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Establishing an artificial grassland is a common measure employed to restore

heavily degraded alpine grasslands for regional sustainability. The Three-River

Headwaters Region in China has significant areas of black-soil-type grassland

which is typified by heavy degradation; nearly 35% of the grassland regions in the

Three-River Headwaters Region has degraded into this type. There are different

plant community types of black-soil-type grasslands, however, it is not clear

which restoration measures should be adopted for different kinds of black-soil-

type grasslands. Here, we investigate the plant community characteristics and

soil physicochemical properties of artificial grasslands, two types of black-soil-

type grasslands, and native undegraded grassland in the Three-River Headwaters

Region, then analyzed the direct and indirect interactions between the plant and

soil properties by partial least squares pathmodels (PLS-PM). Our results revealed

that establishing artificial grassland significantly increased aboveground biomass

and plant community coverage, and also decreased plant species richness and

diversity and soil water content, soil organic carbon and total nitrogen in the 0-10

cm soil layer as compared with black-soil-type grasslands. Plant community

diversity had a positive effect on plant community productivity, soil nutrient, and

soil water content in native undegraded grassland. These results suggest that

more management interventions are needed after establishing an artificial

grassland, such as reducing dominant species in two types of black-soil-type

grasslands, water regulation in the A. frigida-dominated meadow, diversifying

plant species (i.e., Gramineae and sedges), and fertilizer addition.
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1 Introduction

The Three-River Headwaters Region is located in the hinterland of

the Qinghai-Tibetan Plateau, which is the source region of the Yangtze

River, the Yellow River, and the Lancang (Mekong) River, known as

“Asia’s water tower” (Mao et al., 2016). It is important for the ecological

security of China and the countries surrounding the Qinghai-Tibetan

Plateau (Shao et al., 2017). The alpine grassland biome is the main

ecosystem of this area, which provides important ecosystem functions

and services, such as climatic regulation (Liu et al., 2018; Dai et al.,

2021), biodiversity conservation (Dong et al., 2020), soil erosion

prevention (Wang et al., 2016) and habitat for both grazing livestock

and wildlife (Liu et al., 2017; Lu et al., 2017; Liu et al., 2021), as well as

the carbon sequestration (Feng et al., 2010; Chen X. et al., 2021).

However, the Three-River Headwaters Region has experienced

grassland degradation because of its fragile ecosystem, climate, and

human influence (Guo et al., 2019; Wu et al., 2021). Nearly 35% of the

grassland area has been heavily degraded into black-soil-type grassland,

which is typified by bare land with no plants in the cold season and

covered with forbs or poisonous plants in the warm season (Ma et al.,

2002; Shang and Long, 2007; Dong et al., 2018). This has reduced plant

coverage, species biodiversity, soil nutrient availability (Wen et al.,

2013; Peng et al., 2018), and regional ecosystem stability (Dong et al.,

2020; Yang and Sun, 2021). Furthermore, grassland degradation has an

increasingly negative impact on regional security and social

sustainability (Harris, 2010).

The restoration of the black-soil-type grassland is of vital

importance and has received considerable study e.g., Wu et al.,

2010; Dong et al., 2013; Wen et al., 2018). Approaches such as

fencing enclosures (Chen X. et al., 2021; Du and Gao, 2021),

application of fertilizers (Luo et al., 2017), or seeding (Shang

et al., 2008) were conducted to restore degraded grasslands.

However, none of these measures had significant positive effects

on black-soil-type grasslands, which indicated that favorable

natural restoration approaches were difficult for its rehabilitation

(Shang and Long, 2007). One recent attempt to overcome this issue

employed establishing Elymus nutans artificial grassland in black-

soil-type grasslands (Feng et al., 2010; Wen et al., 2018). Some

researches revealed that artificial grassland could be used as an

effective restoration approach to improve productivity and regulate

community and soil properties in black-soil-type degraded

grasslands (Wu et al., 2010; Gao et al., 2019).

Many studies have analyzed the restoration effect of artificial

grasslands by examining the effects on soil nutrients or vegetation

characteristics at distinct intervals after the recovery work [e.g., 4-

year, 6-year or 9-year (Wu et al., 2010; Gao et al., 2019)], and those

results suggested an artificial grassland in black-soil-type grasslands

requires a long-term for recovery (~ 16-18 years). However, there

are different types of plant communities in black-soil-type grassland

(Dong et al., 2010), but few studies have focused on the effect of

rebuilding artificial grasslands as compared with different kinds of

black-soil-type grasslands or healthy grasslands. It’s yet unclear

whether the targeted restoration measures should be adopted in

different kinds of black-soil-type grasslands. Furthermore, many

studies have reported correlations between soil properties, such as

soil moisture or nutrients, with alpine grassland properties, such as

grassland aboveground biomass or biodiversity (Li et al., 2014;

Fayiah et al., 2019; Faucon, 2020; Li et al., 2020; Xiao et al., 2022).

Yet, little is known about the direct and indirect interaction between

plant community characteristics and soil physicochemical

properties, which is required for efficient and sustainable

restoration practice in a degraded grassland ecosystem (e.g.,

ameliorate soil properties favoring autochthonous species) (Shen

et al., 2015; Maiti and Ghosh, 2020; Peng et al., 2020).

Here, we investigate plant community characteristics and soil

physicochemical properties in artificial Elymus nutans grasslands,

two types of black-soil-type grasslands, and healthy Kobresia

grassland. Our objectives are: (i) examine the differences in soil

characteristics and plant communities among these grassland types,

(ii) understand which targeted restoration measures (if any) should

be adopted for different types of black-soil-type grasslands. The

results of this study may help guide future grassland restoration

programs in the Three-River Headwaters Region or other regions

that face similar issues.

2 Materials and methods

2.1 Study sites

The study area (31°45′N-39°19′N, 89°27′E-103°04′E) is located
in the source region of the Yangtze River, the Yellow River, and the

Lancang (Mekong) River (Figure 1). The altitude ranges from 2610

to 6950 m, with an average elevation of 4500m and many high

mountains peaks. The site has a typical plateau continental climate

with annual mean temperature ranges from -5.38 to 4.14°C, annual

precipitation ranges from 262.2 to 772.8mm and annual

evaporation rate ranges from 730 to1700 mm (Yi et al., 2012; Cao

and Pan, 2014). The typical vegetation of the region are alpine

meadows dominated by sedges and Gramineae, such as Kobresia

pygmaea, Kobresia capillifolia and Poa annua. The soil is defined as

alpine meadow in the Chinese Soil Classification System (Shi

et al., 2006).

2.2 Field sampling design

Field sampling was conducted from July through August in 2019

and 2020 at the peak of the growing season to minimize differences

due to the time of year. The sites were chosen to represent true

replications of K.pygmea-dominated meadows (KM), P.anserina-

dominated meadows (PM), E.nutans-dominated grasslands (EG),

and A.frigida-dominated meadows (AM). KM represents healthy

grassland, PM and AM are two kinds of black-soil-type grasslands,

and EG is the artificial grassland (Table 1). We established six sites

for each kind of grassland. At each site, a 10m×10m plot was

randomly chosen. Within each plot, three 0.5m×0.5m quadrats

were placed to survey vegetation and soil. In total, 72 quadrats (24

sites × 3 quadrats) were sampled, and the geographical coordinates

were also recorded for each plot. Black-soil-type grasslands tend to
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occur near artificial grasslands, therefore, sometimes these sampling

sites would be set up in the same area.

2.3 Plant community survey

We investigated plant community characteristics, including

species identity, height, coverage, abundance and aboveground

biomass of each species in each quadrat. Plant coverage was

represented by the ratio of the shady area of a specific species to

the total area of a quadrat. The plant species were clipped and then

put into an envelope for each quadrat. We determined the

aboveground biomass for every quadrat by weighing the plants

after drying at 65°C to a constant weight. We calculated the Gleason

index (G), Shannon-Wiener index (H′), Simpson index (D) and

Pielou index (J) to characterize the richness, diversity and evenness

of plant community:

Pi=(RC+RA+RH)=3 (1)

G=S=InA (2)

H 0=−o PiInPi (3)

D=1−o Pi2 (4)

J=H 0=InS (5)

where Pi is the important value of the species in the plant

community site, RC is the relative coverage, RA is the relative

abundance, and RH is the relative height. S is the sum of the species

in the site and A is the area of the site.

2.4 Soil physicochemical
properties’ measurement

We collected topsoil (0-5 cm) and subsoil (5-10 cm) samples

from the plot after the plant community survey. Oven-drying was

FIGURE 1

The distribution of vegetation types and sampling sites on the Three-River Headwaters Region. The vegetation map is based on a 1:1,000,000 scale
vegetation distribution map of China (http://westdc.westgis.ac.cn). EG, E.nutans-dominated grassland; PM, P.anserina-dominated meadow; AM,
A.frigida-dominated meadow; KM, K.pygmea-dominated meadow. Some sampling points are located relatively close to each other, resulting in
overlapping symbols on the map.

TABLE 1 Characteristics of sampling sites in the Three-River Headwaters Region.

Grassland type Abbreviation Altitude(m) Main plant species

Healthy grassland K.pygmea-dominated meadow KM 4318 Kobresia pygmaea, Poa annua,
Carex alatauensis, Carex myosuroides

Black-soil-type grasslands P.anserina-dominated meadow PM 4208 Potentilla anserina, Knorringia sibirica,
Lagotis brachystachya, Microula sikkimensis

A.frigida-dominated meadow AM 4118 Artemisia frigida, Ajuga lupulina,
Elsholtzia densa

Artificial grassland E.nutans-dominated grassland EG 4130 Elymus nutans, Poa annua
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used to measure soil bulk density (BD) and soil water content (SW)

through drying the soil sample of the steel cutting rings. Soil pH and

electrical conductivity (EC) were measured from a soil water ratio of

1:2.5 with a pH meter and conductivity meter. Soil organic carbon

(SOC) was determined using the dichromate oxidation method.

Total nitrogen (TN) was analyzed by the Kjeldahl method. Total

potassium (TK) and total phosphorus (TP) were measured by flame

photometer and molybdenum antimony resistance colorimetry

after wet digestion with H2SO4 and HCLO4. The soil particle size

composition was measured by the laser scattering particle size

distribution analyzer, and we classified soil as clay, silt and sand

by international particle size standards.

2.5 Analysis of the plant-soil interaction

The Shapiro-Wilk normality test and Bartlett’s test of

homogeneity were performed to check for normality and equal

variance among groups. The plant community characteristics of

four groups were non-normal data and all showed variance

heterogeneity. Thus, we compared the vegetation parameters

between four groups with the Mann-Whitney U test by using the

wilcox.test function in R. Spearman correlation coefficients were

used to characterize the relationship between the soil properties and

the plant community. To screen the important soil properties that

influenced the plant community, we performed the random forest

model with R-package “linkET”.

We constructed a partial least squares path models (PLS-PM)

that provide a comprehensive view of a system by modeling multiple

relationships between its components to better integrate the

interaction among plant community characteristics and soil

physicochemical properties. In the PLS-PM framework, a latent

variable is viewed as a concept and is linked to a set of

measurements. Our latent variables included soil physical

properties, soil nutrient content, plant characteristics, and plant

diversity. We identified these latent variables by choosing the

important soil properties based on the results of the random forest

model, for example, soil nutrients including SOC and TN. PLS-PM

was performed using the “plspm” R-package. All statistical analyses

were conducted using R version 4.1.2 unless noted otherwise.

3 Results

3.1 Vegetation parameters in different plant
community grasslands

The four kinds of plant community grasslands showed different

plant community characteristics (Figure 2). The coverage and

Gleason index were significantly higher in KM as compared with

A B D

E F G H

C

FIGURE 2

Boxplot of vegetation parameters. (A) Coverage of plant community; (B) Height of plant community; (C) Gleason index; (D) Shannon-Wiener index;
(E) Simpson index; (F) Pielou index; (G) Important value of forbs; (H) Aboveground biomass. Significant P values were shown in boxplot. * means
adjusted P values ≤ 0.05, ** means adjusted P values ≤ 0.01, *** means adjusted P values ≤ 0.001 and **** means P ≤ 0.0001, if not indicated,
means adjusted P values > 0.05. EG, E.nutans-dominated grassland; PM, P.anserina-dominated meadow; AM, A.frigida-dominated meadow; KM,
K.pygmea-dominated meadow.
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the other three kinds of plant community grasslands (P ≤ 0.001,

Figures 2A, C), while PM and AM exhibited no significant

differences (Figures 2A, C). The average height of EG was the

highest (P ≤ 0.0001, Figure 2B), but there were no significant

differences in the other three groups. The important value of

forbs and Pielou evenness index in PM and AM were higher than

that in EG and KM (P ≤ 0.0001, Figure 2G). Conversely, the

aboveground biomass of EG and KM was significantly greater

than PM and AM (Figure 2H). The plant diversity index

(Shannon-Wiener and Simpson) was similar among PM, AM,

and KM, and the lowest diversity index was recorded in EG

(Figures 2D, E). In addition, the Pielou index of PM and AM was

significantly higher than KM and EG (P ≤ 0.01, Figure 2F).

3.2 Soil physicochemical properties in
different plant community grasslands

The soil water content, soil organic carbon and total nitrogen of

EG and AM was less on average compared with the other two kinds

of grasslands, especially the surface layer soil (0-5cm) of KM

(Figures 3A, H, I). Correspondingly, KM had the lowest soil bulk

A B

D E F

G IH

J K

C

FIGURE 3

Soil physicochemical properties of plant communities in different alpine grasslands. Error bars indicate standard error. (A) SW(%), soil water content;
(B) BD(g/cm3), bulk density; (C) Clay(%), clay percentage; (D) Silt(%), silt percentage; (E) Sand(%),sand percentage; (F) pH, Potential of Hydrogen; (G) EC
(mS/cm), Electrical Conductivity; (H) SOC(%), Soil Organic Carbon; (I) TN(%), Total Nitrogen; (J) TP(%), Total Phosphorous; (K) TK(%), Total Potassium; EG,
E.nutans-dominated grassland; PM, P.anserina-dominated meadow; AM, A.frigida-dominated meadow; KM, K.pygmea-dominated meadow.
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density (0.55g/cm3 in 0-5cm soil layer, 0.68g/cm3 in 5-10cm soil

layer), and PM followed (Figure 3B). In addition, silt content in four

kinds of alpine grassland was the highest, followed by sand and clay

content (Figures 3C–E). The differences in silt content among these

alpine grasslands were marginal, but the clay content in PM was

significantly higher than the other three kinds of grasslands

(Figures 3C, D). Soil pH in EG (7.28 in 0-5cm soil layer, 7.48 in

5-10cm soil layer) and AM (7.16 in 0-5cm soil layer, 7.33 in 5-10cm

soil layer) was higher than in KM and PM, whereas the electrical

conductivity in EG and AM was lower than KM and PM

(Figures 3F, G). The electrical conductivity of the 0-5cm soil

layers was higher than the 5-10cm soil layers among all kinds of

grassland (Figure 3G). Total phosphorous was lowest in AM but

showed no differences in the other three kinds of grassland

(Figure 3J). Furthermore, total potassium of the 0-5cm soil layers

in KM (0.075%) was significantly higher than the 5-10cm soil layers,

but it was opposed to the other three kinds of grassland (Figure 3K).

3.3 Plant-soil interaction

The important value of forbs was positively correlated with

SOC, TN, and TP in the 0-5cm and 5-10cm soil layers but was

negatively correlated with pH, TK, and sand percentage in the 0-

5cm and 5-10cm soil layers in KM. This was more pronounced in

the surface soil layer of 0-5 cm (Figure 4D), but was only positively

correlated with EC in the 5-10cm soil layer of EG (Figure 4A).

Aboveground biomass was negatively correlated with TN, SOC, TP,

and SW in the 0-10cm soil layer and positively correlated with pH,

and BD in the 0-10cm soil layer of EG (Figure 4A); No soil

physicochemical properties were significantly correlated with the

aboveground biomass of PM (Figure 4B). In addition, BD of the 0-

5cm soil layer was negatively correlated with the coverage, richness,

and diversity of plant community but was positively correlated with

important value of forbs, aboveground biomass, and the Pielou

index for AM (Figure 4C). Furthermore, the relationship between

A

B

D

E

F

G

I

H

J

K

L

C

FIGURE 4

The correlations and interactions between plant communities and soil physicochemical properties. (A–D) Contributions of soil properties to the
vegetation parameters based on correlation and a random forest model. The circle size represents the importance of the variables (percentage of
increase of mean square error calculated via random forest model). Colors represent Spearman correlations. Diagrams (E–L) of partial least squares
path models (PLS-PM) describing the interactions among the soil physicochemical properties and plant community characteristics. Each box
represents a latent variable, the manifest variables are the indexes beside the latent variables, and the value in the brackets represent the loading
values. Arrows connecting latent variables indicate inner model paths, with blue and red indicating negative and positive effects, respectively. R2

denotes the proportion of variance explained. * means adjusted P values ≤ 0.05, ** means adjusted P values 175 ≤ 0.01, *** means adjusted P values
≤ 0.001.
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plant community characteristics and physicochemical properties

was tighter in KM than the other three kinds of grassland, especially

plant diversity and soil nutrient availability.

PLS-PM seems to explained a majority of the soil nutrient

variability in EG and KM (R2 = 0.65 and 0.62 resp., Figures 4E, L)

and the physical properties (SW at 0-5cm soil layer) were well

explained in PM and AM (R-square =0.73 and 0.8 resp., Figures 4J,

K). There was a significant direct negative interaction between soil

nutrients and aboveground biomass of plant communities in EG and

KM (Figures 4E, H, I, L), meanwhile, the effect of plant diversity on

plant community aboveground biomass was significantly positive (path

coefficient = 0.7, P values ≤ 0.01, Figure 4H) in KM but had only a

marginal positive effect (path coefficient = 0.14, Figure 4E) in EG. In

addition, the effect of plant community coverage on soil nutrient

availability were both positive in PM and AM (path coefficient =

0.78 and 0.26 resp., Figures 4J, K), and the effect of soil nutrients on

plant community coverage was negative in AM (path coefficient =

-0.54, Figure 4G) but positive in PM (path coefficient = 0.55,

Figure 4G). Moreover, the direct effects of plant community diversity

on soil nutrients were positive among four types of plant community

grasslands (path coefficient = 0.17, 0.23, 0.48 and 0.71 resp., Figures 4I–

L), in which the effect was highly significant (P values ≤ 0.001,

Figure 4L) in the KM and marginal in EG (Figure 4I). However, the

direct effects of soil nutrients on plant community diversity were

negative in EG and PM (path coefficient = -0.07 and -0.5 resp.,

Figures 4E, F) but positive in AM and KM (path coefficient = 0.78

and 0.33 resp., Figures 4G, H).

The interactions between soil physical properties and plant

community characteristics were significant in AM (path coefficient

= 1 and 0.37 resp., P values ≤ 0.05, Figures 4G, K) but marginal

among EG, PM, and KM (path coefficient<0.2, Figures 4E–L).

However, the direct interactions between soil physical properties

and plant community diversity were both negative in EG (path

coefficient = -0.35 and -0.14 resp., Figures 4E, I) and AM (path

coefficient = -0.3 and -0.15 resp., Figures 4G, K) but positive in PM

(path coefficient = 0.6 and 0.22 resp., Figures 4F, J) and KM (path

coefficient = 0.31 and 0.24 resp., Figures 4H, L). In addition, certain

soil physical properties (SW at 0-5cm soil layer) had an indirect

effect (path coefficient = -0.41 and 0.64 resp., Table 2) on plant

community diversity through the effect on soil nutrients in PM and

AM. Moreover, there was an indirect positive effect of plant

community diversity on the physical properties of soil through

the beneficial effect of soil nutrients in PM, AM and KM (path

coefficient = 0.18,0.7 and 0.32 resp., Table 2). In general, the effect of

plant on soil was greater than the effect of soil on plant in EG, PM

and KM and the plant-soil interaction was significant greater in the

healthy Kobresia meadow than the artificial Elymus nutans

grassland and the two types of black-soil-type grasslands (Figure 4).

4 Discussion

The establishment of artificial grasslands is a common practice to

restore vegetation and soil in many extremely degraded grasslands in

alpine areas (Li et al., 2013). Our investigation in the Three-River

Headwaters Region demonstrated that artificial grassland increased

aboveground biomass but decreased plant species richness and

diversity, which is consistent with previous studies on artificial

grasslands of alpine grassland ecosystem (Shang et al., 2008; Feng

et al., 2010; Wu et al., 2010). This may be attributed to the fact that

Elymus nutans have greater competitive ability and increase in

abundance than forbs. On one hand, the Elymus nutans is taller than

other native species and produces shading effects, which may limit the

growth of short species because of their advantage for light (Wu et al.,

2010; Peng et al., 2023). On other hand, the Elymus nutans generally

have deeper roots than other plant species, whichmay have enabled the

plant community to acquire more water and thus increase primary

production (Liu et al., 2018).

TABLE 2 Direct and indirect path effects of latent variables based on partial least squares path modeling (PLS-PM).

Path

EG PM AM KM

Direct Indirect Direct Indirect Direct Indirect Direct Indirect

Physics -> Nutrient -0.81 0 0.83 0 0.81 0 0.55 0

Nutrient -> Physics -0.69 0 0.75 0 0.76 0 0.45 0

Physics -> Diversity -0.35 0.06 0.6 -0.41 -0.3 0.64 0.31 0.18

Diversity -> Physics -0.14 -0.12 0.22 0.18 -0.15 0.37 0.24 0.32

Nutrient -> Diversity -0.07 0 -0.5 0 0.78 0 0.33 0

Diversity -> Nutrient 0.17 0 0.23 0 0.48 0 0.71 0

Nutrient -> Plant -0.72 -0.01 0.55 0.17 -0.54 0.13 -0.79 0.23

Plant -> Nutrient -0.78 -0.01 0.78 -0.07 0.26 0.1 -0.64 0.24

Diversity -> Plant 0.14 0 -0.34 0 0.16 0 0.7 0

Plant -> Diversity -0.05 0 -0.31 0 0.21 0 0.33 0

Plant -> Nutrient -0.78 -0.01 0.78 -0.07 0.26 0.1 -0.64 0.24

Nutrient -> Plant -0.72 -0.01 0.55 0.17 -0.54 0.13 -0.79 0.23
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We also found that the establishment of artificial grassland did not

improve the soil water, soil organic carbon, or total nitrogen, which

suggests a lower water-holding capacity and increased loss of soil

nutrients. This is inconsistent with the findings of Wu et al. (2010),

who reported that soil nutrient properties all significantly increased in

artificial grassland. However, Dong et al. (2012) reported that the

establishment of artificial grassland did not restore soil quality or

nutrient stocks in the headwaters of the Yellow River. And different

grassland types may respond differently to a given restoration measure.

Previous studies reported that there was a reoccurrence of black-soil-

type grasslands in artificial grassland projects (Zhang et al., 2018), which

suggests that the soil quality of artificial grassland struggles to maintain

the sustainable growth of Elymus nutans. Most of the artificial grassland

is seriously lacking in scientific management after establishment (Shang

et al., 2018; Dong et al., 2020). Our study indicated that the soil water

and nutrient content of artificial grasslands are much worse than that of

natural meadows (Figure 3). Therefore, protective measures should be

taken to alleviate soil erosion and the loss of soil nutrients after the

establishment of artificial grassland. Mulching the non-wovenmaterials

in the artificial grassland may significantly boost seed germination rate

and reduce soil erosion (Li et al., 2019; Chen B. J. et al., 2021). Further

studies are required to explore the soil quality resilience of the artificial

grassland across the restoration time.

We found that the restoration efficiency of artificial grasslands

is significantly different compared with the two kinds of black-

soil-type grasslands. The soil nutrient and soil water content in the

P.anserina-dominated meadow were significantly higher than

E.nutans-dominated grassland and A.frigida-dominated meadow

(Figure 3), implying the restoration efficiency of the artificial

grassland in P.anserina-dominated meadow was lower than the

A.frigida-dominated meadow. This result may reflect plant

community could steer grassland vegetation via the effect of soil

(Peng et al., 2020; Heinen et al., 2020; Xu et al., 2022). For

instance, Potentilla anserina in P.anserina-dominated meadow is

the perennial stoloniferous clonal plant that has a strong

reproductive capacity at the low tropic level (Saikkonen et al.,

1998). Due to its fast-growing creeping stem (Li, 2004), the

coverage of the P.anserina-dominated meadow is higher in

general, which is beneficial to soil water conservation. In

addition, the development of the root system of Potentilla

anserina (Kang, 2007) indicates that the soil organic matter

content is relatively high. However, Artemisia frigida in the

A.frigida-dominated meadow adapts to soil with low nutrients

(Yan et al., 2016) and also has strong allelopathy (Li et al., 2011).

The allelochemicals of A.frigida may be produced in leaves and

roots, from which they can be released into the soil to inhibit the

germination and growth of other plant species (Mutlu et al., 2009).

Furthermore, we found that the negative effect (path coefficient =

-0.54) of soil nutrient on plant community coverage was larger

than the positive effect (path coefficient = 0.26) of plant

community coverage on soil nutrient in the A.frigida-dominated

meadow (Figures 4G, K). It suggested that the plant species might

have a high efficiency of nutrient utilization in low nutrient soil

(Figures 3H, I) and contribute little to fertile soil which may be

due to their allelochemicals. This implied that A.frigida and other

weeds should be eradicated, and fertilizer addition should be

considered when restoring the A.frigida-dominated meadow.

More knowledge is required on the plant growth patterns in

different kinds of black-soil-type grasslands and the plant-soil

interactions of these grasslands.

5 Conclusions

The establishment of artificial grassland improved vegetation

productivity and plant community coverage when compared to two

kinds of black-soil-type grasslands. However, restoration could not fully

achieve the recovery of plant community diversity, soil nutrient

content, or soil water content, even though the soil nutrient content

and water were lower than in P.anserina-dominated meadows. In

general, artificial grasslands did not restore the two types of black-soil-

type grasslands to the level seen for native undegraded grassland. This

could indicate thatmanagement interventions such as fertilizer addition

should be implemented after establishing the artificial grassland. In

addition, our results show that the soil nutrient content in the

P.anserina-dominated meadows was higher compared with A.frigida-

dominated meadows. We hypothesize that the dominant species in the

A.frigida-dominated meadows has strong allelopathy which could

inhibit the growth of plant species and lead to nutrient-poor soil.

Moreover, soil water content had a significant positive influence on

plant community and soil nutrient content in the A.frigida-dominated

meadows. Consequently, the forbs should be reduced, and water and

fertilizer should be added during the restoration ofA.frigida-dominated

meadows. Furthermore, plant community diversity had a positive effect

on plant community productivity, soil nutrient content, and soil water

in native undegraded grassland, which indicated that plant diversity

was beneficial for the stability of the plant community. Therefore, more

plant species such as Gramineae and sedges should be planted in

artificial grasslands. Our findings may be used in the restoration of

P.anserina-dominated meadows and A.frigida-dominated meadows

and in the management of artificial grasslands.
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