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Harnessing the power of longitudinal
medical imaging for eyediseaseprognosis
using Transformer-based sequence
modeling

Check for updates

Gregory Holste 1,2, Mingquan Lin 2,3, Ruiwen Zhou4, Fei Wang 1, Lei Liu4, Qi Yan 5,
Sarah H. Van Tassel6, Kyle Kovacs6, Emily Y. Chew 7, Zhiyong Lu8, ZhangyangWang2 &
Yifan Peng 1

Deep learning has enabled breakthroughs in automated diagnosis from medical imaging, with many
successful applications in ophthalmology. However, standard medical image classification
approaches only assess disease presence at the time of acquisition, neglecting the common clinical
setting of longitudinal imaging. For slow, progressive eye diseases like age-related macular
degeneration (AMD) and primary open-angle glaucoma (POAG), patients undergo repeated imaging
over time to track disease progression and forecasting the future risk of developing a disease is critical
to properly plan treatment. Our proposed Longitudinal Transformer for Survival Analysis (LTSA)
enables dynamic disease prognosis from longitudinal medical imaging, modeling the time to disease
from sequences of fundus photography images captured over long, irregular time periods. Using
longitudinal imaging data from the Age-Related Eye Disease Study (AREDS) andOcular Hypertension
Treatment Study (OHTS), LTSA significantly outperformed a single-image baseline in 19/20 head-to-
head comparisons on late AMD prognosis and 18/20 comparisons on POAG prognosis. A temporal
attention analysis also suggested that, while the most recent image is typically the most influential,
prior imaging still provides additional prognostic value.

Deep learning has shown remarkable capabilities across a wide variety of
medical image analysis and computer-aided diagnosis tasks1,2, with many
successful applications in ophthalmology3–6. However, standard image
classification techniques for disease diagnosis bear some major limitations:
(i) they can only accommodate a single image of a patient, and (ii) they can
only assess if the patient presents with the disease at the time of image
acquisition. For slowly progressive eye diseases like late-stage age-related
macular degeneration (late AMD) and primary open-angle glaucoma
(POAG), it is common for patients to undergo repeated imaging over long
periods of time to track disease progression. Such longitudinal imaging is
incompatiblewith standard image classificationmethods, though a growing

body of work tackles this common clinical setting7–11. In addition, for
patients who do not present with the disease at the time of acquisition but
may be at increased risk of developing it in the next few years, it is critical to
identify this risk as early as possible to plan management. Further, patients
in different subphenotypes might have varying eye disease progression
speeds in earlier and later stages; long-term epidemiological studies have
shown that many factors “dynamically” influence AMD or POAG
progression12,13.

For these reasons, we aim to develop a method for disease prognosis,
forecasting future risk of developing disease based on longitudinal imaging.
Prior work has used color fundus photography imaging for AMD7–10 and
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POAG14,15 prognosis, some incorporating prior imaging. For example, Peng
et al. 7 adopted a two-stage approach where a convolutional neural network
(CNN) was pretrained on AMD-related tasks to be used as a fundus image
feature extractor. Next, these embeddings were used alongside patient
demographics and genomic data in a Cox proportional hazards model for
survival analysis modeling of “time to late AMD” from the last available
image. Yan et al. 10 developed an end-to-end deep learning approach for late
AMD progression by training a CNN to predict the risk of developing late
AMD over k years, where k = 2,3,…,7, again based on individual fundus
images. More recently, Lee et al. 8 and Ghahramani et al. 9 began to incor-
porate longitudinal fundus imaging for automated late AMD progression
with a CNN feature extractor and separate long short-term memory
(LSTM) module to model temporal patterns in the imaging. Lee et al.
classified whether the eyewould develop late AMD in fixedwindows of 2 or
5 years from the last image, similar to Yan et al., while Ghahramani et al.
employed a two-stage approach with survival modeling based on deep
fundus image features, much like Peng et al. Similarly, for POAGprognosis,
Li et al. 14 adopted a two-stage approach that extracts deep features from a
baseline fundus image and performs survival modeling. Later, Lin et al. 15

used a siamese CNN architecture to model changes between a baseline and
follow-up fundus image, roughly modeling progression by classifying
whether the eye would develop POAG within 2 and 5 years from the
last visit.

Overall, these prior efforts often formulate automated prognosis as a
binary classification task, for example, predicting whether a patient will
develop the disease within fixed durations from the last visit (e.g., 2-year or
5-year prognosis). As a result, these approaches are limited to the time
horizonof choice. Converting a 5-year risk classifier to a 2-year risk classifier
would potentially entail creating a new patient cohort and re-training the
model from scratch on this new classification task. Additionally, this model
can only provide a single scalar describing the probability of developing
disease at any time within the specified time window, unable to produce a
time-varying risk assessment. Finally, many of these methods are only
capable of accommodating a single fundus image, failing tomodel temporal
changes in the eye’s presentation thatmay be crucial for assessing the rate of
progression and, thus, proper prognosis. To avoid these pitfalls, we adopt a
survival analysis approach to disease prognosis from longitudinal imaging
data, aiming to model a time-to-event outcome (e.g., years until death or
developing a disease) basedon time-varying patientmeasurements. Such an
approach is farmoreflexible and clinically valuable thanprior efforts toward
eye disease prognosis, as it incorporates longitudinal patient imaging and
produces dynamic and long-term risk assessments. For example, this
approach would be particularly informative for a patient who has already
“survived” several years with no current signs of disease or an early stage of
eye disease. Further, our method is end-to-end, meaning it directly accepts
longitudinal fundus images and outputs time-varying probabilities
describing the risk of developing the disease of interest.

In this work, we propose a Longitudinal Transformer for Survival
Analysis (LTSA), a Transformer-based method for end-to-end survival
analysis based on longitudinal imaging. Like words in a sentence, we
represent the collection of longitudinal images over time as a sequence fit for

modeling with Transformers16. However, unlike words in a sentence, con-
secutive images are not “equally spaced,” potentially with months or years
between visits. To account for this, a temporal positional encoder embeds
the acquisition time (time elapsed since the first visit) of each image and
fuses this information with the learned image embedding. A Transformer
encoder then performs repeated “causal”masked self-attention operations,
learning associations between the image from each visit and all prior ima-
ging. The model is optimized to directly predict the discrete hazard dis-
tribution, a fundamental object of interest in survival analysis, from which
we can construct eye-specific survival curves. Despite advances in deep
learning for survival analysis17–23, existing methods either accommodate
non-longitudinal imaging or non-imaging longitudinal (time series) data.
LTSA is unique in its ability to perform end-to-end time-varying image
representation learning and survival modeling from longitudinal imaging
data using Transformer-based sequential modeling.

We validate LTSA on the prognosis of two eye diseases, late AMD and
POAG. AMD is the leading cause of legal blindness in developed
countries24,25, and the number of people with AMD worldwide is projected
to reach 288 million by 204026. The disease is broadly classified into early,
intermediate, and late stages. While early and even intermediate AMD are
typically asymptomatic, late AMD is often associated with central vision
loss, occurring in two forms: geographic atrophy and neovascular (“wet”)
AMD (Fig. 1)27. To improve management plans for patients, it is important
to understand the individualized risk of AMD progression. Patients with
low riskmay adopt amanagement plan thatwillminimize costs and burden
of careon thehealthcare system. In contrast, high-riskpatientsmay receive a
more aggressivemanagementplan earlier in thedisease progression inorder
to maintain vision as long as possible. POAG, too, is one of the leading
causes of blindness in the United States and worldwide28, as well as the
leading cause among African Americans and Latinos29,30. The disease is
projected to affect nearly 112millionpeopleby2040,over5millionofwhom
may become bilaterally blind31. Similar to AMD, POAG is asymptomatic
until it reaches an advanced stage when visual field loss occurs. However,
early detection and treatment can avoidmost blindness caused by POAG32.
For both late AMD and POAG, accurately identifying high-risk patients as
early as possible is critical to clinical decision-making, helping inform
management, treatment planning, or patient monitoring.

To evaluate LTSA, we performed extensive experiments comparing
our proposedmethod to a single-image baseline, which only uses the single
last available image. This study leveraged two large, longitudinal imaging
datasets: 49,452 images from 4274 participants from the Age-Related Eye
Disease Study (AREDS) for late AMD prognosis and 30,932 images from
1597 participants from the Ocular Hypertension Treatment Study (OHTS)
for POAG prognosis. As measured by the time-dependent concordance
index, LTSA demonstrates consistently superior discrimination of disease
risk on both late AMD and POAG prognosis. LTSA significantly outper-
forms the single-image baseline on 37 out of 40 head-to-head comparisons
across a wide variety of prediction, or “landmark” times, and time horizons.
Our results also strongly suggest the benefit of longitudinal imagemodeling
for prognosis, where incorporating prior imaging enhances disease prog-
nosis. Further, since LTSA leverages a temporal attention mechanism over

Fig. 1 | Stages of AMD progression. Color fundus photography images illustrating
the various stages of AMD, a progressive eye disease affecting the macula. Images
come from the AREDS dataset accompanied by a 9-stepAMD severity score; a score
over 9 indicates late-stage AMD, which can cause blurring and loss of central vision.

Green boxes highlight “drusen”, yellowish deposits of protein under the retina,
which can be an early sign of AMD. There are two forms of late AMD: “dry”, or
atrophic, AMD (also called geographic atrophy) and “wet”, or neovascular, AMD.
AMD age-related macular degeneration, AREDS Age-Related Eye Disease Study.

https://doi.org/10.1038/s41746-024-01207-4 Article

npj Digital Medicine |           (2024) 7:216 2

www.nature.com/npjdigitalmed


the sequence of images, analysis of the learned attention weights uncovers
which visits contribute most to prognosis. Indeed, the most recent visit is
usually the single most important; however, we are able to characterize the
relationship between time since the final examination and the relative
influence of each exam on the predicted prognosis, which may have real-
world, real-time implications for ophthalmologists making assessments of
risk and prognosis.

Beyond the improved discriminative performance of our proposed
method, this study offers a potential answer to the growing demand for
dynamic and explainable prognoses for eye diseases. LTSA can enhance our
understanding of temporal image patterns contributing to eye disease
progression, serving to demystify “black-box” deep learning models. Such
clarity could potentially promote greater utilization and trust of deep sur-
vival analysis models among ophthalmologists, bridging the gap between
technical innovation and clinical practice.

Results
Development and evaluation of LTSA
Our proposed LTSA is trained on sequences of consecutive fundus
images to directly predict the time-varying hazard distribution,
allowing for disease prognosis through a survival analysis framework
(Fig. 2). Instead of standard positional encoding, a temporal positional
encoder accounts for irregularly spaced imaging by embedding the
time of each visit and fusing this information with the associated image
embedding. Then, a Transformer encoder performs causal, temporal

attention over the sequence of longitudinal images before a survival
layer predicts the sequence-specific hazard function.

LTSA was trained and evaluated using longitudinal fundus imaging
and time-to-event data from the Age-Related Eye Disease Study (AREDS)
and Ocular Hypertension Treatment Study (OHTS). The AREDS data
consisted of 49,592 images from4274unique patients and 7818unique eyes,
and theOHTS data consisted of 30,932 images from1597 patients and 3188
eyes (see “Methods” for further details). In the AREDS dataset, eyes
underwent an average of 6.34 visits over the course of 6.47 years, with a
minimum of 6 months between visits. Approximately 12.2% of eyes
developed late AMD (87.8% censoring rate) with a mean time to event of
5.27 years. ForOHTS, eyeswere examinedan averageof 9.70 timesover9.20
yearswith aminimumof 1 year betweenvisits.Approximately 11.9%of eyes
developedglaucoma(88.1%censored) in anaverageof 7.22years. Formodel
development and evaluation, each dataset was then randomly partitioned
into training (70%), validation (10%), and test (20%) sets at the patient level.

To account for censoring and time-varying inputs and outputs, we
assess the prognostic ability of our models with a time-dependent con-
cordance, denoted C(t, Δt). This metric measures the ability to accurately
rank pairs of eyes by risk (e.g., predicting higher risk for eyes that will
develop disease sooner) for a given prediction time t (time of last visit) and
evaluation time Δt (time horizon into the future over which we assess risk).
We compare the performance of LTSA with a single-image baseline that
only uses the most recent available image. Models are evaluated by C(t, Δt)
across 20 combinations of prediction times t 2 f1; 2; 3; 5; 8g and evaluation

Fig. 2 | Overview of proposed longitudinal survival analysis approach. In long-
itudinal medical imaging, patients undergo repeated imaging over long periods of
time at irregular intervals (a). Rather than predict the presence of disease at the time
of imaging, our method leverages a patient’s longitudinal imaging history to forecast
the future risk of developing disease through a survival analysis framework (b). Our
approach represents the collection of fundus images for an eye over time as a
sequence fit for modeling with Transformers. To accommodate large, irregular

intervals between consecutive visits, a temporal positional encoder fuses this
information with the image embeddings from each visit. A Transformer encoder
then employs causal temporal attention over the sequence, only attending to prior
visits. The entire model is optimized end-to-end to predict the time-varying hazard
function for each unique sequence of consecutive visits. From the hazard function,
we compute eye-specific survival curves, allowing for dynamic eye disease risk
prognosis evaluated through the framework of longitudinal survival analysis (c).
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times4t 2 f1; 2; 5; 8g, where time is measured in years. Finally, evaluation
is performed at the eye, not patient, level since each eye can have its own
unique disease status.

Validation of LSTA on late AMD risk prognosis
Figure 3 reveals that LTSA significantly outperformed the single-image
baseline for late AMDprognosis in 19 out of 20 combinations of prediction
time t and evaluation timeΔt. Across all prediction and evaluation times, the
single-image baseline achieved a mean time-dependent concordance index
of 0.884 (95%CI: [0.861, 0.906]),while LTSA reached 0.907 (95%CI: [0.890,
0.924]). Full numerical results for late AMD prognosis can be found in
Supplementary Table 1. For t = 1, the baseline and LTSA were comparable,
given that often only one image is available after a year of observation. For
example, the baseline produced a C(1, 1) of 0.818 (95% CI: [0.771, 0.862])
andC(1, 2) of 0.825 (95%CI: [0.787, 0.861]), while LTSAproduced aC(1, 1)
of 0.823 (95% CI: [0.775, 0.863]) and C(1, 2) of 0.836 (95% CI: [0.802,
0.868]). However, for prediction times beyond one year—when LTSA
would have access to more prior imaging—LTSA dramatically out-
performed the single-image baseline in all 16 out of 16 comparisons
(P ≤ 0.0001 for each test). For example, considering 2-year late AMD risk
prediction, C(2, 2) was 0.886 (95% CI: [0.858, 0.911]) for the baseline vs.
0.923 (95%CI: [0.903, 0.940]) for LTSA, C(3, 2) was 0.896 (95%CI: [0.873,
0.917]) for the baseline vs. 0.927 (95%CI: [0.911, 0.942]) for LTSA, andC(5,

2) was 0.910 (95% CI: [0.894, 0.926]) for the baseline vs. 0.936 (95% CI;
[0.924, 0.947]) for LTSA. Similar trends were observed for 1-, 5-, and 8-year
late AMD risk prognosis as well. Additional late AMD prognosis results by
time-dependent Brier score can be seen in Supplementary Fig. 1.

Validation of LTSA on POAG risk prognosis
Figure 4 shows that LTSA significantly outperformed the baseline onPOAG
prognosis for 18outof 20 combinationsof t andΔt, asmeasuredby the time-
dependent concordance index. While the baseline reached an overall mean
time-dependent concordance index of 0.866 (95%CI: [0.795, 0.925]), LTSA
reached 0.911 (95% CI: [0.869, 0.948]). Full numerical results for POAG
prognosis can be found in Supplementary Table 2. Once again, the per-
formance gap between LTSA and the single-image baseline widened as
more prior images became available; as prediction time t increased, the
number of significant improvements (and the magnitude of these
improvements) of LTSA over the baseline was nondecreasing. LTSA also
demonstrated an advantage in long-term POAG prognosis, even with early
prediction times. For example, LTSA significantly outperformed the base-
line for 5- and 8-year prognosis across allprediction times (P ≤ 0.0001 for all
10 comparisons). While LTSA provided a small but significant boost over
the baseline for 5-year prognosis from year 1—C(1, 5) of 0.852 (95% CI:
[0.785, 0.910]) for the baseline vs. 0.861 (95% CI: [0.800, 0.920], P < 0.001)
for LTSA—this gap only widened with increasing prediction time: C(3, 5)

Fig. 3 | Late AMD prognosis results. Time-dependent concordance index Cðt;4tÞ
for various values of prediction time t and evaluation time Δt comparing the single-
image baseline model (blue) to LTSA, which incorporates all prior visits (orange).
Box plots depict the values computed from 1000 bootstrap samples of the test set

(center line = median, box = IQR, whiskers = 1.5x the IQR from the box). Sig-
nificance levels are determined from Bonferroni-adjusted P-values as follows:
****P ≤ 0.0001, ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05, ns no significant difference,
AMD age-related macular degeneration, IQR interquartile range.

https://doi.org/10.1038/s41746-024-01207-4 Article

npj Digital Medicine |           (2024) 7:216 4

www.nature.com/npjdigitalmed


was 0.801 (95%CI: [0.732, 0.865]) for the baseline vs. 0.885 (95%CI: [0.846,
0.920]) for LTSA, and C(8, 5) was 0.899 (95% CI: [0.863, 0.928]) for the
baseline vs. 0.950 (95%CI: [0.936, 0.962]) for LTSA. The samepattern could
be observed for an 8-year POAG risk prognosis across the range of long-
itudinal prediction times. Auxiliary POAG prognosis results by time-
dependent Brier score can be found in Supplementary Fig. 2.

Effect of longitudinal modeling on prognosis
Based on the predicted time-varying hazard probabilities, LTSA can be used
to dynamically construct eye-specific survival curves beginning from any
time of interest. Figure 5a depicts survival curves for two unique eyes in the
AREDS test set, comparing the predicted survival trajectories of the single-
image baseline (dashed line) to those of LTSA (solid line). Eye #1 (blue) and
eye #2 (orange) both last underwent imaging 4 years from enrollment,
though eye #1 developed late AMD 2 years later and eye #2 developed late
AMD 6 years later. For both eyes, LTSA correctly predicts lower survival
(higher risk) than the baseline, consistent with the fact that both eyes would
go on to develop the disease. Additionally, LTSA correctly ranks the eyes
with respect to risk, while the single-image baseline does not—that is, LTSA
assigning lower survival probabilities to eye #1 than eye #2 is consistent with
the fact that eye #1 will go on to develop late AMD 4 years sooner than eye
#2. Similarly, Fig. 5b depicts an analogous pair of eyes from the OHTS test
set, with predicted survival curves fromLTSAand the single-image baseline.

Eye #1 (blue) was last observed during year 9, developing POAG 4 years
later, while eye #2 (orange) was last examined during year 4, developing
POAG 6 years later. Here, the same pattern can be observed, where LTSA
delivers a more accurate risk assessment than the baseline for both eyes.
Notably, LTSA also properly ranks the two eyes according to glaucoma risk,
a feat that the baseline does not. Conditional survival plots for these cases
can be found in Supplementary Fig. 3.

Temporal attention analysis
Since LTSA leverages a causal attentionmechanism to process longitudinal
imaging, the learned attention weights can reveal which visits are most
influential to the model’s disease prognosis. In support of common clinical
practice and knowledge, temporal attention analysis suggests that, in the
aggregate, more recent imaging is more important for late AMD risk
prognosis (Fig. 6a). Across all unique eyes in the AREDS test set, the last
available image was given the highest attention score in nearly 96% of cases.
However, we find that LTSA still attends to prior imaging in a mono-
tonically time-decaying fashion; the median normalized attention score—
relative to the maximum attention score in each sequence—was 1 (most
important) for the last visit, 0.864 (86.4% as important) for the second-to-
last visit, 0.812 (81.2% as important) for the third-to-last visit, etc. with a
strong negative linear association (r = −0.912). Alongside the quantitative
results demonstrating the benefit of longitudinal modeling, this attention

Fig. 4 | POAG prognosis results. Time-dependent concordance index Cðt;4tÞ for
various values of prediction time t and evaluation time Δt comparing the single-
image baseline model (blue) to LTSA, which incorporates all prior visits (orange).
Box plots depict the values computed from 1000 bootstrapped samples of the test set

(center line = median, box = IQR, whiskers = 1.5x the IQR from the box). Sig-
nificance levels are determined from Bonferroni-adjusted P-values as follows:
****P ≤ 0.0001, ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05, ns no significant difference,
IQR interquartile range, POAG primary open-angle glaucoma.
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analysis suggests that, while the most recent imaging is often the most
important, prior imaging can still provide additional prognostic value.

While, on average, more recent imaging is more pertinent for risk
prognosis, analysis of the learned attentionweights for individual sequences
of eyes can illuminate abnormal cases worth further study. Figure 6b shows
the raw attention weights and ground-truth, ophthalmologist-determined
AMDseverity scores for a typical, healthy eye adhering to the overall pattern
of attention scores—the more recent the imaging, the higher the attention
weight. However, Fig. 6c shows an atypical case, where the eye went on to
develop late AMD and, more importantly, the second-to-last visit received
the greatest attentionweight. For this eye, the second-to-last imagewasmost
influential to LTSA’s prognosis, consistent with a jump in AMD severity
from 5 to 8, potentially suggesting rapid progression of AMD.

Discussion
In this work, we presented a novel method for survival analysis from
longitudinal imaging, LTSA, and validated our approach on two eye disease
prognosis tasks. Both quantitative and qualitative analysis demonstrated
clear superiority of LTSA over a single-image baseline—representing
standard clinical practice—for both late AMD and glaucoma prognosis.
LTSAoutperformed the baseline on 19 out of 20 head-to-head comparisons
with the baseline for late AMD prognosis and 18 out of 20 comparisons for
POAG prognosis when evaluated by the time-dependent concordance
index. Given the longitudinal survival analysis setting with time-varying

inputs and outputs, evaluation was performed across a wide range of pre-
diction times t and evaluation times Δt. LTSA particularly shined over the
single-image baseline for t ≥ 2, at which point multiple longitudinal images
are often available for a given eye; in such cases, LTSA’s causal attention
mechanism allows for rich representation learning of changes apparent in
the longitudinal image measurements of an eye over time. Qualitative
analysis of predicted survival trajectories also showed that LTSA can pro-
duce more accurate risk assessments than the baseline for a given eye and
accurately rank eyes with respect to risk when the single-image baseline
cannot.

Our results suggest that longitudinalmodeling can improve eye disease
risk prognosis, providing evidence that prior imaging can provide added
prognostic value. While longitudinal analysis is known to be clinically
valuable, particularly for glaucoma prognosis, it can be time-consuming to
perform such comparative image-based analysis in clinical practice. A
temporal attention analysis of the learned attention weights by LTSA
revealed that the last visit is almost always (~96% of the time) the most
influential for prognosis. However, in the aggregate, we find that LTSA
consistently attends to prior imaging in order tomake risk predictions, with
more distant imaging becoming less important in a linearly decreasing
manner. The unique sequence-based representation of longitudinalmedical
imaging and repeated temporal attention operations of LTSA enable us to
study and uncover the importance of prior imaging in the context of eye
disease prognosis. Meanwhile, existing medical image classification

Fig. 5 | Longitudinal modeling better captures eye disease risk. Predicted survival
curves comparing the baseline model (only using last available visit) and our
longitudinal model (using all available visits) prognoses for two unique eyes in the
AREDS test set (a) and two unique eyes in the OHTS test set (b). Visualizations
below each panel depict the longitudinal visit times, event times, and prognosis

horizons for each eye in a and b, respectively. The longitudinal model not only
correctly predicts higher risk (lower survival) than the baseline for each eye, but also
correctly ranks the two eyes in terms of risk in accordance with how rapidly the eye
will develop the disease. AMD age-related macular degeneration, AREDS Age-
Related Eye Disease Study, OHTS Ocular Hypertension Treatment Study.
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techniques are neither able to process sequences of images over time nor
quantify their relative contribution to the predicted outcome.

Since methods like DeepSurv22 and Cox-nnet23 popularized the use of
deep neural networks for survival analysis, there have been many recent
applications of deep learning to survival analysis from medical imaging
data17–21. However, these methods all operate on single images, neglecting
the common clinical scenario of longitudinal imaging, where patients
undergo repeated imaging measurements over time in order to monitor
changes in disease status. In recent years, several deep learning methods
have also been proposed modeling time-to-event outcomes from long-
itudinal data. However, these studies have been limited to tabular long-
itudinal or time series data17,33–35. Unlike the select few related methods
capable of survival analysis from high-dimensional longitudinal medical
imaging data36,37, LTSA critically (i) is an end-to-endmethod (i.e., no multi-
stage training), (ii) uses a Transformer encoder with causal attention to
process sequences of medical images, and (iii) leverages an auxiliary “step-
ahead” prediction task, whereby the model is tasked to predict the image-
derived features from the next visit (see “Methods” for full description).

This study has certain limitations. First, LTSA was developed for
discrete-time survival modeling, when certain applications may call for
more fine-grained continuous-time survival estimates. While discretizing
time canoften serve as a simplifying assumption,we adopted adiscrete-time
model because the AREDS andOHTS datasets followed up with patients at
discrete 6-month (AREDS) or 1-year (OHTS) minimum intervals. Second,
the validation of LTSA was limited to the prognosis of two eye diseases.
However, the method can be readily applied to any disease prognosis task
for which one has longitudinal imaging and time-to-event data. For
example, LTSA could be used to predict Alzheimer’s conversion from
longitudinal neuroimaging38,39 or survival of cancer patients based on var-
ious medical imaging modalities40,41. Third, while late AMD and POAG
progression is unique to each eye, future work may incorporate binocular

imaging to predict patient-level risk of disease progression. Also, incor-
porating tabular demographic and risk factor information may further
improve prognostic performance. While this study used a fixed set of
hyperparameters to enable fair comparison across methods, further
hyperparameter optimization couldbe employed, particularly to analyze the
impact of the regularization term β on downstreamprognosis performance.
Finally, this study represents a retrospective analysis of clinical trial data that,
even with broad eligibility criteria, may not generalize well to real-world
populations. To bridge the gap toward clinical translation, real-world
clinical assessment is needed to determine whether patients can practically
benefit from these predictions, and if the approach is clinically safe and
efficient. Thiswill also critically allowus to refine benchtop-derived artificial
intelligence according to bedside clinical demands.

Methods
Study cohorts
In this study, we included two independent datasets (Table 1). These
datasets are derived from large, population-based studies, and the research
adhered to the principles outlined in the Declaration of Helsinki. In addi-
tion, all participants provided informed consent upon entry into the original
studies. The study protocol was approved by the Institutional Review Board
(IRB) at Weill Cornell Medicine.

The Age-Related Eye Disease Study (AREDS) for late AMD prog-
nosis. AREDS was a clinical trial conducted from 1992–2001 across 11
retinal specialty clinics throughout the U.S. to study the risk factors for
AMD and cataracts and the effect of certain dietary supplements on
AMD progression42. The study followed 4757 participants aged 55–80 at
the time of enrollment for a median of 6.5 years; the inclusion criteria
were broad, ranging from no AMD in either eye to late AMD in one eye.
Certified technicians captured color fundus photography images at

Fig. 6 | Temporal attention analysis reveals which images contribute most to late
AMD risk prognosis. Enhanced box plot of normalized attention scores for each
AREDS test set image grouped by visit number from least to most recent (a).
Attention scores and AMD severity scores for a sequence of visits from a healthy eye
with typical attention patterns; the more recent visits are more influential than the
earlier visits (b). Attention scores and AMD severity scores for a sequence of visits

from an eye that developed late AMD with atypical attention scores; here, the
second-to-last image received the greatest attention weight, corresponding with a
jump in AMD severity from 5 to 8 (c). Attention scores are normalized such that the
maximum score in each eye’s sequence of images is 1 to account for variable
sequence length. Images from 10 or more visits before the final visit are binned
together to aid visualization. AMD age-related macular degeneration.
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baseline and in 6-month-to-1-year follow-up periods using a standar-
dized imaging protocol; however, adherence to this protocol was
imperfect, meaning visits could occur at any year or half-year mark after
enrollment. AMD severity grades from each visit were then determined
by human expert graders at the University of Wisconsin Fundus Pho-
tograph Reading Center. While AREDS involved the collection of many
different types of patient information, the data used in the present study
included 66,060 fundus images, the time (with 6-month temporal reso-
lution) that each image was acquired, and the ophthalmologist-
determined AMD severity score using the 9-step severity scale43. Late
AMD was defined as the presence of one or more neovascular AMD
abnormalities or atrophic AMD with geographic atrophy; otherwise, the
eye was deemed to be censored, since the true late AMD status could not
be known. All images acquired during the final visit for a given eye were
removed, as this visit was solely used to determine the time-to-event
outcome. Removing the final visit from the study cohort also ensured that
no images were presented with late AMD at the time of acquisition,
forcing the model to truly forecast the future risk of developing disease.
The remaining images from the remaining 4274 patients were then
randomly split into training (70%), validation (10%), and test (20%) sets
at the patient level to prevent any potential data leakage. All eligible
images were included, regardless of image quality, tomaximize the size of
the training set and to ensure robustness to variations in image quality at
test time.

The Ocular Hypertension Treatment Study (OHTS) to predict the
onset of POAG. OHTS was one of the largest longitudinal clinical trials
for POAG, spanning 22 centers across 16 U.S. states44. The study fol-
lowed 1636 participants aged 40–80 with other inclusion criteria, such
as intraocular pressure between 24–32 mmHg in one eye and
21–32 mmHg in the other eye. Color fundus photography images were
captured annually, and POAG status was determined at the Optic Disc
Reading Center. Much like the AREDS dataset, though visits were
scheduled annually, adherence to this protocol was not exact, meaning
visits could occur at any yearmark after patient enrollment. In brief, two
masked, certified readers were tasked to independently detect optic disc
deterioration. If the two readers disagreed, a third senior reader

reviewed it in a masked fashion. In a quality control sample of 86 eyes,
POAG diagnosis showed a test-retest agreement of κ = 0.70 (95% CI:
[0.55, 0.85]); more details of the reading center workflow have been
described in Gorden et al. 45 For the present study, 37,399 fundus
images, their acquisition times (with 1-year temporal resolution), and
POAG diagnoses were used fromOHTS. As outlined above for AREDS,
we also removed all images from the final visit for each eye in the OHTS
data. Additionally, in rare cases where there were multiple images
acquired during a visit, we only kept the first listed image in our final
OHTS cohort for simplicity. The 30,932 images from 1597 patients were
then randomly partitioned into training (70%), validation (10%), and
test (20%) sets at the patient level. Like the AREDS data, no images were
removed for image quality reasons to encourage robustness to varia-
tions in quality.

Longitudinal survival analysis
We approach disease prognosis through the lens of survival analysis, which
aims to model a “time-to-event” outcome from potentially time-varying
input features. We adopted a discrete-time survival model, given that
imaging measurements were either acquired at intervals as short as
6 months (AREDS) or 1 year (OHTS), and we assumed uninformative
right-censoring. The collection of longitudinal images for eye i can be
written

Xi tð Þ ¼ xi ti;j
� �

: 0 < ti;j ≤ t; j ¼ 1; . . . ; Ji
n o

ð1Þ

where Ji is the number of longitudinal images acquired for eye i, ti, j is the
time (in years) of the jth imagemeasurement for eye i, and xiðti;jÞ 2 RH ×W is
the fundus image (of heightH and widthW) acquired at time ti, j. Similar to
the formulationofDynamicDeepHit33,wedistinguishbetweendiscrete time
steps j and actual elapsed times t since images are acquired at irregular
intervals and the number of images per eye, Ji, is variable. In other words,
Xi(t) represents the collection of longitudinal images of eye i acquired up
until time t; for shorthand, we useXi to denote the full available sequence of
longitudinal images for eye i (i.e., Xi ¼ XiðtJi Þ). For each Xi, we also have a
time to event τi, which is either the time atwhich the event occurred (e.g., eye

Table 1 | Description of longitudinal eye disease datasets

Total Training Validation Test

AREDS (Late AMD)

Images, n 49,592 34,399 5129 10,064

Patients, n 4274 2991 427 856

Eyes, n 7818 5461 782 1575

Visits, mean (sd) 6.34 (3.23) 6.30 (3.23) 6.56 (3.16) 6.39 (3.27)

Years observed, mean (sd) 6.47 (3.43) 6.44 (3.44) 6.63 (3.33) 6.50 (3.46)

Censored cases, n (%) 6862 (87.8) 4777 (87.5) 695 (88.9) 1390 (88.3)

Years to disease, mean (sd) 5.27 (3.18) 5.27 (3.18) 5.84 (3.19) 4.97 (3.12)

OHTS (POAG)

Images, n 30,932 21,525 3166 6241

Patients, n 1597 1117 160 320

Eyes, n 3188 2231 320 637

Visits, mean (sd) 9.70 (3.68) 9.65 (3.71) 9.89 (3.60) 9.80 (3.61)

Years observed, mean (sd) 9.20 (3.70) 9.14 (3.74) 9.41 (3.56) 9.29 (3.61)

Censored cases, n (%) 2830 (88.8) 1966 (88.1) 289 (90.3) 575 (90.3)

Years to disease, mean (sd) 7.38 (3.52) 7.22 (3.61) 7.71 (3.22) 7.94 (3.18)

Characteristics of AREDS and OHTS longitudinal imaging datasets for late AMD and POAG prognosis, respectively. The number of visits and years observed are reported per eye since each eye can
possess a distinct disease status. The censoring rate is reported as a percentage of the number of unique eyes in the dataset, and the number of years to develop the disease is computed only from
uncensored eyes.
AMD Age-related Macular Degeneration, AREDS Age-Related Eye Disease Study, OHTS Ocular Hypertension Treatment Study, POAG Primary Open-Angle Glaucoma, sd standard deviation.
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developed lateAMD –denoted ci=0) or the censoring time (e.g., the patient
was lost to follow-up or the study ended – denoted ci = 1).

The goal of deep survival analysis in longitudinal imaging is to
approximate a function that links the time to event to our time-varying
image measurements. A typical way to reason about the time to event is
through the hazard function

h jjXi

� � ¼ P T ¼ jjT ≥ j;Xi

� � ð2Þ

the conditional probability that eye i develops the disease at a discrete time
step j, based on longitudinalmeasurementsXi, given that the true event time
step is greater than or equal to j. From the hazard function, we can readily
compute the survival function

S jjXi

� � ¼ P T > jjXi

� � ¼ Yj
s¼1

ð1� h sjXi

� �Þ ð3Þ

the probability that the eye i does not develop the disease (“survives”) past
the time step j.

Specifically, in this study, we train a neural network f(∙) to directlymap
from a longitudinal imaging sequence to the discrete hazard distribution

S Xi

� � ¼ ĥðXiÞ ¼ fĥ sjXi

� �
; s ¼ 1; . . . ; Jmaxg ð4Þ

where Jmax is the total number of discrete time steps, typically chosen based
on properties of the dataset, time-to-event task, and computational
constraints. While hazards are computed for all time steps, including those
that have already occurred before the time step t, our primary interest lies in
the future hazards (i.e., s ¼ Ji þ 1; . . . ; Jmax). As explained below, wemask
out prior time steps to properly optimize and evaluate models. For models
trained on AREDS data—captured in 6-month intervals with a maximum
observed follow-up time of 13 years—we have set Jmax ¼ 27. For models
trained on OHTS data—acquired in 1-year intervals with a maximum
follow-up of 14 years—we have set Jmax ¼ 15.

LTSA model
Input representation. The input to LTSA consists of a collection of
longitudinal images Xi ¼ fxiðti;jÞ; j ¼ 1; . . . ; Jig and their “visit times”
fvi;j; j ¼ 1; . . . ; Jig, denoting the time (in months since study enrollment)
that image j of eye i was acquired. To handle variable-length sequences, we
right-pad the sequence with zeros to the maximum observed sequence
length l in the dataset (l=14 for bothAREDSandOHTS)whennecessary to
produce a padded sequence X�

i 2 Rl × 3×H ×W . Critically, these padded
inputs will be masked during modeling, optimization, and evaluation as
described in the following sections. Much like how sentences are repre-
sented as sequences of words in deep natural language processing (NLP)16,
we represent the longitudinal imaging of an eye as a time-varying sequence
fit for modeling with Transformers. However, unlike words in a sentence,
the longitudinal images in each sequence are not “equally spaced,” poten-
tially years having passed between consecutive visits.

Temporal positional encoder. Transformers typically use positional
encoding (PE)16 to inform the model as to the order of elements in an
input sequence. This can be accomplished using afixed sinusoidal PE that
maps the position of an element in a sequence to a higher-dimensional
representation fit for deep neural network modeling:

PEðkÞk;2i ¼ sin
k

100002i=d

� �
ð5Þ

PEðkÞk;2iþ1 ¼ cos
k

100002i=d

� �
ð6Þ

for i = 0,...,d/2, where k 2 Z ≥ 0 represents the position of a given element in
the input sequence. To account for long, irregular time periods between

consecutive longitudinal images, we adapt traditional PE to directly embed
the visit time v (measured in months) via

TEðvÞv;2i ¼ sin
v

100002i=d

� �
ð7Þ

TEðvÞv;2iþ1 ¼ cos
v

100002i=d

� �
ð8Þ

for i ¼ 0; :::; d=2. After computing the timestep encoding for the entire
sequence, this produces a temporal positional embedding etime 2 Rl × d . This
approach is similar to continuous positional encoding in Sriram et al. 46

except that we use the absolute visit time rather than visit time relative to the
final visit.

Image encoder. While the timestep encoder produces our time step
embeddings etime, an image encoder is separately used to learn visit-level
image embeddings. To do so, the padded sequence of images X�

i is flat-
tened along the batch dimension and fed into a 2D image encoder f imgð�Þ
to produce image embeddings

eimg ¼ ff img xi
� �

; xi 2 X�
i g 2 Rl × d ð9Þ

where d is the dimensionality of the image embedding. In LTSA, f img ð�Þ is
parameterized by a ResNet1847 convolutional neural network, which maps
each image to a d = 512-dimensional feature vector. However, in principle,
f img ð�Þ can be parameterized with any 2D image encoder.

Transformer modeling. Following the practice of many Transformer
networks16,48, we inject knowledge of visit time via elementwise addition
of the time step embeddings and image embeddings: e ¼ etime þ eimg .
Our time-infused embeddings e 2 Rl × d are then fed into a Transformer
encoder that employs repeated self-attention operations to learn tem-
poral associations across the sequence of longitudinal images for each
eye. Unlike a typical Transformer encoder forNLP, where themodelmay
learn associations between all words in a passage of text, a clinician can
only rely on current and prior imaging to form a diagnostic decision. For
this reason, we adopt “decoder-style” causal attention masking, where a
diagonal mask is applied to the attention weight matrix, enforcing that
the model only attends to current and prior visits in adherence to clinical
reality. Additionally, a padding mask is applied, where features resulting
from the zero-padded inputs do not contribute to the attention com-
putations. The output of this Transformer Tð�Þ is then

ee ¼ T eð Þ 2 Rl × d ð10Þ
Survival prediction. After Transformer modeling, our embedding fea-
turesee are then used to directly predict the discrete-time hazard function.
To achieve this, we use a simple fully-connected layer with Jmax output
neurons, followed by a sigmoid activation:

ĥðeeÞ ¼ σðFCðDropoutðeeÞÞÞ 2 Rl × Jmax ð11Þ

where σð�Þ is the sigmoid function and Dropout(·) is the regularization
technique that randomly zeroes out a specified fraction of weights49. Since
the fully-connected layer is applied in parallel to all l elements of the
sequence, the final output ĥðeeÞ represents the discrete hazard distributions
for all l subsequences of consecutive visits in the original sequence. That is,
we obtain a full survival prediction basedon the longitudinal history of every
visit. However, we are often only interested in the prediction based on the
full longitudinal history for eye i, ĥðeeÞJ i 2 RJmax .

Step-ahead feature prediction. In addition to the primary task of
predicting the hazard function, we also leverage an auxiliary prediction
task, whereby we use the features from each subsequence of consecutive
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visits to directly predict the learned image embedding from the next visit.
Alongside survival modeling, this encourages the model to learn features
from longitudinal imaging measurements that are predictive of future
imaging. This approach has been shown to improve discriminative
performance in related methods such as DynamicDeepHit33 and
TransformerJM34.

Since a future visit can occur any time after the most recent visit, this
becomes a time-varying prediction problem. To inform the model as to the
time period over which to predict future imaging features, we adopt a
version of the temporal positional encoding explained above. Rather than
embedding the visit time v, we embed the relative time elapsed between the
current and subsequent visit rk :¼ vkþ1 � vk; k ¼ 1; :::; l � 1. This enables
the model to flexibly control feature prediction in a time-dependent man-
ner. Since thefinal discrete difference rldoesnot exist,we set it to 0 andmask
it out as explained below.

Formally, we compute the predicted features via

x̂ðeeÞ ¼ FCðDropoutðeeþ TEðrÞÞÞ 2 Rl × d ð12Þ

Similar to the survival prediction outlined above, these “step-ahead”
predictions are computed for every subsequence of consecutive visits in the
original sequence. However, since a future image only exists for the first Ji -
1 subsequences, we mask out all other step-ahead predictions.

Loss functions. Models were trained to predict the discrete-time hazard
distribution by optimizing a cross-entropy survival loss from Chen et al.
20.

Lsurv ¼ ð1� βÞLce þ βLuncensored ð13Þ

where

Lce ¼ �cilogðŜðτijXiÞÞ ð14Þ

is the main cross-entropy-based survival term and

Luncensored ¼ �ð1� ciÞlogðŜðτi � 1jXiÞÞ � ð1� ciÞlogðĥðτijXiÞÞ ð15Þ

is a regularization term to provide additional weight to uncensored cases.
We use β = 0.15 following the default value in the implementation of Chen
et al. 20.

The model was additionally trained to predict the image features
corresponding to the next visit in a longitudinal sequence by mini-
mizing the mean squared error Lpred between predicted step-ahead
features x̂ðeeÞ and the corresponding image embeddings eimg during the
same forward pass. As explained above, this loss is only computed for
the first Ji - 1 valid subsequences, for which there exists a subsequent
longitudinal image of eye i.

Finally, LTSA was trained by optimizing the sum of these two loss
terms

L ¼ Lsurv þ Lpred ð16Þ

Single-image baseline
The problem formulation for our single-image baseline, which only uses the
last available image formodeling, is obtained by simplymodifying the input
as follows:

LXi tð Þ ¼ xi maxj¼1;:::;J i
ti;j : 0<ti;j ≤ t

n o� �
ð17Þ

Now,Xi tð Þ is no longer a collectionof images, but rather the singlemost
recent available image for eye i up until time t. Here, the shorthandXiwould
simply refer to the last image of eye i.

The baseline model consisted of an image encoder f img ð�Þ, also para-
meterized by a ResNet18, trained and evaluated on the last available image
for each eye. The model utilized the same survival output layer and was
trained with the survival loss Lsurv only. In other words, this baseline lacked
all longitudinalmodeling components: visit times, sequence representation,
Transformer modeling, and step-ahead prediction.

Model evaluation
To evaluate the prognostic ability of our models, we use a time-dependent
concordance index

Cðt;4tÞ ¼ P R̂ðt þ4tjXi tð ÞÞ
�

>R̂ðt þ4tjXi0 ðtÞÞjτi<τi0 ; τi<t
þ4t; ci ¼ 0 _ ci0 ¼ 0

� ð18Þ

for a given prediction time t (when the prediction is made) and eva-
luation timeΔt (period into the future overwhichwe are assessing risk).This
measures the proportion of “concordant pairs” of eyes, where the model
predicts higher risk—over the time window ðt; t þ Δt�—for the eye that
develops thedisease earlier (or lower risk for the eye that develops thedisease
later). Here, R̂ðt þ4tjXi tð ÞÞ is a risk score representing the predicted
probability of experiencing the event within ðt; t þ Δt� based on long-
itudinal measurements of eye i up until time t. Specifically, this risk score is
calculated from the predicted survival probabilities via

R̂ðt þ4tjXi tð ÞÞ ¼ Pðt <T ≤ t þ4tjT > tÞ ¼ ŜðtÞ � Ŝðt þ4tÞ
ŜðtÞ

ð19Þ

Sincewe are only interested in risk assessment fromtheprediction time
over the specified evaluation time, this is equivalent to “masking” out risk
predictions from irrelevant time steps.

Compared to the original concordance index50, a standard measure of
discriminative ability in survival analysis, this metric allows for dynamic,
time-varying risk predictions over arbitrary time horizons of interest. This
metric is very similar to the time-dependent concordance index used in Lee
et al. 33, except that we assess our model based on the predicted hazards
(rather than “hitting times”). We use this metric for a single-risk outcome.

Additional evaluationwas performedby time-dependentBrier score to
assess model calibration:

Bðt;4tÞ ¼
XN
i¼1

ðI τi < t þ4t
� �ð1� ciÞ � R̂ðt þ4tjXi tð ÞÞÞ2 ð20Þ

where Ið�Þ is the indicator function. This definition follows that of Lee et al. 33
Models were evaluated across a range of prediction times t 2

f1; 2; 3; 5; 8g and evaluation times4t 2 f1; 2; 5; 8g. While it is common to
consider 2- and 5-year risk for late AMD7,8,51 and POAG14,15, we also include
an 8-year risk assessment to showcase the long-range prognostic capabilities
of LTSA.

Implementation details
All models were implemented and trained with PyTorch v2.0.152. Before
training, all AREDS and OHTS images were downsampled to 224 × 224
resolution with bilinear interpolation to accelerate data loading. After
loading each image, the following data augmentations were applied, each
with probability 0.5: random rotation, color jitter, Gaussian blur, and a
random resized crop back to 224 × 224. Each image was then standardized
with the channel-wise mean and standard deviation across all training set
images. The image encoder f img ð�Þ was an ImageNet-pretrained ResNet18,
with weights made available through torchvision v0.15.2 (https://pytorch.
org/vision/stable/index.html). This architecture was chosen because it is
lightweight and demonstrated sufficient performance compared to more
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sophisticated and memory-intensive architectures in preliminary experi-
ments. The Transformer encoder of LTSA contained four Transformer
layers, each with eight attention heads, a feature dimensionality of d = 512,
ReLU activation, and dropout 0.25. The Transformer was trained from
scratch with a diagonal causal attention mask prohibiting the model from
attending to future elements of a sequence.

All classification heads (survival layer and step-ahead prediction layer)
used a dropout of 0.25 on the incoming feature vectors. Both the baseline
and LTSA were trained for a maximum of 50 epochs using early stopping
with a “patience” of 10 epochs using a validation metric of mean time-
dependent concordance index across all 20 combinations of t and Δt; spe-
cifically, if the validationmetric did not improve for 10 consecutive epochs,
training was terminated and weights from the best-performing epoch were
used for evaluation toprevent overfitting. Bothmodelswere trainedwith the
Adam optimizer53 and initial learning rate 1× 10�4 with a “reduce on pla-
teau” scheduler that halved the learning rate whenever the validationmetric
did not improve for 3 consecutive epochs. Since LTSA was trained with a
batch size of 32 (sequences of length 14 each), the single-image baseline used
a batch size of 448 (images) to match the number of examples seen per
minibatch for fair comparison.

Statistical analysis
All performance metrics in this study are represented by the mean and
95% confidence interval obtained by bootstrapping the test set at eye
level. Specifically, 1000 samples with replacements of the same size as
the original test set were drawn, and nonparametric confidence inter-
vals were obtained through the percentile method. All P-values were
obtained by a one-sidedWelch’s t-test with the null hypothesis that the
mean of the bootstrapped time-dependent concordance indices for
LTSA exceeded that of the baseline. To control the family-wise error
rate and account for multiple comparisons, we apply the Bonferroni
correction54 to all P-values by multiplying each raw P-value by 40, the
number of performance comparisons made in this study. Significance
levels were determined by the adjusted P-values as follows:
****P ≤ 0.0001, ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05, ns = no significant
difference. The enhanced box plot, or “letter-value plot,” seen in Fig. 5,
adapts the traditional box plot more appropriately for long-tailed
distributions55.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The AREDS and OHTS data used in this study are available through the
National Center for Biotechnology Information (NCBI) database of Gen-
otypes and Phenotypes (dbGAP) through controlled access. AREDS data
can be accessed from https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000001.v3.p1, andOHTS data can be accessed from
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs000240.v1.p1.

Code availability
The code repository for this work is available at https://github.com/
bionlplab/longitudinal_transformer_for_survival_analysis.
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