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Abstract

The plasma membrane (PM) of cells is a dynamic structure whose morphology and composition 

is in constant flux. PM morphologic changes are particularly relevant for the assembly and 

disassembly of signaling platforms involving surface-bound signaling proteins, as well as for 

many other mechanochemical processes that occur at the PM surface. Surface-bound membrane 

proteins (SBMP) require efficient association with the PM for their function, which is often 

achieved by the coordinated interactions of intrinsically disordered regions (IDRs) and globular 

domains with membrane lipids. This review focuses on the role of IDR-containing SBMPs in 

remodeling the composition and curvature of the PM. The ability of IDR-bearing SBMPs to 

remodel the Gaussian and mean curvature energies of the PM is intimately linked to their ability 

to sort subsets of phospholipids into nanoclusters. We therefore discuss how IDRs of many 

SBMPs encode lipid-binding specificity or facilitate cluster formation, both of which increase their 

membrane remodeling capacity, and how SBMP oligomers alter membrane shape by monolayer 

surface area expansion and molecular crowding.
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Introduction

The Lipid Bilayer and Membrane Mechanics

Biological membranes are soft assemblies of lipids, proteins and carbohydrates (Singer and 

Nicolson 1972). Cells devote ~ 5% of their genes to synthesize 200–1000 lipid species (van 

Meer et al. 2008). Phospholipids account for more than 50% of the total lipid content of 

the plasma membrane (PM). The most prevalent phospholipids include phosphatidylcholine 

(PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidic acid (PA), and 

phosphoinositide (PI) (van Meer et al. 2008; Suetsugu et al. 2014). Sphingolipids such as 

sphingomyelin (SM) constitute another class of phospholipids found in the PM. PC and SM 

are mostly found in the outer leaflet of the PM while PE, PS and PI are more common 

in the inner leaflet (Park et al. 2021). The PM also contains sterols such as cholesterol, 

which accounts for ~ 20% by weight of eukaryotic cell membranes (Naito et al. 2019). 

The amphiphilic nature of phospholipids allows them to spontaneously self-assemble into 

a bilayer in an aqueous solvent (Lodish and Rothman 1979). PC, PS and SM have a 

cylindrical geometry and thus organize into a planar bilayer. In contrast, PE and cholesterol 

do not form bilayer on their own, and PE imposes a negative curvature stress on bilayers due 

to its conical geometry (Raja 2011; Suetsugu et al. 2014). Thus, membrane curvature is in 

part determined by the packing geometry of the constituent lipids (Israelachvili et al. 1976). 

One way to achieve membrane remodeling, such as during the formation of membrane 

domains, is therefore via the selective synthesis of specific lipid species. A good example 

for this is provided by synaptic vesicles, which contain high levels of curvature-causing 

cholesterol (40 mol%) and PE (20%) relative to PC (17%), PS (6%) or SM (3.6%) (Binotti 
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et al. 2021). The highly curved presynaptic PM is also enriched with lipids possessing 

poly-unsaturated chains whose coneshaped geometry favors curvature (Breckenridge et al. 

1972; Baumgart et al. 2005; Marszalek and Lodish 2005; Takamori et al. 2006).

Biological membranes including the PM are thin (~ 4 nm) compartments with a large 

surface area (e.g., the surface of a typical spherical cell with a diameter of 20–1200 

μm2) (Pfenninger 2009). As a result, membranes favor bending over in-plane stresses. 

Micropipette aspiration experiments using giant membrane vesicles showed that the bending 

stuffiness of phosphatidylcholine bilayers is in the range of 14–30 KBT, depending on 

the chain length of the lipids (Rawicz et al. 2000). Similar experiments on PC vesicles 

containing 0 and 10 mol% cholesterol found that bending stiffness is dependent on 

cholesterol content (Meleard et al. 1997), with the stiffness increasing with cholesterol 

content in bilayers made up of saturated PC lipids and decreasing with cholesterol content 

in sphingomyelin bilayers (Garcia et al. 2010). While bending stiffness > 50 KBT has 

been measured in some sphingomyelin/cholesterol giant vesicles (Garcia et al. 2010), the 

comparatively low stiffness (10–20 KBT) in bilayers of physiologic lipid composition allows 

molecular collisions and nanoscale energy released by catabolic reactions to induce bending 

of membranes (Servuss et al. 1976; Schneider et al. 1984; Lifshitz et al. 1986; Strey et 

al. 1995; Do Carmo 2016). This renders the PM sensitive to manipulation by membrane 

proteins including surface-bound (or peripheral) membrane proteins (SMBPs).

Theories have been developed to describe the energetics of membrane remodeling 

underpinned by changes in bending stiffness due to alterations in lipid composition or 

the action of membrane proteins. Briefly, according to the classical Helfrich theory of 

membrane bending, the free energy of bending per unit area can be described by Gaussian 

and ordinary curvatures (Helfrich 1973) (Box 1; Eq. 1). Gaussian curvature is critical for 

membrane topological transformations that occur, for example, during membrane fission and 

viral budding. The cost of deforming a membrane during viral budding and vesicle recycling 

thus includes Gaussian energy, EG, that can be described by the saddle splay modulus κ or 

the integral of the Gaussian curvature K over the membrane surface (S), as defined in Eq. 4 

below and Box 1,

EG = κ∫
S

K ⋅ dS = 2πXκ, (4)

where X is the Euler characteristic of the surface (Box 1). This expression is applicable to 

cases of membrane topological transformations without concomitant changes in membrane 

phase behavior. When there is phase separation or domain formation (of different κ), the 

Gauss–Bonnet theorem (Eq. 2 in Box 1) gives rise to an additional term involving a line 

integral along the domain boundary that accounts for the line tension between domains (Eq. 

5). We substitute the surface integral of Gaussian curvature in Eq. 4 by the term given in the 

Gauss–Bonnet theorem in Eq. 2 of Box 1 and obtain:

EG = κ∫
S

K ⋅ dS = 2πκX − κ∮
C

kg ⋅ dl . (5)
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A change in Gaussian curvature energy is therefore associated with changes in line tension 

along domain boundaries (Lipowsky 1992; Jülicher and Lipowsky 1993), and/or changes in 

topology of the membrane surface. Similarly, discontinuity of the saddle splay modulus at 

the interface of domain boundaries triggers an instability for a non-zero neck radius of a 

budding vesicle and its ultimate fission (Allain et al. 2004).

Topological transformations are typically preceded (e.g., budding) and succeeded (e.g., 

sealing following fission) by smaller scale membrane deformations involving ordinary (non-

Gaussian) bending energy in the order of ~ 8πκ (> > KBT). An example is the intermediate 

stalk formation, a transition state between a planar membrane and a vesicle that results 

from spontaneous monolayer curvature (Kozlovsky and Kozlov 2002). This curvature can 

generate a substantial constriction force at the membrane neck that depends on the mean 

curvature J and the spontaneous curvature c0 (Iglič and Rappolt 2019; Lipowsky et al. 2020; 

Steinkühler et al. 2020; Lipowsky 2022) (Eq. 6):

f = 8πκ J − co . (6)

Surface–Bound Membrane Proteins

Proteins represent an important constituent of the PM and account for approximately 50% 

of its mass (Duncan et al. 2017). These include transmembrane proteins that sit across 

the PM and surface-bound membrane proteins (SBMPs) that reside on one side of the 

PM. The latter include proteins harboring unstructured polycationic regions that interact 

with anionic membrane lipids (e.g., the KRAS protein that specifically interacts with PS) 

(Takenawa and Itoh 2006; Lemmon 2008), structural folds with a binding pocket for specific 

phospholipids (e.g., Pleckstrin homology domains that recognize PIs) (Cozier et al. 2004), 

and scaffolds that bind membranes non-specifically (e.g., BAR domains). Many SBMPs 

contain intrinsically disordered regions (IDRs) that serve either as the primary site of 

membrane engagement or complement other membrane targeting motifs. IDRs are segments 

that lack a well-defined tertiary structure (Dyson and Wright 2005), and may include 

partially or fully unstructured random coils and flexible linkers. The structural plasticity 

of IDRs endows them with binding promiscuity, enhanced sensitivity to environmental cues, 

and ease of activity modulation by post-translational modifications (Oldfield and Dunker 

2014; Granata et al. 2015). IDRs play key roles in mediating membrane association of 

SBMPs. An important class of SBMPs that use IDRs as their primary means of membrane 

binding are post-translationally lipid-modified proteins involved in a wide variety of cell 

signaling processes (Gorfe and Hocker 2012). These proteins mostly reside at the cytosolic 

side of membranes, such as the inner leaflet of the PM (Gorfe and Hocker 2012). This 

is achieved by inserting the covalently lipidated IDR into one leaflet of the membrane 

(Ferguson 1991; Casey and Seabra 1996; Novelli and D’Apice 2011). The most common 

lipid modifications in mammalian cells include myristoylation, which is the addition of a 

14-carbon saturated fatty acid chain to an N-terminal glycine; palmitoylation, the addition 

of a 16-carbon saturated palmitoyl chain to a cysteine side chain; and prenylation, the 

addition of a 15- (farnesyl) or 20- (geranylgeranyl) carbon poly-unsaturated and branched 

fatty acid to C-terminal cysteine residues (Resh 2006; Wilson et al. 2011). IDRs are also 
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common in non-lipidated SBMPs, playing key roles in membrane binding and lipid sorting. 

The interactions of IDRs with lipids and their role in regulating cell signaling events have 

been reviewed recently (Cornish et al. 2020). Similarly, the major classes of membrane 

proteins involved in membrane curvature generation and/or sensing have been the subject 

of recent reviews [e.g., (Has and Das 2021; Steinem and Meinecke 2021)]. Expanding the 

excellent review by Has et al. (2022), here we focus on the remodeling of the PM by 

structural disorder of SBMPs, including the role of IDRs in lipid sorting, shape changes, and 

topological transformations. We refer the reader to recent (Has and Das 2021) and earlier 

reviews (Drin and Antonny 2010; Suetsugu et al. 2014) for the discussion of PM remodeling 

by globular protein domains.

Membrane Remodeling by Lipidated Surface-Bound Proteins with Intrinsically Disordered 
Regions

In this section, we discuss membrane remodeling by IDR-containing lipidated SBMPs 

using the RAS small GTPases, the HIV Gag Matrix protein and, to a lesser extent, the 

tyrosine-protein kinase Src as illustrative examples. RAS small GTPases must be anchored 

to the PM for their biological activity (Willumsen et al. 1984; Welman et al. 2000; Jaumot et 

al. 2002; Abankwa and Gorfe 2020). All RAS isoforms, HRAS, NRAS and splice variants 

KRAS4A and KRAS4B, which share a highly conserved catalytic G-domain (residues 

1–166, > 90% sequence homology) but differ at the hypervariable C terminus residues 

(167–185/186, < 20% sequence homology), are farnesylated on their C-terminal cysteine 

residue 185/186 (Hancock et al. 1990; Abankwa et al. 2007; Linder and Deschenes 2007). 

An additional signal is needed to properly anchor RAS to the PM. In particular, HRAS 

is dual-palmitoylated on Cysteine 181 and Cysteine 184, NRAS is mono-palmitoylated on 

Cysteine 181, while KRAS4B (hereafter referred to as KRAS) has a hexa-lysine polybasic 

domain (residues 175–180) (Zhou et al. 2021a; b). Another example of lipidated SBMP 

is the retroviral Gag protein, a key orchestrator of PM remodeling during the assembly of 

the Human Immunodeficiency Virus type 1 (HIV-1) particles (Gelderblom 1991; Bieniasz 

2009; Balasubramaniam and Freed 2011). The HIV-1 Gag polyprotein contains three major 

structural domains, namely the matrix (MA), capsid (CA) and nucleocapsid (NC), as well as 

two spacer peptides, sp1 and sp2, and an unstructured C terminus p6 peptide. The 132 amino 

acid N-terminal MA domain, which targets Gag to the PM (Muriaux and Darlix 2010), 

is characterized by high levels of disorder at its N- and C termini plus a relatively more 

ordered mid-section. The MA domain also contains an N-terminal myristoyl modification 

and a polybasic domain that recognizes phosphoinositol 4,5-bisphosphate (PIP2) in the 

host PM (Saad et al. 2006). A third example of lipidated membrane-bound proteins is the 

proto-oncogene tyrosine-protein kinase Src (c-Src), a non-receptor tyrosine kinase protein. 

This protein contains SH2 and SH3 domains plus a tyrosine kinase domain (Arbesú et al. 

2017). Like HIV Gag, c-Src is anchored to the membrane via a combination of a myristoyl 

moiety and a patch of basic residues (Arbesú et al. 2017).

Lipidated SBMPs and Phase Separation of Membranes

The lipidated IDR of RAS proteins, the HIV Gag protein, and the c-Src kinase contributes to 

their distinct preferences for cholesterol-enriched liquid-ordered (Lo) or cholesterol-poor 

liquid-disordered (Ld) domains in the PM (Fig. 1). In particular, electron microscopy 
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(EM)-spatial analysis quantified the lateral spatial nanoclustering of immunogold-labeled 

GFP-tagged RAS proteins on intact PM sheets of mammalian cells with or without acute 

cholesterol depletion via methyl β-cyclodextrin (MβCD) (Prior et al. 2003). The results 

showed that MβCD treatment effectively disrupted the nanoclustering of inactive GDP-

bound HRAS suggesting that inactive HRAS favors Lo domains. Moreover, atomic force 

microscopy (AFM) and atomically detailed molecular dynamics (MD) simulations have 

shown that active and inactive KRAS as well as active HRAS prefer Ld domains while 

activated NRAS prefers Lo domains (Prior et al. 2003; Weise et al. 2011; Janosi et al. 2012; 

Zhou et al. 2012). EM spatial analysis and MD simulations together further showed that 

KRAS nanoclusters selectively enrich mixed-chain PS species in Ld domains in synthetic 

supported bilayers (SBLs), intact PM sheets from cells, and live cell PM (Zhou et al. 2021a; 

b). Similarly, MD simulations predicted that insertion of the N-terminal myristoyl group of 

the HIV Gag protein leads to the clustering of 16:0/18:1 phosphatidylserine (POPS) and 

PIP2 lipids around the polybasic residues (Monje-Galvan and Voth 2020). In liposomes 

composed of POPS and POPC, HIV-1 Gag strongly preferred lipids with dual-unsaturated 

chains over mixed-chain species (Monje-Galvan and Voth 2020). In lipid vesicles and SBLs 

containing anionic lipids mimicking the PM inner leaflet and the high sterol and SM content 

of raft domains, the HIV Gag protein induced the assembly of cholesterol-enriched PIP2 

nanoclusters (Yandrapalli et al. 2016; Monje-Galvan and Voth 2020). Thus, the HIV-1 Gag 

MA domain induces the formation of cholesterol/PIP2 nanoclusters that include PS with 

dual-unsaturated chains. AFM experiments also showed that insertion of the myristoyl chain 

and residues 2–9 of c-Src in anionic (DPPC/DOPC/DPPG/DOPG/Chol 45:20:5:5:25) raft 

membranes compromised the preexisting Lo/Ld phase separation (Murray et al. 1998).

Backbone conformational fluctuations of the IDR are important for the remodeling of 

PM lipid composition by our example lipidated SBMPs (Zhou et al. 2017, 2021a; b). 

Specifically, MD simulations have shown that the farnesylated polybasic domain of KRAS 

samples 2–3 distinct conformational states upon binding to symmetric PC/PS (Zhou et al. 

2017) as well as asymmetric PC-PC/PS and PC-PC/PS/PE bilayers (Araya and Gorfe 2022). 

The more extended conformations favor PS more (Zhou et al. 2017), particularly mixed-

chain PS species (Zhou et al. 2017, 2021a; b). Similarly, the polycationic myristoylated 

MA domain of HIV Gag displayed distinct backbone conformational preferences and 

conformation-dependent side chain-lipid interactions (Yandrapalli et al. 2016). In a similar 

manner, it was found that the conformational dynamics of the N-terminal myristoylated 

polybasic backbone of the c-Src contributed to its ability to interact with select lipid species 

(Pons 2021).

Membrane Curvature Sensing by SMBPs

Direct remodeling of lipid composition implies that lipidated surface-bound proteins can 

modulate mesoscopic membrane properties, because lipid sorting promotes changes in 

the Gaussian membrane curvature and its associated splay curvature modulus (Box 1). 

Gaussian curvature contains additional terms for each domain boundary through a line 

integral over the geodesic curve along the domain boundary (Box 1 and Eq. 5). Along 

these geodesic curves, there exists a non-zero interfacial tension caused by the hydrophobic 

mismatch between lipids in different membrane domains, which changes the splay modulus 
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associated with the Gaussian curvature energy. The effect of boundary line tension on 

curvature is discussed in many previous reports (Baumgart et al. 2003, 2005; Kuzmin et al. 

2005; Zimmerberg and Kozlov 2006), and is proportional to differences between membrane 

constituent lipids in saturation level and chain order. For example, previous semi-atomistic 

MD simulations of the HRAS minimal membrane anchor in a DPPC/DLiPC/cholesterol 

bilayer found that clustering of the anchors at domain boundaries significantly lowers the 

line tension in the peptide-bound monolayer (Janosi et al. 2012; Li and Gorfe 2013a, b). A 

systematic analysis of de-palmitoylated and de-farnesylated HRAS membrane anchors and 

quantification of pressure tensors further showed that line tension and curvature at the phase 

boundary is highly dependent on the nature of the lipid modification (Janosi et al. 2012; 

Li and Gorfe 2013a, b). The sorting of lipids with specific head groups or acyl chains into 

nanodomains in the PM of living cells will likely remodel the Gaussian curvature in even 

more complex ways than found in the ternary (DPPC/DilPC/Cholesterol) model bilayers 

used in the simulations (Fig. 2).

Related to the remodeling of Gaussian curvature by surface-bound RAS proteins is their 

ability to sense changes in curvature. The local geometry on a 2D surface in 3D space can 

be defined by the two principal curvatures, or the mean and Gaussian curvature (Box 1). 

For example, spherical vesicles and cylindrical tubes have distinct Gaussian curvatures, and 

varying their diameter leads to changes in the mean curvature. Larsen et al. examined the 

ability of the NRAS membrane anchor to sense changes in Gaussian curvature. Specifically, 

the spatial segregation of the NRAS membrane anchor was found to depend on the 

Gaussian curvature of spherical vesicles and tubes of varying diameters (Larsen et al. 

2020). The partitioning of proteins into membrane domains involves the interplay between 

protein-lipid interactions and steric effects, the former being mainly determined by the 

chemical properties of the protein components and the latter dominated by lipid packing 

and protein volume (Lin et al. 2018). A molecular field analysis suggested that the response 

of the NRAS membrane anchor to changes in Gaussian curvature is primarily determined 

by lateral pressure (Larsen et al. 2015, 2020). Changes in lateral pressure may underlie 

Gaussian curvature sensing by SBMPs more broadly (Janosi et al. 2012; Li and Gorfe 

2013a, b; Larsen et al. 2020), consistent with concomitant changes in lateral pressure and 

line tension observed during simulations of the HRAS lipid-anchor clustering at membrane 

domain boundaries (Li and Gorfe 2013a, b). Sensing of membrane curvature may also 

depend on the conformational entropy and net charge of IDPs/IDRs. For example, through a 

quantitative analysis of fluorescently labeled small unilamellar vesicles, Zeno et al. showed 

that electrostatics dominates the curvature sensing ability of SBMPs with highly charged 

and short IDRs, while entropic effects dominate in longer IDRs with fewer charged residues 

(Zeno et al. 2019).

RAS proteins may also alter bilayer shape in smaller scales. This local bilayer structure 

perturbation depends on the insertion depth and localization of the IDR’s backbone and side 

chains, as shown for HRAS (Gorfe et al. 2007a; b) and KRAS (Janosi and Gorfe 2010) using 

MD simulations. While the HRAS membrane anchor with its two palmitoyl chains tends to 

insert deeper into bilayers and thereby increase thickness in its vicinity (Gorfe et al. 2004, 

2007a, 2008, 2007b), the KRAS membrane anchor has a shallower insertion depth and thins 

the bilayer in its vicinity (Janosi and Gorfe 2010). This is consistent with another study 
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showing that HRAS and KRAS membrane anchors possess distinct membrane curvature 

preferences in cells (Liang et al. 2019). Specifically, an increase in positive PM curvature 

resulted in elevated nanoclustering and PM localization of HRAS while disrupting those of 

KRAS (Liang et al. 2019).

Similarly, membrane remodeling by the HIV Gag MA protein during viral assembly 

involves substantial changes in the Gaussian (She et al. 2018; Dharmavaram et al. 2019; 

Sengupta and Lippincott-Schwartz 2020) and ordinary bending energies. Sorting of lipids 

by this protein into nanodomains results in changes in bending stiffness and spontaneous 

curvature, generating a substantial constriction force at the viral budding site (see Eq. 6) 

(Lipowsky 2022). Cholesterol/PIP2/PS-enriched HIV Gag MA nanodomains are separated 

from the surrounding membrane by domain boundaries, with the associated line tension 

adding to the Gaussian curvature stress (Lipowsky 1992; Jülicher and Lipowsky 1993; 

Jülicher and Lipowsky 1996; Kozlovsky and Kozlov 2003; Baumgart et al. 2005; Lipowsky 

2022) (Box 1; Eq. 5). Domain boundaries may also reduce structural and topological 

transition barriers and thereby facilitate budding (Baumgart et al. 2003; Riske et al. 2006; 

Dreher et al. 2021). Indeed, the Gaussian curvature modulus κ (Eq. 7) and its monolayer 

counterpart κm (Eq. 8) can be expressed as the second moment of a membrane’s lateral 

stress profile σ(z), taken over the bilayer or, when centered at the pivotal plane z0, a 

monolayer (Helfrich 1981a, b; Hamm and Kozlov 2000). Currently, it is not feasible to 

measure the stress profile in experiments, but it is readily accessible in simulations although 

not without challenges (Hu et al. 2012, 2013; Venable et al. 2015).

κ = ∫−ℎ
2

ℎ
2 σ(z)z2dz, (7)

κm = ∫
0

ℎ
2 σ(z − z0)z2dz . (8)

Other lipidated proteins such as caveolins combine palmitoylation with membrane-

interacting helices to form hairpin-like inclusions that insert into one leaflet of a membrane 

(Monier et al. 1995). These hairpin-like structures in caveolins and related proteins often 

form membrane coats and cause curvature via monolayer area expansion and other factors 

(Simons and Ikonen 1997; Bauer and Pelkmans 2006).

Membrane Remodeling by Non-lipidated Surface-Bound Membrane Proteins

Non-lipidated SBMPs with IDRs are also potent drivers of PM remodeling during, for 

example, membrane trafficking and recycling. These include protein domains that utilize 

an amphipathic helix (AH) (Hristova et al. 1999; Seelig 2004), hydrophobic loops, or 

curved surfaces to bind membranes (Suetsugu et al. 2014). AHs insert their hydrophobic 

face into the hydrophobic core of the membrane while their polar face localizes at the 

membrane-water interface (Drin and Antonny 2010). Membrane binding of proteins via an 

AH may be complemented by lipidation, and the helix may not fold until after membrane 
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binding. Upon binding, amphipathic helices can induce positive, negative or zero Gaussian 

curvature to the host membrane (Schmidt and Wong 2013; Tenchov et al. 2013; Simunovic 

et al. 2016a, b). Cationic residues that typically exist at these helices interact with anionic 

phospholipids near the site of curvature, thereby contributing to lipid sorting and membrane 

curvature (Harries et al. 2004). Classic examples of AH-containing membrane binding 

domains include Bin/Amphiphysin/Rvs (BAR) domains and epsin N-terminal homology 

(ENTH) domains. Membrane targeting by other structural folds is also often accompanied 

by the insertion of an AH (Suetsugu et al. 2014; Chen et al. 2016) (see Fig. 3). Similar 

other wedge-shaped hydrophobic structures (Campelo et al. 2008) that insert into one leaflet 

of a membrane play many critical roles in trafficking by forming vesicle coats (Bauer and 

Pelkmans 2006).

Among their many functions, proteins containing BAR and ENTH domains participate in 

the various stages of clathrin-mediated endocytosis of synaptic vesicles, and cluster PIP2 

lipids at clathrin-coated pits (Bassereau et al. 2018). The N terminus of N-BAR is unfolded 

in solution but folds into a helix upon inserting into membrane, inducing positive curvature 

to the membrane (Bhatia et al. 2010; Cui et al. 2011). Curvature is further stabilized 

by the dimerization of the protein. Endophilin is an example of proteins containing an 

N-BAR domain, which induces constriction and scission of Ω-shaped clathrin-coated pits 

during vesicle budding (Perera et al. 2006; Morlot et al. 2012). Endophilin also induces 

curvature at high density by forming scaffolds that mechanically constrain bud necks and 

spontaneously tubulate membranes (Shi and Baumgart 2014; Simunovic et al. 2015) (see 

next section on oligomerization). An example of ENTH-containing SBMPs is epsin. Epsins 

contain a disordered N-terminal domain that interacts with PIP2 and folds into an AH, which 

inserts deep into the hydrophobic core of the membrane like a wedge to induce positive 

curvature (Masuda et al. 2006). In addition to contacts made by the AH, membrane binding 

is also stabilized by electrostatic interactions between protein side chains in the rest of the 

ENTH domain and anionic phospholipids. Other studies of ENTH domains have shown that 

curvature is generated not only by the insertion of specific domains but also by molecular 

clustering (Stachowiak et al. 2012a, b; Zeno et al. 2018). Whether the main driving force for 

membrane remodeling by ENTH is cluster formation (Stachowiak et al. 2012a, 2013, 2012b) 

or if the two mechanisms (i.e., clustering and insertion) are mutually exclusive remains 

to be elucidated (Steinem and Meinecke 2021). BAR and ENTH domains also possess 

hydrophobic regions whose membrane association helps form highly curved deformations 

and extremely narrow tubules (Suetsugu et al. 2014; Bassereau et al. 2018). Moreover, as 

alluded to above using caveolins as an example, the asymmetric insertion of AHs, or any 

other domain for that matter, in one leaflet of a bilayer increases the area of that leaflet 

relative to the opposing leaflet; the bilayer curves to compensate for the resulting increase in 

area strain. See Box 2 and Eq. 9 for the energetics of membrane remodeling by monolayer 

surface area expansion.

Membrane Remodeling by Protein Oligomerization

Membrane remodeling processes are inherently multiscale in both space and time. One 

way to expand the spatiotemporal scale of membrane deformation is to complement the 

comparatively small scale deformations induced by individual proteins by larger scale 
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transformations by protein oligomers. Along this line, experiments on lipid vesicles have 

shown that both differential area expansion upon the asymmetric insertion of individual 

SBMPs, as well as lateral steric pressure due to molecular crowding by protein oligomers, 

play roles in lipid sorting and membrane bending (Zeno et al. 2018, Fakhree et al. 2019a, b) 

(Fig. 4).

Clustering of SBMPs and Membrane Curvature

Pioneering work by Lipowsky demonstrated that high-density binding of particles on one 

side of a membrane surface causes the membrane to adopt a curved shape, owing to 

the difference in steric pressure on the two membrane surfaces (Lipowsky 1995). At the 

mechanistic level, the greater frequency of collisions among the polymer molecules on 

the more densely coated surface overcomes the opposing pressure on the less densely 

coated side, leading to a pressure gradient that relaxes only when the membrane takes on 

a non-zero curvature (Lipowsky 2007; Bassereau et al. 2018). Depending on the extent 

of the gradient, the resulting curvature can be quite high. Indeed, concentrated patches of 

membrane-anchored globular proteins are capable of transforming membrane surfaces into 

tubules of high curvature (Stachowiak et al. 2010).

It was hypothesized that bulky IDRs occupy considerably larger volumes in comparison 

with structured motifs of equivalent molecular weight, and IDRs may thus induce larger 

steric surface pressures and thereby more curvature (Bassereau et al. 2018). Indeed, IDRs 

are among the most potent drivers of membrane vesiculation and fission (Busch et al. 2015; 

Snead et al. 2017). Perhaps for the same reason, the IDR-containing RAS proteins form 

clusters of ~ 6 proteins and average radius of ~9 nm (Plowman et al. 2005), and clustering is 

important for their ability to sense membrane curvature (Zhou and Hancock 2015; Liang et 

al. 2019). Note that bilayers tend to bend at the boundaries of co-existing domains in order 

to minimize the line tension between the domains. Structural, geometrical and stress field 

analyses of coarse-grained MD trajectories showed that aggregation of HRAS at domain 

boundaries stabilizes curvature (Janosi et al. 2012; Li and Gorfe 2013a, b; Li and Gorfe 

2014). The reduction of the line tension at domain boundaries observed in these simulations 

can be linked to the remodeling of Gaussian curvature via Eq. 5. Similarly, the observed 

self-assembly of the HIV-1 Gag protein into higher order oligomers during viral budding 

(O’Carroll et al. 2013) likely causes substantial changes in Gaussian curvature. Additional 

examples abound. These include endocytic factors that accomplish the scission of membrane 

catenoids/saddle by self-assembly and aggregation (Frost et al. 2008; Simunovic et al. 

2016). For example, endophilin utilizes its N-BAR domain to drive its own endocytosis 

(Simunovic et al. 2017), while aggregates of the inverse I-BAR domains induce separation 

between low- and high-density phases and thereby membrane curvature that eventually leads 

to scission at the necks (Prévost et al. 2015; Simunovic et al. 2017).

In contrast to many of the reports noted above, it has been suggested that the membrane-

inserting motif of endophilin has no potency to induce membrane curvature (Chen et al. 

2016), instead emphasizing the role of scaffolding and clustering in membrane remodeling 

by N-BAR proteins. It has also been shown using optical tweezer experiments on membrane 

nanotubes that endophilin may directly mediate scission of membrane tubes (Simunovic et 
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al. 2016). However, this study also showed the requirement of external factors to promote 

tube elongation, where the significance of molecular clustering may lie. We believe the role 

of AH in membrane topological transformations cannot be ignored completely, because the 

extent of membrane fragmentation and reticulation by epsins and N-BARs is correlated with 

the number of AHs in individual proteins (Boucrot et al. 2012; Simunovic et al. 2013). 

Therefore, the insertion of AH may likely play a role in the initial destabilization of the 

membrane (Simunovic et al. 2016) while molecular clustering drives curvature formation 

associated with vesicle budding and scission. Along this line, experiments on lipid vesicles 

have suggested that multiple domains of varying Gaussian bending stiffness or saddle splay 

modulus are requirements for vesicle scission (Allain et al. 2004).

Oligomer Size and Steric Pressure

Recent experiments of IDR-containing endocytic proteins bound to vesicles (diameter = 

50 nm) provided insights into the relationship between SBMP oligomer size and capacity 

to generate steric pressure (Busch et al. 2015; Snead et al. 2017). It was found that the 

ability of ENTH domains to drive membrane tubulation (Stachowiak et al. 2012a; b) 

and vesiculation is correlated to the fractional coverage of the membrane surface by the 

protein (Snead et al. 2017). AP180 and Epsin, which contain IDRs with a large radius 

of gyration, were shown to be more effective at crowding the membrane surface and 

driving bending than ENTH domains that have a smaller radius of gyration (Fakhree et al. 

2019a; b). Differences in membrane surface area coverage (70 vs 15 μm2) were correlated 

with differences in energy from steric pressure (Stachowiak et al. 2012a, b; Bassereau et 

al.2018). A recent work has shown that Epsin can also induce membrane tubulation using its 

disordered C terminus via a mechanism by which multiple bulky disordered regions induce 

curvature through steric pressure (Busch et al. 2015). Similarly, multimers of Epsin combine 

to drive membrane curvature in simulations. It has been hypothesized that, in response to 

binding the clathrin adaptor AP2, the radius of the Epsin disordered region expands, further 

inducing curvature (Kozlovsky and Kozlov 2003). Moreover, BAR scaffolds assemble 

during membrane fission, and crowding of their bulky disordered domains generates steric 

pressure that destabilizes lipid tubules (Snead et al. 2019). The increasing appreciation of the 

role of SBMP/IDR crowding provides for a stochastic view of membrane fission (Snead and 

Stachowiak 2018), suggesting a shift from a long held paradigm where membrane fission 

was thought to be driven by proteins with certain tertiary structures.

Conclusion

The PM of cells is a very dynamic structure that constantly undergoes remodeling 

because of a plethora of phenomena that rely on the generation, modulation, and 

maintenance of membrane curvature. Many lipidated and non-lipidated surface-bound 

membrane proteins (SBMPs) containing intrinsically disordered regions (IDRs) undergo 

conformational changes and clustering upon membrane binding, which result in lipid 

sorting and membrane remodeling. IDRs that form liquid-like assemblies on membranes 

are emerging as potent drivers of membrane bending to generate diverse membrane shapes. 

A better mechanistic understanding of how these IDRs precisely interact with lipids and 

remodel membranes will shed more light on mechanosensing and mechanotransduction. 
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This requires new experimental, simulation and modeling studies focused on deciphering the 

relative roles of mean and Gaussian curvatures in SBMP-induced membrane remodeling.
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Box 1

Contributions of Mean and Gaussian Curvatures to Membrane Bending

The plasma membrane can be regarded as a two-dimensional surface (S) that spans a 

three-dimensional space, which can be described by principal curvatures k1 and k2, mean 

curvature J = (k1 + k2
2 ), and Gaussian curvature K = k1 · k2 (Helfrich 1973). The total 

elastic bending energy of the surface is then given by the surface integral of Eq. 1:

Ebending = ∫
S

dS 1
2κ J − c0

2 + κK , (1)

where κ and κ are bending and saddle splay moduli, respectively, co is spontaneous 

curvature, and dS is the area element. The Gaussian curvature component of Eq. 1 can 

be related to surface topology and boundary line using the Gauss–Bonnet theorem (Eq. 

2), which states that the integral of Gaussian curvature K over the entire surface S can be 

written as a contour integral of a geodesic curvature kg at the boundary line l of S, and a 

topological parameter called Euler characteristic X (Lee 1997).

∫
S

K ⋅ dS = 2πX − ∮
l

kg ⋅ dl . (2)

We refer the reader to (Wu 2008) for the history of the Gauss–Bonnet theorem. For 

the purposes of this review, it suffices to state that substituting the Gaussian term 

in Eq. 1 with the expression in Eq. 2 would allow for analyzing the topological and 

phase boundary components of the PM remodeling energetics. Note that cell membranes 

contain domains of differing phases and elasticity. Therefore, the contour integral in Eq. 

2 is taken over the geodesic curvature along the domain boundary lines (Jülicher and 

Lipowsky 1996; Baumgart et al. 2005; Lipowsky 2022). However, for a closed membrane 

surface with uniform elastic properties, the term containing the contour integral vanishes, 

so the integral of the Gaussian curvature in Eq. 2 reduces to Eq. 3.

∫
S

K ⋅ dS = 2πX . (3)

Also note that the Euler characteristic X is invariant under a continuous bending 

condition. Therefore, the Gaussian component of membrane curvature contributes to the 

energy only when remodeling involves changes in phase boundary and/or topology.
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Box 2

Small Gradient Approximation of Membrane Elastic Energy, and Coupling 
of Differential Areal Tension and Membrane Bending

Small gradient approximation based on Monge parameterization of differential geometry 

has been used to describe mean and Gaussian curvatures in terms of the height 

function h(x,y) above a flat reference plane, with the membrane surface represented 

by coordinates (x, y, h(x, y)) (Mazharimousavi, Forghani et al. 2017). The differential 

area S in Eq. 1 can then be written as (1 + (∇ℎ)2dxdy. When the extent of membrane 

deformation is small (∇h < < 1), this reduces to 1 + 1
2 (∇ℎ)2 and the Gaussian component 

in Eq. 1 can be ignored. After adding a density term for the cost of area increase due to 

stretching of the curved surface (1
2γ(∇ℎ)2 where γ is surface tension), the total bending 

energy is expressed as the integral over the base plane (Eq. 9):

Ebending = 1
2∫ κ(Δℎ)2dxdy + γ(∇ℎ)2 . (9)

This implies that, under equilibrium conditions, areal strain and curvature stress are 

coupled, so that the strain caused by the insertion of a SBMP into a monolayer is 

balanced by curvature. We refer the reader to the work of Markus Deserno (2015) for in 

depth analysis of this issue.
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Fig. 1. 
HRas, KRas and HIV Gag as examples of PM remodeling by binding of SBMPs with 

lipidated IDRs. Highlighted here is membrane remodeling by the insertion of a lipid motif 

and charge interactions between polybasic residues of IDRs and head groups of anionic 

phospholipids. The charge interaction leads to the clustering of anionic phospholipids 

around the protein. Farnesylation (Far), palmitoylation (Palm) and myristoylation (Myr) 

of IDRs are utilized for selective PM anchoring and remodeling in liquid-ordered (Lo) and 

liquid-disordered (Ld) domains
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Fig. 2. 
A scenario of PM remodeling by SBMP aggregates with lipidated IDRs. The schematic 

shows the deformation of a two-domain (Lo/Ld) membrane by the asymmetric insertion and 

clustering of lipid-modified proteins, highlighting a specific instance in which the aggregate 

stabilizes the domain interface as the pivot/center of deformation
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Fig. 3. 
PM remodeling by binding of SBMPs with non-lipidated IDRs. Membrane anchoring and 

deformation with the insertion/wedging of an amphipathic helix (AH) and recognition 

of anionic phospholipid head groups (PIP2 in this case) by the protein structure/motif 

within the globular domain is shown. Insertion of an AH increases the area of one of the 

leaflets (lower leaflet in the schematic), and a positive membrane curvature is induced to 

compensate for this increase in surface area
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Fig. 4. 
PM remodeling by SBMP aggregates with non-lipidated IDRs. This includes Induced-

bending via the combined effects of AH insertion and the generation of lateral pressure 

from the asymmetric aggregation of non-lipidated SBMP. The IDR may sample various 

degree of compactness, with the radius of gyration of the IDR as well the concentration of 

the bound protein contributing to membrane bending in addition to the size of the AH and 

the subsequent increase in monolayer surface area
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