enzyme activity for a conventional
fluorescent NA assay, and 2) there is a direct correlation between the number of infected
cells and NA activity.

One of the key requirements of HINT is the normalization of virus inoculum to produce
1000 infected cell population (ICP); acceptable range 300-4000. To this end, three influenza
viruses, A(HLIN1)pdm09, A (H3N2), and B/Victoria, were serially diluted in microplates and
cell suspension was added. At 24 hpi, ICP values were determined using HINT while NA
activity was measured in parallel plates using NA assay. Initially, NA activity was measured
separately in the harvested cell culture supernatants and the cell monolayers. Although NA
activity was detected in supernatants, the fluorescent signal was low and inconsistent, which
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would be expected under conditions of a single-cycle virus replication (Fig. S2). Conversely,
the NA activity of nascent (budding) NA molecules on the surface of infected cells was
much greater than in supernatants (Fig. S2). As evident from Fig. 1, NA activity (expressed
in RFU) was also in a linear range, especially when the respective ICP values were within
the acceptable range. Specifically, a strong correlation (r = 0.977-0.992) was observed
between 300 and 4000 ICP and corresponding RFU values for all three viruses. Noteworthy,
the RFU and ICP for the B/Victoria virus maintained a linear relationship up to the highest
tested 6000 ICP (Fig. 1).

These results supported our hypothesis, however, we wanted to ascertain how to calculate
proper virus inoculum without relying on immunostaining and cell imaging. We argued that
by targeting a specific fluorescent signal corresponding to ~1000 ICP, we could normalize
virus inoculum based on NA activity. To determine this target signal, we first assessed

the consistency of NA activity of the same three viruses diluted to yield ~1000 ICP. In

a series of independent experiments, we determined the average ICP values (total of 81—
149 replicates), which showed good consistency: 1158 + 210, 1138 + 314, and 1330

364, for A(H1IN1)pdm09, A(H3N2), and B/Victoria, respectively (Table 1). Notably, the
respective NA activity readings were also reasonably consistent, 27189 + 5986, 28384 +
6181, and 15805 + 6398. The target NA activity was similar for the two influenza A viruses
and was ~2-fold lower for the type B virus. Additionally, we found that the NA activity
corresponding to ~1000 ICP for a B/Yamagata virus was comparable to that of a B/Victoria
virus (Table S1). The ~2-fold lower target NA activity for type B viruses is not surprising
because the temperature used for virus replication was 37 °C, which is suboptimal for type B
viruses. Moreover, replication cycle of type B viruses is considered to be longer than type A
viruses (Karakus et al., 2018).

The target NA activity determined for a reference virus can be used to calculate a working
dilution of a test virus of the same type. However, this approach has downsides for a broader
assay implementation (reference virus stock maintenance, stock variability, etc.). In addition,
absolute RFU values differ depending on the fluorimeter used. Therefore, we explored
whether it would be possible to use the fluorescent metabolite 4-MU for this purpose. 4-MU
was serially diluted to generate a calibration curve to establish a correlation between 4-MU
concentrations and RFU values (Fig. S3). Using the respective linear curve equation, the
median target NA activities shown in Table 1 were converted into 4-MU concentrations:
1755, 1759, and 909 pmol for A(H1N1) pdm09, A(H3N2), and B viruses, respectively.
Using this approach, type A and type B viruses could be diluted to yield a fluorescent NA
activity signal that is produced by ~1750 and ~900 pmol/well of 4-MU, respectively. This
NA activity would then correspond to ~1000 ICP.

In the next experiment, we tested this approach using a set of 96 influenza A and B viruses.
For each virus, two dilution factors were calculated based on NA activity (IRINA) and ICP
(HINT). For each individual virus, the two dilution factors were comparable; the average
ratios (IRINA dilution factor/HINT dilution factor = ratios of dilution factors) for each
group of viruses were 1.0 £0.3,0.8 £ 0.2, 1.1 £ 0.3, and 1.2 £ 0.3 for A(HIN1)pdm09,
A(H3N2), B/Victoria, and B/Yamagata viruses, respectively (Table S2). These viruses were
diluted according to their NA activity-based dilution factor and the actual ICP values were
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determined. Indeed, the ICP values for these viruses fell within the acceptable ICP range
(data not shown). A single exception in this set of viruses was the A(H3N2) virus, A/
I11inois/10/2020, which displayed a low ratio (1625:14481 = 0.1) (Table S2). This result
was indicative of uncharacteristically low NA activity. Interestingly, the NA of this virus
has a rare amino acid substitution N419S (EP11740465; one out of ~29000 A(H3N2) NA
sequences since 2018), which may affect NA activity or stability. Expectedly, the ICP
produced by this virus when diluted according to its NA activity was too high (~6000) and
out of the acceptable range (data not shown).

Taken together, these results support our hypothesis that for most epidemic influenza
viruses, measuring enzyme activity of cell-associated nascent NA protein may offer a
feasible alternative to immunostaining of NP protein to achieve normalization of virus
inoculum. Next, we wanted to test whether this approach could be used to reliably assess
inhibition of virus replication.

3.2. Susceptibility to polymerase inhibitor baloxavir

In the next series of experiments, we evaluated whether IRINA is suitable for monitoring
susceptibility to baloxavir. First, we wanted to know whether IRINA-generated baloxavir
ECsq values would remain consistent when viruses are tested using varying inoculum. The
same three viruses were diluted to give a range of NA activity corresponding to 300-4000
ICP and inhibition with baloxavir was carried out (Fig. S4). For both influenza A viruses,
the IRINA ECsgqs remained consistent (<2-fold difference in ECsg) when their NA activity
was ~8000-40000 RFU, corresponding to 300-3000 ICP (Fig. S4). However, ECsq was
slightly elevated (~2.5-fold) when NA activity was >50000 RFU. For the influenza B virus,
the IRINA ECsgqs were consistent across the entire tested range (Fig. S4).

It is known that baloxavir ECsq values often differ depending on virus (sub)type and method
used (e.g., FRA vs HINT). Therefore, baloxavir susceptibility monitoring relies on the
ability of an assay to detect viruses displaying reduced susceptibility, which is defined as a
> 3-fold increase in ECgq compared to either a control virus or a (sub)type-specific median
ECsp. At CDC, two A(H3N2) reference viruses, A/Louisiana/50/2017-PA-138 (wildtype)
and A/Louisiana/49/2017-PA-138M (reduced susceptibility) are routinely used in each
HINT-based baloxavir susceptibility test for quality control purposes. This pair of reference
viruses was tested multiple times using IRINA and HINT to evaluate the consistency of
ECggs and corresponding fold increases. In IRINA, the median ECgs of PA-138 and PA-
I138M-substituted viruses were 1.13 and 17.42 nM, respectively; corresponding fold increase
in ECsg was 15 (Fig. 2A). In HINT, the median ECsgs of these viruses were 1.10 and

12.18 nM, respectively, which corresponded to an 11-fold increase (Fig. 2A). The median
ECsq of PA-138 virus was similar (P > 0.05) between both methods, while median ECsx

of PA-138M-substituted virus varied (P < 0.05). Despite this variation in ECgq values,

fold increases determined using IRINA and HINT were consistent (within < 2-fold), thus
supporting the suitability of IRINA.

Next, we extended the reduced susceptibility analysis to a larger set of viruses carrying
various PA amino acid substitutions (Table 2). HINT ECsq and fold increase values for
these viruses were available from previous tests and used to compare results obtained using
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IRINA. The fold increases in ECsgs conferred by all tested PA substitutions were similar

(< 2 times different) between the two assays (Table 2). Notably, we were able to detect

mild increases (3-10-fold) in ECsq conferred by various PA substitutions (e.g., E23G) using
IRINA. Moreover, for PA substitutions (e.g., L28P) that conferred < 3-fold increase in
HINT, the outcome of the IRINA testing was the same (Table 2).

IRINA was also applied to determine baloxavir ECs values for the set of surveillance
viruses (n = 96) used above (Table S2). These viruses did not contain any PA amino acid
substitutions of concern. All viruses had ECsg values below the 3-fold threshold, which
was consistent with HINT data (Fig. 2B and 2C). Median ECsgs determined by both assays
were highly comparable (P > 0.05) for both A subtypes and B/Yamagata lineage viruses,
while medians were found to be significantly different for B/Victoria lineage viruses (P

< 0.05). Of note, for A/lllinois/10/2020 (H3N2), which has uncharacteristically low NA
activity, displayed similar ECggs in HINT (1.3 nM) and IRINA (1.4 nM), despite having
been diluted to an out-of-range ICP in the latter assay. This result indicates the robustness
of NA activity-based measurement and suggests that IRINA can be used for testing viruses
with inherently low NA activity. Taken together, these data strongly support the suitability of
IRINA to conduct baloxavir susceptibility monitoring.

3.3. Susceptibility to a broadly neutralizing anti-HA monoclonal antibody

Neutralization assays are commonly applied to assess the antiviral activity of HA-targeting
mAbs, some of which have reached clinical trial stage of development (Kallewaard et al.,
2016). Here, we assessed the neutralization activity of the human mAb FI6 against the
A(H3NZ2) viruses (n = 24) using both IRINA and HINT (Corti et al., 2011). HAs of the
tested viruses belong to antigenically distinct subclades 3C.3a and 3C.2a. The procedure
was the same as that for baloxavir testing, except diluted viruses were pre-incubated with
mADb prior to adding cell suspension. All tested viruses were neutralized by this mAb. The
median ECgq values determined by IRINA and HINT assays were comparable (1.77 vs.
1.15, respectively; not statistically different P > 0.05) with ranges of 0.28-5.34 and 0.26—
5.48 pg/mL, respectively (Fig. S5).

3.4. Application of IRINA for assessing susceptibility to NAls

Although cell-based assays are not recommended for assessing susceptibility to NAIs
(Tisdale, 2000), we wanted to see if the IRINA could be used. We argued that it is plausible
if we only utilize the nascent NA molecules on the infected cells as the source of NA activity
to set up a biochemical reaction to test inhibition. Moreover, we showed above that in IRINA
the normalized virus inoculum generates consistent NA activity signal, which falls in a linear
range, as required for the conventional NI assay.

To this end, IRINA was modified to determine 1Csq values for oseltamivir, zanamivir,
peramivir, and laninamivir. For this experiment, we used NA mutants and their wildtype
counterparts from the CDC NAI susceptibility reference panel and other type A and B
viruses that carry various NA amino acid substitutions known to reduce susceptibility. Some
of these substitutions are also known to reduce NA activity (e.g., N2-R292K). NI 1C5q
values for these viruses were available from previous tests and used to compare results
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obtained using IRINA (Table 3, virus dilutions used for both assays are provided in Table
S3).

Although both assays utilize the same substrate (NA-Fluor™) and were essentially carried
out under the same conditions, IRINA 1Cggs were ~1.51.6 times higher than those obtained
using the NI assay (Table 3). This is likely to be attributed to the difference in the source
of the NA activity; NA expressed on the infected cells vs virus in suspension. Importantly,
reduced (highly) inhibition (RI/HRI) to one or more NAIs conferred by NA substitutions
were similar between these two assays (Table 3), which is the most relevant metric for
antiviral surveillance (WHO 2012). Minor disagreements were observed when interpreting
the fold increases for the viruses displaying borderline values (Table 3).

3.5. Antiviral and antigenic analysis of A(H3N2) viruses, 2021-2022

The beginning of the northern hemisphere 2021-2022 season in the US was marked by
large outbreaks caused by A(H3N2) viruses. This provided an attractive opportunity to use
IRINA for simultaneous antiviral and antigenic analysis. A set of A(H3N2) viruses (n =
53) was tested in parallel against the four FDA-approved antivirals. All A(H3N2) viruses
were susceptible to baloxavir with mean ECsg values 0.91 + 0.21, which was similar to the
subtype-specific median of 1.19 nM determined using HINT during 2019-2020 (n = 82).
Similarly, all viruses were susceptible to oseltamivir, zanamivir, and peramivir with mean
IRINA ICsgq values of 0.32 + 0.07, 0.53 £ 0.10, and 0.24 £ 0.06 nM, respectively.

Phylogenetic analysis of the HA genes of these A(H3N2) viruses showed that all viruses
belonged to genetic clade 3C.2alb.2a.2. To screen viruses for antigenic differences,

18 representative viruses, with HA amino acid differences, were chosen and tested by
IRINA and HINT (Table 4). Two viruses representing recent vaccines and their respective
homologous post-infection ferret antisera were included in the test. In IRINA, antiserum
raised against cell-propagated A/Cambodia/e0826360/2020 showed reduced reactivity (4.9—
22.7-fold) with all tested viruses. Conversely, antiserum raised against cell-propagated A/
Darwin/6/2021, which belongs to the same HA clade as the tested viruses, reacted well with
most of them. Notably, the reactivity of this antiserum was reduced by 2.91.1-fold (IRINA)
and by 3.2-4.7-fold (HINT) if viruses contained either an amino acid change R222K or a
combination of S205F + A212T in HA (Table 4). Therefore, antigenic analysis performed
using IRINA and HINT showed similar results.

4. Discussion

Development and implementation of high throughput assays for phenotypic characterization
is essential for global influenza virological surveillance. Although HINT has proven to be
useful and robust, its implementation is limited to laboratories equipped with specialized
imaging platforms. Here, we developed a new assay, IRINA, and showed its utility for
comprehensive antiviral and antigenic analysis. In the development of IRINA, we preserved
many technical solutions that contributed to the success of HINT, while replacing the
cumbersome immunostaining and imaging with much simpler and faster NA activity
measurement. These advancements were achieved without an apparent loss in the testing
outcome, consistency, and reproducibility.
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The principle of NA activity as a readout of virus replication has previously been utilized

to develop the virus neutralization-AVINA assay (Eichelberger et al., 2008; Hassantoufighi
et al., 2010). AVINA depends on multi-cycle replication of virus in the presence of trypsin
followed by NA activity measurement either in supernatant or infected cells at 20 hpi.
Multi-cycle replication for such a short period of time could be unpredictable due to varying
replication kinetics of different influenza viruses. Assay sensitivity was shown to depend on
the infectious dose added to the wells. The appropriate virus inoculum for AVINA needs to
yield a signal of (1-2) x 10° RFU after 20 hpi, indicating a very narrow range (2-fold) for
the target NA activity (Hassantoufighi et al., 2010). It is not uncommon to see a half logyg
(~3-fold) variation in titer during virus titration, which may depend on virus preparation, cell
culture condition, or both (Ruppach, 2013). Phenotypic assays often require optimization to
deliver consistent results when testing viruses that may possess different receptor-binding
preferences, replication kinetics, or trypsin dependency for multi-cycle replication. Though
this approach appeared to be attractive, its utility for surveillance purposes appears to be
limited.

Conversely, with single-cycle replication, we demonstrate a strong linear relationship
between ICP (range of 300-000) and NA activity of infected cells. This wider range of
inoculum accommaodates the usual half log,q (~3-fold) variation in titration. We believe that
the consistency of IRINA’s output strongly relies on the accurate virus titration based on
NA activity. By testing (sub)type-specific reference viruses multiple times, we identified the
target NA activity, which should be achieved to yield consistent infection and reproducible
results for test viruses. To accommodate for different fluorimeters that may be used to detect
fluorescence, we correlated the type-specific target NA activity to the fluorescent metabolite,
4-MU concentration. This information would aid laboratories in their normalization of virus
inoculum. Using this approach, we demonstrated that dilution factors calculated based on
NA activity and ICP were comparable for a large set of surveillance viruses. Concordantly,
dilution of viruses based on their NA activity gave corresponding ICP within the acceptable
range, indicating robustness of this approach.

This study demonstrates the utility of IRINA for the assessment of susceptibility to antivirals
with different mechanisms of action (baloxavir, anti-HA mAb, and NAIs). Moreover, we
assessed antigenic relatedness of circulating A(H3N2) viruses to the candidate vaccine
viruses. The application of IRINA would unify and streamline different laboratory tests,
since several steps, such as cell preparation, virus inoculum, infection time and read out,
etc., are the same whether testing against antivirals or antisera (Fig. S1 IRINA workflow).

WHO-GISRS laboratories in countries where baloxavir has recently been approved would
benefit from implementing assays for susceptibility monitoring. Two cell-based assays,
FRA and HINT, were validated for this purpose (Govorkova et al., 2022). Like HINT,

FRA also relies on immunostaining and sophisticated equipment (Takashita et al., 2018).
Conversely, IRINA requires a plate fluorimeter that many laboratories have or can obtain
more readily. This reduced dependence on specialized instrumentation could make IRINA’s
implementation more feasible. We observed subtle differences in baloxavir ECgq values
between IRINA and HINT, however, fold increases in ECsq of mutant viruses compared

to control viruses were in good agreement. The approach of comparing fold increase in
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ECsq has been used previously to harmonize NAI and baloxavir susceptibility testing and
reporting by WHO GISRS (Govorkova et al., 2022; Meijer et al., 2014). Notably, IRINA
also demonstrates that some previously reported markers (e.g., PA-L28P and PA-138V) had
no effect on baloxavir phenotype, which is consistent with previous HINT results when
compared to sequence-matched control viruses (Govorkova et al., 2022; Gubareva et al.,
2019).

Moreover, IRINA can be used to assess virus susceptibility to NAls. Although, differences
in absolute 1C5q values between IRINA and NI assay were observed, the interpretation

of I1Cx fold increases were similar. Clinical specimens or virus isolates often contain
mixed populations of NA variant and wildtype viruses. In this study, we did not test such
virus isolates using IRINA. As IRINA is a single-cycle replication-based assay, where
virus is infecting cells without any selection pressure, there is no chance for wildtype or
variant viruses to outcompete with each other and change in percentages of their respective
populations. Therefore, we do not expect much change in results of IRINA vs. NI assay
while testing such isolates. IRINA may provide some advantages, as it requires a smaller
quantity of virus (Table S3), which may save time and resources needed for preparing
virus isolates and determining a virus working dilution. Additionally, it is known that some
NA mutants may have difficulty egressing from the cell surface due to lower NA activity
(Barman et al., 2004), but this is not critical when applying IRINA as the source of the
enzyme activity are cell-bound NA molecules.

Eichelberger and colleagues have suggested that since NA is the readout of AVINA assay,
viruses deficient in NA activity could not be tested (Eichelberger et al., 2008). Using
IRINA, we could test many NA mutants (e.g., NA-R292K) that are known to have low

NA activity. For example, A(H3N2) virus containing NA-N419S, which has very low NA
activity, displayed similar baloxavir ECgq in HINT and IRINA, although it required a higher
virus inoculum in IRINA. One can argue that an NA activity-based dilution for viruses with
inherently low NA activity may result in ICP that is out-of-range. However, we and others
noted that compared to NP immunostaining, the range of linearity (quantitative range) is
wider for assays that use NA activity as a readout, and this contributes to the robustness of
IRINA (Hassantoufighi et al., 2010). Therefore, we believe that testing viruses with low NA
activity should not present a significant problem for IRINA.

As with other cell-based assays, the success of IRINA testing depends on availability

and proper maintenance of cell cultures, including attention to passage requirements and
accurate cell counting for plating. Cell lines may share the same name (e.g., MDCK), but
they often exhibit different morphology and other properties due to difference in passage
histories and other conditions. It is important to keep in mind that some A(H1N1)pdmO09 and
other viruses have occasionally been seen to produce a multi-cycle infection in MDCK cell
lines. Therefore, to ensure a single-cycle replication, it is best to use a well characterized
cloned version of MDCK cell line, like SIAT1 (Matrosovich et al., 2003) or hCK (Takada
et al., 2019) or to confirm a lack of multi-cycle replication in the available cell line in

the absence of trypsin. In this study, we only used MDCK-SIAT1 cells, although both,
MDCK-SIAT1 and hCK have successfully been used in FRA assays (Koszalka et al., 2020;
Takashita et al., 2020a).
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We demonstrated that, like HINT, IRINA can be used for antigenic analysis

of HA using mAb or polyclonal antiserum. IRINA results using ferret antisera
demonstrated that most of A(H3N2) viruses circulating in the US during the 2021-

2022 season were antigenically different from cell-grown A/Cambodia/e0826360/2020,

but similar to the 2022 southern hemisphere vaccine cell prototype virus A/

Darwin/6/2021. These findings are in good agreement with HINT results submitted

for the WHO vaccine composition consultation meeting held in February 2022
(https://cdn.who.int/media/docs/default-source/influenza/who-influenza-recommendations/
vcm-northern-hemisphere-recommendation-2022-2023/202202_recommendation.pdf).
Moreover, IRINA was able to detect a 3-4-fold reduced reactivity of antiserum raised
against A/Darwin/6/2021 with viruses that had either an amino acid substitution at

residue 222 or a combination of substitutions at 205 and 212 in the HA. It is worth

noting that in certain instances, fold reduction in neutralization titers were 3—4 times

lower for IRINA as compared to HINT (e.qg., reactivity of anti-A/Cambodia/e0826360/2020
serum towards A/Darwin/6/2021 or A/Montana/01/2021) (Table 4). This difference likely
stemmed from the inhibition of NA activity on infected cells (signal readout for IRINA)

by anti-NA antibodies present in the serum. To this end, we observed that fold reduction

in IRINA titers were very similar to HINT when supernatant was removed following
attachment of cells at 2-3 hpi (Table S4). Therefore, when using IRINA to test convalescent
sera, it would be prudent to remove residual antiserum shortly (~2-3 h) after infection.

In conclusion, IRINA offers advantages over current laboratory methods as it provides

a unified platform to test susceptibility of influenza viruses to antivirals with different
mechanisms of action. This is important as it will allow surveillance laboratories to

obtain more data faster while requiring fewer investments and resources. Like HINT,

IRINA can likely be used to assess susceptibility to RNA polymerase inhibitors (e.g.,
pimodivir) and other direct-acting antivirals (Patel et al., 2021). It may also be applied

to testing anti-NA antibodies that target the NA active site and whose activity can be
detected using a small substrate like MUNANA. Implementation of IRINA can streamline
phenotypic characterization of emerging viruses and could prove vital to improve virological
surveillance and pandemic preparedness.
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Fig. 1.

Linear relationship between infected cell population (ICP) and the NA activity of

infected cells. Three viruses, A/lllinois/08/2018 (A), A/Louisiana/50/2017 (B), and B/North
Carolina/25/2018 (C) representing A(H1N1)pdm09, A(H3N2), and B/Victoria lineage,
respectively, were serially diluted to determine the relationship of ICP and NA activity
(expressed in RFU) of infected cells. Plotted data is representative of three independent
experiments. Dashed grey lines indicate cut-offs for acceptable ICP range. Black dots
represent values used for best-fit trendline (black dotted line) with 95% confidence. The
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correlation coefficients (r) between ICP and RFU were calculated by the Pearson correlation
test (p = < 0.0001). RFU: relative fluorescence units.
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Fig. 2.

Baloxavir susceptibility testing of reference and surveillance viruses using IRINA
and HINT. (A) Pair of A(H3N2) viruses (A/Louisiana/50/2017-PA-138 and A/

Louisiana/49/2017-PA-138M) tested in a minimum of six independent experiments. Virus
inoculum was determined by NA activity for IRINA, and ICP for HINT. ECsq values were
calculated using RFU for IRINA, and ICP for HINT and shown as box and whiskers plots,
where whiskers stretch to the minimum and maximum ECsq values. Median ECsg and
corresponding fold increase values are indicated. (B, C) Results for surveillance viruses
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(n=96): A (HIN1)pdmO09 and A(H3N2) subtypes (B), and B/Victoria and B/Yamagata
lineages (C). IRINA and HINT were conducted separately, each in at least two independent
experiments. Median ECs values are indicated, and standard deviations are shown as error
bars. (A—C) Unpaired student’s t-test was used for statistical comparison of ECsgg values
determined using IRINA vs. HINT. * indicates statistically significant difference (P < 0.05).
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