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Abstract

The advent of portable, low-field MRI (LF-MRI) heralds new opportunities in neuroimaging. 

Low power requirements and transportability have enabled scanning outside the controlled 

environment of a conventional MRI suite, enhancing access to neuroimaging for indications 

that are not well suited to existing technologies. Maximizing the information extracted from the 

reduced signal-to-noise ratio of LF-MRI is crucial to developing clinically useful diagnostic 

images. Progress in electromagnetic noise cancellation and machine learning reconstruction 

algorithms from sparse k-space data as well as new approaches to image enhancement have now 

enabled these advancements. Coupling technological innovation with bedside imaging creates new 

prospects in visualizing the healthy brain and detecting acute and chronic pathological changes. 

Ongoing development of hardware, improvements in pulse sequences and image reconstruction, 

and validation of clinical utility will continue to accelerate this field. As further innovation occurs, 

portable LF-MRI will facilitate the democratization of MRI and create new applications not 

previously feasible with conventional systems.

Introduction

The origin of neuroimaging dates to the turn of the twentieth century when X-rays were first 

discovered and used to image the skull1,2. It was not until three-quarters of a century later 

that computerized tomography (CT) scanning led to the first non-invasive three-dimensional 

(3D) images of the brain and its substructures3,4. Shortly thereafter, in vivo NMR detection 

of water protons was combined with spatial encoding using magnetic field gradients to 

enable the first MR images of the brain5,6. Over the ensuing decades, improvements in 

resolution, contrast and image reconstruction have reinforced these techniques as central 

to neurological, neurosurgical and neuroscientific investigation. Collectively, CT and MRI 

modalities have transformed our understanding of the brain in both normal and pathological 

states.

From a diagnostic perspective, present-day neuroradiological examination is paramount 

to the evaluation and management of numerous neurological diseases, including 

stroke, intracranial haemorrhage, brain tumours, multiple sclerosis (MS), dementia and 

hydrocephalus. The choice of CT versus MRI represents trade-offs between diagnostic 

sensitivity and specificity, safety, cost, and accessibility. For MRI, the clinical imperative for 

shortened scan times and increased resolution that accompanies the improved signal-to-noise 

ratio (SNR) has focused most technological developments toward increasing the strength of 

the main magnetic field (termed B0). However, higher magnetic field strengths necessitate 

supercooling cryogens, high power and electrical current requirements, and specialized 

safety protocols for addressing thermal heating, acoustic noise and ferromagnetic materials. 

Collectively, these features require a large initial capital investment in machinery, with 

substantial operational costs, which has the overall consequence of reduced accessibility of 

MRI. However, not every diagnostic question requires high-resolution imaging; therefore, 

MRI devices with lower magnetic field strength and lower image resolution have the 

potential to fill an important niche owing to lower cost and increased access. In this context, 

lower field strength represents engineering innovation, whereas portability and lower cost 
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represent public health innovation. Taken together, accessible and affordable low-field MRI 

has the potential for high impact at the population level if implemented appropriately.

MRI scanner design involves choices with respect to field strength, magnet type, scanner 

geometry and instrument citing. For the purpose of this Review, MRI scanners operating 

with a primary magnetic field strength between >10mT and ≤100mT are termed low-field 

MRI (LF-MRI), whereas those operating between >100mT and ≤1.0 T are mid-field MRI, 

>1.0 T and ≤3.0 T are high-field MRI (HF-MRI), and >3.0 T are ultra-high-field MRI. 

Scanners operating below 10 mT are known as ultra-low-field MRI. The majority of clinical 

scanners correspond to HF-MRI, where the average superconducting magnet weighs 4,500–

7,500 kg and requires fixed housing in a dedicated MRI suite with an adjacent control 

room and separate access for cryogenic components. Patients must therefore be physically 

transported to a centralized diagnostic MRI suite to undergo imaging.

By contrast, scanners with magnetic field strengths in the LF range are generally built using 

permanent magnets, which avoids the need for supercooling cryogens and reduces power 

consumption. Relative to superconducting electromagnets, which are typically arranged 

in a cylindrical bore configuration, permanent magnet scanners are typically constructed 

using C-arm, H-arm or Halbach array geometries7. Collectively, the choice of magnet, its 

electrical power requirements and the associated geometry have a major impact on siting 

constraints, which range from access-controlled, fixed locations to portable scanners that 

are compatible with imaging adjacent to nearby ferromagnetic materials. For this Review, 

portable MRI refers to fully self-contained devices with the ability to move to the bedside 

for imaging acquisition or to scanners located within a mobile vehicle enabling imaging 

within the community. Although not all LF-MRI systems are transportable (for example, 

a fixed location LF system), many of the features that define LF-MRI enable this class 

of scanners to be portable. For LF-MRI devices, the main limitation is the lower SNR 

leading to reduced image resolution and longer acquisition times. However, recent advances 

in hardware and software for LF-MRI have unlocked the strength of this area as a promising 

option for both clinical diagnostic and scientific questions. The summary of those advances 

and clinical applications is the focus of this Review.

Hardware and software requirements

Although the detailed physics and principles underpinning MRI are beyond the scope of 

this Review, there are several features and concepts that are essential in MR system design. 

The B0 field (typically measured in Tesla) creates a Boltzmann distribution of nuclear 

spin alignment (known as polarization) in hydrogen-containing tissues, primarily water and 

lipid. The inductive detection of this nuclear polarization forms the signal in proton MRI. 

The magnet is designed such that the B0 field is as homogenous as possible to perform 

high-resolution imaging. So-called shim coils are used to further improve the homogeneity 

of the main B0 field for individual people being scanned.

To spatially encode the MR signal, computer control of the current passing through magnetic 

field gradient coils is used to phase-modulate and frequency-modulate the detected MR 

signal. The gradient coils are securely fixed inside the magnet. Radiofrequency (RF) coils 
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are used to transmit a RF pulse at the proton resonance frequency and to detect the 

precessing nuclear spin magnetization. The phase-encoded and frequency-encoded data can 

be represented in the k-space or spatial frequency domain. Reconstruction of the image 

in the spatial domain involves inverting the forward encoding model, which, for standard 

Cartesian k-space imaging, is a simple inverse Fourier transform. Other more sophisticated 

reconstruction approaches are used for non-Cartesian acquisition strategies, such as spiral 

and radial sampling, and for acquisitions that undersample k-space. The spatial resolution 

and overall quality of the reconstructed image ultimately depend on the SNR of the acquired 

data, which is much lower in LF-MRI systems than for conventional HF counterparts.

Several bioengineering advances in LF-MRI hardware and software have enabled the 

realization of portable MRI in the clinical environment. Below, we summarize some of 

those developments and highlight new directions.

Hardware considerations

From a hardware perspective, there are several important considerations that are crucial 

to enabling portability for a LF-MRI system. These factors include a reasonable weight 

and size, a tight fringe field that limits the extent of the peripheral magnetic field, power 

requirements that can be supplied by standard electrical outlets, no active cooling, built-

in shielding and/or RF interference cancellation, and low acoustic noise. Together, these 

features facilitate portability, both through the incorporation of wheels and motors in device 

design enabling transportation by a single operator, and in siting scanners outside of access-

controlled environments such as in mobile vehicles. In addition, the primary magnet must 

have sufficient homogeneity of the B0 field to facilitate acceptable spatial resolution and 

geometric accuracy as well as a field strength that is high enough for sufficient SNR.

For portable systems, the use of permanent magnets has emerged as a means to mitigate 

the electric power and cooling needs of resistive electromagnets (for recent resistive 

electromagnet development, see refs.8–11). Permanent magnets are comprised of either 

neodymium–iron–boron (NdFeB) or samarium–cobalt (SmCo). NdFeB gives a higher field 

strength than SmCo but field drift is more temperature dependent. There are two main 

geometries used to generate the B0 field: a Hal-bach array or planar magnets in a C-shape 

or H-shape. C-shaped and H-shaped magnets consist of two large discs, and the patient 

is positioned between them. The two magnets are connected through either a single (C-

shaped) or two (H-shaped) ferromagnetic yokes (Fig. 1). C-shaped and H-shaped geometries 

have weights on the order of 350– 450 kg, field strengths of 50–64 mT and B0 field 

homogeneities of ~250–500 parts per million (ppm) after shimming12–14. In comparison, 

Halbach array15 permanent magnet systems employ several small magnets7,16,17 that are 

arranged to give either a homogeneous magnetic field or one with an in-built gradient16,18–21 

(Fig. 1). Typical weights for Halbach arrays are lower than planar disc geometries with 

weights of 35–70 kg, field strengths of 50–80 mT and a B0 field homogeneity of ~1,000 

ppm after shimming.

Gradient coil designs depend largely on magnet geometry; for C-shaped and H-shaped 

magnets, planar gradient coils22 on each pole piece are used23–26, for Halbach arrays, the 

gradient coils are arranged in a cylindrical geometry20,27. In general, both systems have 
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much lower acoustic noise levels than HF-MRI owing to reduced Lorentz forces, which are 

the combined electric and magnetic force on a point charge that is due to the electromagnetic 

field28. Lorentz forces are used to create vibrations in the gradient coils yet they can also 

cause acoustic noise. Gradient amplifiers for portable MRI, which may be commercial or 

custom-built, produce peak currents of between ~30 and 150 amps.

Taken together, there are trade-offs for each type of magnet design. For example, planar 

disc designs are simpler to construct, are more open and typically have better B0 field 

homogeneity. However, they tend to have greater mass and the planar gradient coils used are 

intrinsically less efficient. Conversely, Halbach arrays with a cylindrical geometry produce 

the maximum field strength per unit weight of magnetic material and are consequently 

lighter. These systems also have more efficient cylindrical gradient coils but the greater B0 

field inhomogeneities can adversely impact spatial resolution. Strategies have been proposed 

that eliminate one or more gradient coils from the scanner in lieu of using an inherent 

‘built-in’ static magnetic gradient18 to perform spatial encoding or by using RF-encoding 

strategies such as Transmit Array Spatial Encoding19,29–31.

Key to the operation of MR systems is the ability to transmit resonant RF pulses to excite the 

nuclear spins in the imaging volume and to receive the weak signal arising from precessing 

nuclear magnetization. These transmit and receive systems are essentially antennas that 

are tuned for operation at the appropriate Larmor frequency, which is 42 MHz/T (42 

kHz/mT) for proton (water) imaging. These antennas are known colloquially in the MRI 

RF engineering community simply as the ‘RF coil’. The direction of the magnetic field 

(termed B1) produced by these RF coils must be oriented perpendicular to the axis of the B0 

field. RF coils for MR have been reviewed in detail elsewhere32.

Each of the LF magnet geometries described above produces a B0 field oriented transverse 

to the patient axis, with two possible perpendicular directions for the B1 field direction. 

For adult neuroimaging, an outer cylindrical solenoid transmit coil and an inner elliptical 

solenoid coil for signal reception can be used12,14. Quadrature receive coils have also been 

developed33. Moreover, an elliptical spiral solenoid11 has been constructed to conform 

tightly with the human head for both transmission and reception20,34: the B1 field uniformity 

can be optimized using a variable winding pitch35. Images have also been obtained18,36 from 

multi-element receive coil arrays like those on a commercial portable LF-MRI system13. 

Both custom-built and commercial RF amplifiers have been used on portable LF-MRI 

systems, with outputs on the order of tens of Watts required.

In terms of future hardware developments, new design techniques, such as those based on 

artificial intelligence (AI)37, may lead to lighter, stronger and more homogeneous magnet 

designs. Many LF systems use RF coils wound with standard copper wire and have a 

reduced quality factor owing to the ratio between the central frequency and the bandwidth32. 

The use of Litz wire11,35,38 to increase the coil quality factor is a strategy to reduce 

detector noise. Ultra-low-noise, 50-Ω RF preamps suitable for operation at the LF and 

ultra-low-field Larmor frequencies have also become available, which can be used to obtain 

a lower receiver noise floor. Especially in the case of highly inhomogeneous magnets, 

the RF coil bandwidth might become too narrow to accommodate the necessary imaging 
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read-out bandwidth. In these cases, the use of impedance-mismatched preamplifiers to 

expand the receive bandwidth could be used. Even more compact systems can be designed 

when full imaging capability is not needed such as to obtain spectroscopic or relaxometric 

information. Such systems rely on single-sided MR39–41.

Electromagnetic interference

For MRI scanners with a fixed siting, ambient electromagnetic noise can be shielded 

from the instrument by constructing a conductive enclosure around the scanner suite (that 

is, a Faraday cage). For portable systems, an alternative solution is needed to manage 

electromagnetic interference (EMI)14,42.

Several active EMI cancellation methods have been recently developed to remove EMI for 

LF-MRI without requiring an RF-shielded room. An analytical approach was proposed to 

estimate the EMI signal in the MRI receive coil from EMI signals detected by EMI sensing 

coils based on the frequency domain transfer functions among coils43. This strategy was 

later extended for time domain implementation as linear convolutions and with an adaptive 

procedure42. A commercially available FDA-cleared 0.064 T brain MRI scanner can operate 

in unshielded environments using an EMI removal method, which was first described in 

2017 (ref.44) and further described more recently13,45,46. A deep learning approach was also 

developed to derive a more accurate model to predict the EMI signal in an MRI receive 

coil from the EMI signals detected by EMI sensing coils14,47. In general, these methods 

take advantage of the well-established multi-receiver MRI electronics previously developed 

for parallel imaging. They are also underpinned by a simple electromagnetic phenomenon; 

that is, the properties of RF signal propagations among any radiative (for example, air) or 

conductive media (for example, surrounding EMI-emitting structures such as power lines, 

RF coils, other MRI hardware pieces and cables, or patient monitoring equipment) are fully 

dictated by the electromagnetic coupling among these media or structures. Such coupling 

relationships can be analytically characterized in a simple manner by the frequency domain 

coupling or transfer functions among structures (for example, among MRI receive coil and 

sensing coils). In turn, this information can be used to estimate the EMI signal and remove it 

from the reconstructed image.

The ideal EMI cancellation method must handle EMI signals that change dynamically over 

time during MRI scanning. Such changes can arise from the surrounding EMI sources 

that demonstrate different behaviours. EMI signals received by MRI receive coils can also 

be influenced by the human body, which serves as an antenna48,49 for EMI reception 

in a shielding-free MRI setting. For example, varying body size and weight can alter 

the level and characteristics of EMI signals picked up by the body and subsequently 

detected by the MRI receive coil. Changes in human body position during MRI scanning 

can also alter the EMI signal detected by the MRI receive coil owing to alterations in 

electromagnetic coupling between surrounding EMI-emitting sources and the receiving 

human body. Consequently, adaptive approaches50,51 that rely on deep learning are found 

to be more effective in practice. Future development should focus on robust cancellation 

methods in the presence of strong and complex EMI environments.

Kimberly et al. Page 6

Nat Rev Bioeng. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pulse sequence and data acquisition

Although numerous MRI protocols have been developed since the 1980s, the most valuable 

and universally adopted neuroimaging protocols are T1-weighted (T1W) imaging, T2-

weighted (T2W) imaging, fluid-attenuated inversion recovery (FLAIR), diffusion-weighted 

imaging (DWI) and susceptibility-weighted imaging (SWI)52. T1W images rely on the 

longitudinal relaxation of proton spins to generate tissue contrast, whereas T2W contrast 

is based on the transverse relaxation of spinning protons. FLAIR is a T2W image with an 

inversion pulse implemented to suppress the signal from cerebrospinal fluid (CSF). DWI 

generates images based on differences in Brownian motion. SWI is a gradient-echo-based 

sequence that is sensitive to small magnetic field inhomogeneities, making it susceptible 

to ferromagnetic materials. At LF, T1W protocols can be implemented using 3D gradient-

echo12,14,34 or 3D fast-spin-echo (FSE) with inversion preparation13,20,45, whereas T2W 

protocols are commonly implemented using 3D FSE sequences13,14,20,45. A FLAIR protocol 

can be achieved through either a traditional inversion-prepared 3D FSE sequence13,45 or a 

simple short repetition time 3D FSE sequence14.

DWI is technically more challenging at LF but remains a clinically valuable protocol, 

particularly for early stroke diagnosis. Strong diffusion gradients make DWI intrinsically 

sensitive to patient motion and are also hardware demanding. Although 2D FSE and 3D 

steady-state gradient-echo sequences have been attempted13,45, single-shot 2D echo-planar-

imaging sequences generate more reproducible brain DWI results owing to relative motion 

insensitivity14. Given that T1 values of various tissues are generally much shorter at 

LF53 (with the exception of CSF), direct 3D DWI protocols with short repetition time 

are desirable. DWI protocols on current FDA-approved LF-MRI devices are limited to 

acquisition in a single diffusion direction and do not use multiple b-values (protocols limited 

to b = 0 and b = 900 s/mm2). A b-value is a measure of the strength of the diffusion 

gradients applied during a scan. Higher b-values can improve the sensitivity of the scan in 

detecting water diffusion but can also reduce image quality. Expanding the capabilities 

of DWI with isotropic diffusion weighting and high-SNR in addition to improving 

image quality against hardware imperfections are avenues for ongoing development. 

Implementation of SWI and other sequences that rely on magnetic susceptibility, such as 

blood oxygen-dependent imaging, is challenging at LF owing to low magnetic susceptibility. 

As with DWI, this remains an area for future research. In parallel, alternative data 

acquisition and reconstruction methods, such as TrueFISP-based MR fingerprinting54 or 

deep learning reconstruction55–57, have been used to boost the attainable image quality from 

low SNR or incomplete 3D k-space data acquired at LF58,59.

Machine learning and AI

Even with further improvement in hardware and software at LF, there is currently a sizeable 

gap in image quality between the reconstructed LF images when compared side-by-side to 

HF-MRI (Fig. 2). One emerging strategy to narrow this gap is to develop super-resolution 

methods, that is, techniques that increase the resolution of an imaging system. Such 

techniques have the potential to synthesize a high-resolution image from a lower-resolution 

LF counterpart.
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Early super-resolution methods were developed for photography and capitalized on multiple 

images from the same scene (with sub-pixel shifts) to estimate a higher-resolution 

image. These methods were superseded by single-image methods, where machine learning 

techniques are used to predict a high-resolution image from a low-resolution input. These 

methods are typically trained in a supervised fashion, that is, ‘teaching’ the method 

with numerous pairs of low-resolution and high-resolution images of the same scene. 

State-of-the-art super-resolution follows this paradigm, using modern AI techniques based 

on convolutional neural networks (CNNs)60. The most successful CNNs are trained in 

a supervised fashion with a large pool of paired, spatially aligned high-resolution and 

low-resolution images to estimate a mapping between the two61–63. Unsupervised strategies 

using perceptual losses based on adversarial networks64 also exist and do not require 

paired images: by fooling a discriminator trained to differentiate super-resolved and real 

high-resolution images, the properties of high-resolution images can be learned. However, 

adversarial perceptual losses are normally used in conjunction with supervised methods to 

improve the accuracy of the synthetic images as they underperform when used in isolation65.

Paired data to train super-resolution CNNs for portable LF-MRI will become available with 

time yet data are currently limited. Even with the compilation of large data sets of paired 

HF and LF images from the same individuals, spatial alignment is a challenge between the 

two field-strength images. Estimating this alignment with deformable image registration66 

is difficult owing to the large differences in non-linear spatial distortion and resolution. 

An alternative approach is to artificially down-sample HF-MRI scans (whereby images 

are reduced in spatial resolution) to obtain pairs of images that are perfectly aligned by 

construction but are limited, a problem known as ‘domain shift’67. Alternative strategies, 

such as domain adaptation techniques68, unsupervised techniques or domain randomization 

techniques69,70, may eventually bridge this domain gap and reach a level of performance 

that is not far behind that of supervised methods.

A crucial component of these AI strategies will be the ability to quantify the uncertainty 

of the predictions. Neural networks can hallucinate features in image regression problems, 

particularly when using adversaries71. Therefore, knowing when and where a prediction 

is likely to be wrong is of great importance in clinical settings. This requires estimating 

two sources of uncertainty: aleatoric and epistemic. The former is dependent on input and 

can be learned from training data with statistical distributions; the latter is in the CNN 

weights. Advances in areas such as prior networks72, Bayesian deep learning73, Monte 

Carlo dropout74, deep ensembles75 or evidential deep learning76 could provide the rigorous 

uncertainty estimation that will be required for clinical applications.

Another critical aspect of AI systems is the potential presence of biases in the trained 

systems (‘AI safety’). Such biases are almost always the product of a lack of diversity in 

the training data77 and are known to be possibly very large in image classification CNNs 

operating at the global level. For example, error rate increases have been found in under-

represented groups in Alzheimer disease classification78 following previous results from 

the non-medical literature (for example, recidivism prediction79,80 or childhood welfare81). 

To the best of our knowledge, the effect of AI biases on super-resolution has never been 

specifically studied. Being a voxel-wise regression problem, where predictions are made 
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semi-locally, AI biases should be less problematic than in image classification. However, 

mild group-wise differences in performance have been found in other voxel-wise tasks such 

as image segmentation of cardiac and brain MRI82,83. Therefore, we believe that it will be 

of paramount importance to study the presence of biases in AI-enabled super-resolution of 

LF-MRI before deployment as well as to assess the effectiveness of existing bias mitigation 

approaches84, possibly developing new mitigation strategies that are specific to this imaging 

domain. Such studies will require the acquisition and curation of diverse paired LF-MRI and 

HF-MRI data sets.

Clinical applications

With recent advances in LF-MRI scanners that are approved by the FDA for clinical use, 

imaging at LF is starting to be evaluated in inpatient hospital environments and community-

based settings (Fig. 2). Here, we summarize some of the emerging experiences of applying 

LF-MRI in these areas.

Stroke and intracerebral haemorrhage

Timely neuroradiological examination is a crucial step in the diagnosis and management of 

stroke. Current guidelines recommend that patients with suspected stroke receive emergency 

imaging on hospital arrival to differentiate acute ischaemic stroke (AIS) from intracerebral 

haemorrhage (ICH). Traditionally, neuroimaging for stroke has been performed using non-

contrast CT or MRI, with the former being the imaging modality of choice owing to better 

accessibility at most primary stroke centres. For AIS, a head-to-head trial of MRI versus 

CT demonstrated that MRI was superior to CT for the diagnosis of acute infarction85, with 

a higher sensitivity especially in the first 6 h after stroke onset and for the detection of 

small infarcts85–87. DWI detects the reduced diffusion of water that occurs within minutes 

of ischaemia onset88, and the interpretation of DWI is reliable among readers with different 

levels of experience89.

Multimodal MRI has also been shown to improve patient selection procedures for 

thrombolysis treatment. For example, in the setting of stroke with an unknown time of onset 

(often termed wake-up stroke), DWI and FLAIR imaging can be used to estimate the time 

of stroke onset and guide treatment with tissue plasminogen activator90–92. In the evaluation 

of ICH, non-contrast CT has a high sensitivity to blood products and has historically 

been the imaging modality of choice. However, multimodal MRI has been shown to be as 

accurate as CT in detecting ICH, improving classification of extra-axial haemorrhage while 

circumventing exposure to CT radiation93. Nevertheless, timely access remains a barrier 

to implementing MRI in patient diagnosis and treatment selection procedures, with many 

centres continuing to favour CT owing to acquisition times and cost efficiencies.

LF-MRI offers a unique potential for stroke diagnosis and intervention. LF-MRI can detect 

both AIS and ICH; specifically, it was able to detect diffusion restriction in 45 out of 

50 (90%) patients with acute ischaemic stroke identified on HF-MRI94. Moreover, in 144 

patients with ICH or AIS compared with healthy controls, the sensitivity and specificity 

for detection of ICH was high (sensitivity 80.4%, specificity 96%)95. However, as the 

majority of reported acquisitions were performed in the subacute time frame, systematic 
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hyperacute imaging and head-to-head comparisons with current modalities is needed. In 

addition, real-time interpretation across a range of readers needs to be evaluated to optimize 

routine real-world use.

Portable LF-MRI could also expedite stroke diagnosis across a range of environments, 

including those previously unable to support conventional HF-MRI. This encompasses 

small community hospitals in remote areas, planes, ambulances and emergency departments. 

Mobile stroke ambulances with onboard CT scanners have already shown benefit, including 

improved patient outcomes and reduced disability96. Ambulances with onboard LF-MRI 

scanners could also hold considerable potential, particularly in advancing the diagnosis and 

treatment of patients with acute stroke using multimodal imaging.

Cardiac arrest and critical care

In addition to imaging stroke and its complications, portable LF-MRI has been used to 

monitor for neurological complications in critically ill populations. Despite the diagnostic 

value of imaging critically ill patients, transport out of the intensive care unit (ICU) to 

centralized imaging suites is not always feasible owing to the risk for life-threatening 

haemo-dynamic, respiratory and/or neurological adverse outcomes97–100. As a result, 

gaps in information conferred by MRI can occur, which are pivotal for clinical decision-

making101–104.

LF-MRI is safe and feasible to perform in critically ill patients13, including those who 

have been traditionally excluded from neuroimaging13,105,106. LF-MRI imaging has also 

been acquired in patients undergoing extracorporeal membrane oxygenation, including for 

the detection of previously unsuspected strokes106. In a cohort of patients with severe 

acute respiratory distress syndrome related to COVID-19, with unexplained encephalopathy, 

seizures, focal neurological deficit or an abnormal head CT, 12 (63.2%) patients had 

abnormal findings on LF-MRI. These findings included increased FLAIR signal, cerebral 

haemorrhage and diffusion restriction on DWI. Although abnormal findings changed 

management in 5 (41.6%) patients, normal MRI allowed providers to adjust the differential 

diagnosis or provide reassurance when discussing goals of care107. Similarly, in a cohort 

of 20 patients with altered mental status and COVID-19, portable LF-MRI identified 

abnormalities in 8 (40%) patients13.

Survivors of cardiac arrest are another critically ill population at high risk for travel out 

of the ICU. HF-MRI is more sensitive than CT for the detection of hypoxic–ischaemic 

brain injury and provides information for neurological prognostication108,109. An initial 

experience in imaging cardiac arrest survivors with LF-MRI established that imaging could 

occur without interruption of continuous haemodynamic monitoring or disruption of targeted 

temperature management. Portable LF-MRI exams managed to detect the same hypoxic–

ischaemic injury that was detected on conventional neuroimaging earlier than conventional 

HF-MRI by approximately 33 h (ref.105).

Paediatric brain development

Neuroimaging is playing an increasing role in understanding neurodevelopment in children. 

Growth charting is central to paediatric care, and ongoing efforts have sought to extend these 
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normative charts to the developing brain. For example, percentile brain growth charts for 

children with normal development have been constructed, and an age-dependent universal 

ratio of brain-to-CSF volume, independent of sex or anthropometric body size, has been 

observed110. Furthermore, brain volume across the lifespan has also been explored with 

utility beyond childhood111. Observing and optimizing brain growth requires automated 

segmentation of images obtained using MRI, and quantifying both brain and CSF volume 

as a function of age is showing increasing value112. Access to conventional MRI as a serial 

screening tool for such purposes is limited. However, paediatric LF-MRI neuro-imaging in 

children aged 6 weeks to 16 years has been performed, with volumetric results obtained on 

LF-MRI compared to conventional 3 T counterparts113. Although confidence intervals were 

substantially broader at LF, preliminary findings in 42 children reported strong agreement 

between developmental trajectories calculated on both LF-MRI and HF-MRI113.

LF-MRI also has potential in the setting of the neonatal ICU (NICU), where brain imaging 

is used to diagnose and monitor conditions such as hypoxic–ischaemic injury, haemorrhage 

and congenital brain malformations. Comparable to the adult ICU, conventional HF-MRI 

is not compatible with NICU support equipment, including incubators and monitors, and 

despite efforts to develop MR-compatible devices114,115, movement of critically ill infants 

to centralized imaging suites remains an important clinical concern116. Furthermore, one of 

the most notable contraindications to paediatric MR is motion artefact, with infants often 

requiring anaesthesia or sedation to tolerate the exam, albeit at an increased risk to the 

patient117,118. Approaches to circumvent sedation include scanning infants during sleep, in 

the evening, or following feeding or swaddling. LF-MRI enables imaging at the bedside 

and in the presence of ferromagnetic equipment, where the lower acoustic noise of LF-MRI 

systems facilitates movement of children into the scanner while enabling staff or caregivers 

to maintain physical contact during the exam owing to the reduced fringe field113.

LF approaches also allow for the development of specific magnet geometries for imaging 

the neonatal brain, with several systems designed specifically for infant populations8,118. 

To facilitate NICU scanning, early investigations involved a 0.17 T system deployed in the 

United Kingdom, enabling imaging of infants aged approximately 16.3 days, including 43 

with suspected pathology118. Subsequently, a 0.064 T system was deployed in a NICU, 

enabling 14 neonates with an average age of 29.7 days to be imaged116. LF-MRI was able 

to detect notable pathology, although subtle pathology was missed, likely caused by the low 

SNR and resolution, especially for findings on DWI and T1. Despite benefits of LF-MRI in 

the NICU, image quality remains a barrier to post-processing (such as skull stripping) and 

subsequent interpretation. Additional assessment of the usefulness of LF-MRI imaging in 

the paediatric population and the impact on patient outcome is an avenue for future research.

Beyond the NICU, the value of paediatric LF-MRI imaging in low-income and 

middle-income countries is of relevance, especially for the detection of hydrocephalus. 

Hydrocephalus predominantly arises because of infection, haemorrhage or other 

inflammatory conditions119, and is the most common indication for neurological surgery 

for children. In industrialized countries, the primary cause is intraventricular haemorrhage of 

prematurity. In the developing world, infection early in life, often in survivors of neonatal 
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sepsis120, is the predominant cause120,121, with the prevalence of hydrocephalus in these 

regions vastly exceeding that in industrialized countries.

Neuroimaging is not only useful for the diagnosis of hydrocephalus but is necessary for 

treatment and continued management. Because growth arrest of the brain can occur in 

untreated hydrocephalus and catch-up growth has followed treatment and pressure relief122, 

early detection and surgical intervention are needed to minimize the impact on long-term 

brain growth patterns123. This can be achieved with different modalities, including MRI, CT 

or ultrasound. Ultrasound can image hydrocephalus configurations within the brain but only 

in the youngest infants when acoustic windows through open fontanelles are still available. 

CT scanning is an alternative but has attendant concerns for the potential carcinogenic risks 

of ionizing radiation, particularly from early exposures in infancy124. HF-MRI avoids the 

risk of ionizing radiation but is too expensive and complex to maintain in many medical 

systems where paediatric hydrocephalus is most prevalent. CSF diversion interventions 

guided by neuroimaging are enabled through segmentation of brain tissue and CSF spaces. 

These include traditional ventriculoperitoneal shunt systems and, more recently, endoscopic 

fenestration within the brain to re-establish CSF flow122. In both scenarios, neuroimaging 

is necessary to assess the adequacy of fluid management and monitor for complications 

such as overdrainage125. LF-MRI holds the potential to extend adequate treatment and 

management of hydrocephalus to patients in all regions of the world. Despite the inherently 

lower resolution and tissue contrast of LF-MRI, it could provide adequate assessment of 

ventricular spaces both before and after hydrocephalus interventions. This comparison has 

been investigated in degraded hydrocephalic images of young children, and the clinical 

utility of lower-quality images has been explored126.

Beyond paediatric neuroimaging, LF-MRI has great potential in enhancing access to MRI in 

resource-constrained countries where CT or HF-MRI are lacking (Box 1).

Chronic neurological diseases

The diagnosis and subsequent management of chronic neurological and neurodegenerative 

diseases is frequently guided by neuroimaging. MRI enables segmentation of cortical 

regions and determination of morphological changes, which can be indicative of 

neurodegenerative disease progression. However, the undiagnosed burden of neurological 

disease remains a crucial barrier to improving brain health at a population level. Depending 

on the patient population, relevant and potentially modifiable asymptomatic neurological 

disease can be found in up to 20–30% of individuals127–132.

Although MRI of the brain is an effective method of screening for asymptomatic 

neurological disease, expense and logistical complexity have limited large-scale screening 

efforts. Furthermore, conventional screening efforts often fail to reach underserved 

populations who would most benefit from screening and pre-emptive care133,134. Potential 

use-case scenarios for chronic neurological disease monitoring includes cerebral small 

vessel disease, which leads to white matter hyperintensities (WMH), a subclinical brain 

pathology prevalent in over half of community-based adults above 60 years of age135–138. 

Neuroimaging-ascertained WMH are a highly prevalent vascular risk factor for cognitive 

decline, cardiovascular disease and stroke139–141, and early detection and modification 
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through improved blood pressure control can reduce WMH progression142–145. In a diverse 

cohort of 91 individuals scanned in an emergency department patient room, 74% had 

prevalent hypertension and 58% were found to have moderate-to-severe WMH on bedside 

LF-MRI146. Most individuals had not otherwise had an MRI in the preceding year. Future 

studies should examine the role of WMH in the community setting and the potential role of 

LF-MRI in reducing known disparities in neuroimaging147.

Similarly, neurodegeneration caused by Alzheimer disease leads to brain atrophy that can 

be used to assist in the diagnosis and monitoring of disease progression. Serial HF-MRI 

is impractical for most patients owing to the cost and complexity; however, a portable 

LF-MRI system sited in an outpatient clinic could obtain serial images to assess change 

over time. Nevertheless, the native lower-resolution images from LF-MRI might require 

additional image enhancement, such as super-resolution, to achieve reliable segmentation 

volumes69. As targeted Alzheimer disease treatments emerge on the therapeutic horizon, it 

will be important to validate, in broad and diverse populations, imaging biomarkers to track 

responsiveness to treatment or adverse treatment effects such as brain inflammation from 

amyloid-modifying therapy.

Another example is the monitoring of chronic neurological diseases such as demyelination 

observed in MS. The feasibility of LF-MRI for the identification of MS demyelinative 

lesions has been examined in a cohort of 33 patients, whereby lesions were correctly 

identified in 31 (94%) individuals. The smallest lesions detected measured 5.7 mm, with 

a high correlation between lesion volume quantified on both LF-MRI and conventional 

HF-MRI (r = 0.89; P < 0.001)148,149.

LF-MRI of the brain thus has multiple potential applications in the care of individuals 

with chronic neurological disease. Furthermore, LF-MRI could enable the evaluation of 

individuals at a scale that could not be accomplished using conventional MRI alone. Because 

portable LF-MRI can be transported within a health-care facility or with a dedicated vehicle 

between facilities150, it would be feasible to scan individuals at the point of care, reducing 

disparities in access to diagnostic imaging147,151–154.

Outlook

Portable LF-MRI has demonstrated potential in the management of neurological and 

neurosurgical diseases, with the possibility of continued improvements to image quality 

and enhanced access to neuroimaging in the future (Fig. 3). In the inpatient setting, delivery 

and acquisition of LF-MRI at the patient bedside enables continuity of medical care for 

patients with critical illness who depend on uninterrupted operation of specialized life 

support machinery13,106. LF-MRI is thus an invaluable tool in ICU settings that contain 

ferromagnetic material, including ventilators, monitors and infusion pumps. At the bedside, 

LF-MRI can serve as both a diagnostic device and a monitoring tool. The form factor 

allows for clinical staff to monitor the medical examination and life support parameters of a 

patient and administer medications throughout the time course of the LF-MRI examination 

itself13,155,156. Furthermore, patients who have contraindications for conventional MR (such 

as implantable pacemakers and metallic foreign metal bodies) could be good candidates for 
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portable LF-MRI in the future14, although validation of this scenario awaits comprehensive 

evaluation (Box 2). The applications of LF-MRI can also extend beyond the hospital to 

pre-hospital environments, encompassing community health facilities, urgent care centres 

and mobile imaging. LF-MRI situated in community health centres can benefit patients who 

require interval imaging for neurological disease monitoring and therapeutic intervention 

titration, enabling more frequent scans of individuals at less cost and greater convenience. 

Point-of-care imaging in the clinic or at other locations (that is, infusion centre or patient 

home) could also improve surveillance of patients with systemic malignancy who require 

scans to monitor for central nervous system metastasis, providing earlier intervention for 

major adverse events. Community-level screening of patients at risk of neurological disease 

using LF-MRI could also enhance the identification, diagnosis and initiation of potentially 

modifiable treatment to improve brain health in the population. For this purpose, LF-MRI 

technology on mobile ambulances with telemedicine capabilities could be used, providing 

advantages for patients who have limited mobility and/or are bed-bound in their residential 

premises157. The feasibility of mobile MRI scanning has recently been demonstrated 

following deployment of a mobile, modified cargo van with an onboard LF-MRI scanner150. 

Nevertheless, scanning outside of conventional hospital environments will introduce ethical, 

legal and social issues that require careful consideration (Box 3).

In addition to community-based screening, ambulance-based LF-MRI scanning could 

improve the diagnosis of disease processes that have overlapping clinical features and 

optimize triage algorithms for patient transport to appropriate facilities through emergency 

medical services. For stroke, the advent of mobile ambulances equipped with portable 

CT scanners and specialized personnel onboard or accessible by telemedicine, have not 

only demonstrated benefits in the faster delivery of time-sensitive thrombolytic treatment 

to patients but have also shown superiority in reducing stroke disability as compared to 

standard pre-hospital emergency medical services96,158,159. Given the unique sensitivity of 

MRI to acute stroke, mobile LF-MRI ambulances could expand the delivery of expedited 

stroke care and facilitate the earlier identification of patients who might otherwise be 

excluded from treatment. The use of multimodal imaging in ambulances equipped with 

portable LF-MRI scanners could also inform patient selection procedures for stroke with 

unknown time of onset using FLAIR and DWI imaging, a limitation of current mobile CT 

scanners.

Despite potential, LF-MRI systems are currently limited in the spectrum of sequences that 

have been developed and implemented, which might impact their clinical application. This 

drawback holds for SWI, which would greatly improve intracranial haemorrhage detection, 

MR angiography for detecting large vessel occlusion155, and MR perfusion for detecting 

ischaemic core versus penumbra. The role of LF-MRI in contrast-based imaging is also 

yet to be realized. Contrast enhancement on LF-MRI using gadolinium-based agents is 

limited given the need to substantially increase dosing160,161. Determination of the ideal 

contrast agent for use at LF is needed and could include superpara-magnetic iron oxide 

nanoparticles162 or macrocyclic gadolinium-based agents163. Formal validation of LF-MRI 

across a range of environments, populations and clinical applications represents an avenue 

for future research to position LF-MRI for widespread use.
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Portable LF-MRI has the potential to bring the advantages of MR technology to a wider 

population, circumventing some of the limitations associated with high magnetic field 

strength. In the immediate future, it is likely that portable LF-MRI will serve a distinct 

niche, given its lower resolution and limited sequences. With continued improvements in 

image acquisition and post-processing techniques, formal clinical validation studies will 

highlight use-case scenarios for diagnostic neuroimaging. Serial examinations will allow 

clinicians improved insight into the evolution of the clinical course of patients.

Taken together, portable LF-MRI has the potential to democratize MRI. The experience to 

date highlights a common axiom in MR technology: advances that seemed impossible years 

earlier have consistently become reality with time and research.
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Box 1

Low-resource considerations

Despite the widespread availability of MRI in certain countries, two-thirds of the global 

population lacks access to such technology185,186. In resource-constrained environments, 

the relative affordability and accessibility of low-field MRI (LF-MRI) technology 

compared with conventional MRI and CT provides an alternative to neuroimaging that 

would otherwise not be possible. This is true of low-income and middle-income countries 

as well as high-income countries whose populations are geographically dispersed187. In 

a low-income setting, LF-MRI has recently been deployed in sub-Saharan Africa184. 

This experience has identified several enablers and barriers to deploying LF-MRI in 

resource-constrained environments, as follows:

• Equipment storage: the lack of requirement for supercooling cryogens can 

facilitate deployment of LF-MRI in environments where access to liquid 

nitrogen and liquid helium might be limited. Storage environments equipped 

with temperature and humidity control are still necessary as optimal imaging 

on permanent magnet systems is temperature dependent.

• Logistics of operation: LF-MRI scanners are relatively simple to operate. 

Bioengineering solutions that facilitate motorized portability and operation 

through a streamlined tablet interface has simplified use. Furthermore, cloud-

based imaging solutions have been implemented with the ability for users to 

upload images directly to picture-archiving and communication systems for 

expedited interpretation. Moreover, the lower magnetic field strength could 

eliminate some of the safety considerations that are present for high-field 

systems. However, until the safety and compatibility are well established at 

LF-MRI field strengths, MRI safety training is likely necessary.

• Adaptation to different patient populations: LF-MRI located in low-resource 

environments may enable clinicians to answer discreet questions relevant to 

the population such as cerebral malaria and cysticercosis, which are more 

prevalent in sub-Saharan Africa than in industrialized countries.

• Geographically dispersed populations: enhanced access to LF-MRI in 

countries whose populations are geographically dispersed may facilitate a 

decrease in long-standing health disparities in diagnosis of neurological 

disease owing to improved access to MR technologies.

• Research in low-resource settings: local communities could be made partners 

in the research enterprise, and the local social value of the research should be 

prioritized.

• Infrastructure stability: a stable electrical supply and adequate internet 

speed are both necessary to operate the scanner and upload images for 

interpretation. Poor IT infrastructure may impede access to technology and 

data-sharing capacities, in addition to the feasibility of performing regular 

software updates.
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• Remote support: local engineering expertise for troubleshooting, hardware 

maintenance and repair is essential in low-resource settings, with lack 

of physical support limiting the ability to overcome instances of device 

malfunction. Despite provision of technical support online, this requires a 

stable internet connection. Depending on local regulations around the storage 

of health information, sufficient infrastructure to support image storage may 

be needed.
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Box 2

Safety considerations

Safety considerations for conventional high-field MRI include thermal effects, acoustic 

noise and contraindications caused by ferromagnetic implants188. By way of thermal 

effects, MR exposure should avoid producing a core temperature increase greater than 1 

°C (ref.188). Contraindications caused by metal implants encompass MR-incompatible 

aneurysm clips and those that are electrically, magnetically or mechanically activated 

such as pacemakers, defibrillators and neurostimulators. Although studies have reported 

an absence of substantial adverse events of scanning patients with in situ pacemakers 

or defibrillators189,190, guidelines still preclude patients from routine imaging. Safety 

considerations on low-field MRI (LF-MRI) thus include consideration of the following:

• Projectile risk: no known risk.

• Thermal effects: thermal power deposition at LF is 1–2 orders of magnitude 

less than high-field MRI.

• Acoustic noise: the typical acoustic noises created by Lorentz forces during 

LF-MRI acquisition are below 70 decibels. Noise levels <70 decibels are 

unlikely to cause hearing loss even in the setting of prolonged exposure.

• Electronic implants: contraindications arising from implantable ferromagnetic 

materials (such as pacemakers and other foreign metal bodies) can 

theoretically be circumvented through use of LF-MRI. However, a 

comprehensive evaluation has not been conducted.

• Portability: the transport of a LF-MRI might lead to magnetic field exposures 

in new areas and environments.
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Box 3

Translational considerations

The ability of low-field MRI (LF-MRI) to scan outside the conventional scanning 

environment will introduce a host of ethical, legal and social issues. Although LF-MRI 

scanners are portable, the expertise and additional facilities of a major hospital system 

cannot be easily transported. Thus, the research and clinical teams must ensure several 

factors: first, that safety and privacy protocols have been developed for each site where 

the LF-MRI scanner will be used; second, that the remote site has access to requisite 

expertise to direct the process of obtaining informed consent; third, that there is a plan 

in place to respond if follow-up care or a higher-resolution scan is warranted and cannot 

be provided at the remote site; and fourth, that there is compliance with laws and 

regulations in each of the jurisdictions where the scanner will be used and data will be 

shared191. A prerequisite to identifying and addressing these ethical, legal and social 

issue challenges is to encourage sustained engagement with the local communities and 

hospitals in which LF-MRI scanners will be deployed192. Prominent considerations193 

include the following:

• Access, inclusion and community engagement: to improve access, 

deployment of LF-MRI should include partnership and engagement with 

under-represented and under-resourced communities.

• Ensuring privacy: heightened privacy concerns may need to be addressed 

compared to fixed MRI, where only the patient and technician are in the 

scanning room; LF-MRI can be set up with minimal barriers surrounding the 

scanner and thus the scanning environment is significantly less secluded.

• Overlapping regulatory jurisdictions: a portable LF-MRI scanner that scans 

individuals in multiple states or countries will require the clinical or research 

teams to navigate multiple legal and regulatory environments to ensure 

successful data sharing and compliance with health and safety laws.

• Bias in artificial intelligence: if LF-MRI is being used in racially, ethnically 

and culturally diverse populations, results and images derived using artificial 

intelligence or machine learning models need to account for potential bias if 

the models have been trained on less diverse training data.

• Safeguards to avoid misuse: LF-MRI will allow for brain imaging to be used 

in new, commercially viable environments outside medicine, such as wellness 

spas and neurofeedback clinics, raising the potential for non-experts to either 

deliberately or inadvertently misinterpret or miscommunicate LF-MRI scan 

data. Safeguards should be put in place now to anticipate and mitigate these 

risks.
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Key points

• Portable, low-field MRI (LF-MRI) has enabled scanning outside the 

controlled environment of a conventional MRI suite, enhancing access to 

neuroimaging for indications that are not well suited to existing technologies.

• Advancements in electromagnetic noise cancellation and machine learning 

reconstruction algorithms as well as new approaches to image enhancement 

seek to maximize the information extracted from the reduced signal-to-noise 

ratio of LF-MRI.

• The reduced fringe field and the transportability of LF-MR have expanded 

the imaging capacity for neurological conditions such as stroke, intracerebral 

haemorrhage, cardiac arrest, hydrocephalus and multiple sclerosis.

• Hardware developments, improvements in pulse sequences and image 

reconstruction, and validation of clinical utility across a range of 

environments will continue to accelerate LF-MRI into the future.
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Fig. 1 |. Types of MRI geometries for portable LF-MRI.
a, Conventional solenoid MRI. b, Biplanar permanent low-field MRI (LF-MRI), including 

C-arm and H-arm geometries. c, Halbach array LF-MRI configuration. B0, main magnetic 

field; B1, radiofrequency field; RF, radiofrequency. Part a, upper panel, image courtesy of 

National High Magnetic Field Laboratory. Part a, bottom panel, adapted with permission 

from ref.164, IEEE. Part b, upper panel, adapted from ref.165, CC BY 4.0 (https://

creativecommons.org/licenses/by/4.0/). Part b, bottom panel, adapted with permission from 

ref.166, Wiley. Part c upper panel © [2018] IEEE. Reprinted, with permission, from Cooley, 

C. Z., Haskell, M. W., Cauley, S. F., Sappo, C., Lapierre, C. D., Ha, C. G., Stockmann, J. 

P. & Wald, L. L. Design of sparse Halbach magnet arrays for portable MRI using a genetic 

algorithm. IEEE Trans. Magn. 54, 5100112 (2018)167. Adaptation permission from author. 

Part c, bottom panel, adapted with permission from ref.168, iMRI.
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Fig. 2 |. Examples of images acquired on LF-MRI compared with conventional HF-MRI.
Clinical applications for low-field MRI (LF-MRI) include acute ischaemic stroke (diffusion-

weighted imaging), intracerebral haemorrhage (T2 fluid-attenuated inversion recovery), 

cardiac arrest (T1-weighted imaging), paediatric hydrocephalus (T2-weighted imaging), 

and white matter hyperintensity (fluid- attenuated inversion recovery). Note the previously 

undetected region of ischaemia on LF-MRI diffusion-weighted imaging that was not 

detected on high-field MRI (HF-MRI) performed 3 days prior. All images were acquired 

on a 0.064 T portable LF-MRI (Hyperfine Research Inc.). HF-MRI and LF-MRI images 

of acute ischaemic stroke were adapted/reprinted from Science Advances ref.45. ©The 

Authors, some rights reserved; exclusive licensee AAAS. HF-MRI and LFMRI images of 

intracerebral haemorrhage reprinted from ref.95, Springer Nature Limited. HF-MRI and LF-

MRI images of cardiac arrest reprinted with permission from ref.105, Elsevier. HF-MRI and 

LF-MRI images of paediatric hydrocephalus reproduced from ref.116 with permission from 

BMJ Publishing Group Ltd. HF-MRI and LF-MRI images of white matter hyperintensity 

were reprinted from ref.149, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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Fig. 3 |. The evolution of LF-MR neuroimaging.
In the early 1980s, MR magnets operated in the low-field (LF) range. The inherent reduced 

signal-to-noise ratio facilitated development of higher-field systems, with the perception 

in the scientific community that higher static field strength equated to better performance. 

Despite several advances in the 1990s, the turn of the millennium saw a renaissance of 

LF-MRI. The first FDA-approved device was deployed in 2020 and, since 2021, LF-MRI 

at 0.064 T has been investigated in a range of conditions and environments. As LF-MRI 

continues to evolve, bioengineers will play an increasing role in its future. AUTOMAP, 

end-to-end deep neural network approach; SQUID, superconducting quantum interference 

device169–184.
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