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Research and Applications

Leveraging GPT-4 for identifying cancer phenotypes in 
electronic health records: a performance comparison 
between GPT-4, GPT-3.5-turbo, Flan-T5, Llama-3-8B, and 
spaCy’s rule-based and machine learning-based methods
Kriti Bhattarai , BA�,1,2, Inez Y. Oh , PhD1, Jonathan Moran Sierra, BS3, Jonathan Tang, MD4,  
Philip R.O. Payne , PhD1,2, Zach Abrams, PhD1, Albert M. Lai , PhD1,2 
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Abstract
Objective: Accurately identifying clinical phenotypes from Electronic Health Records (EHRs) provides additional insights into patients’ health, 
especially when such information is unavailable in structured data. This study evaluates the application of OpenAI’s Generative Pre-trained 
Transformer (GPT)-4 model to identify clinical phenotypes from EHR text in non-small cell lung cancer (NSCLC) patients. The goal was to identify 
disease stages, treatments and progression utilizing GPT-4, and compare its performance against GPT-3.5-turbo, Flan-T5-xl, Flan-T5-xxl, 
Llama-3-8B, and 2 rule-based and machine learning-based methods, namely, scispaCy and medspaCy.
Materials and Methods: Phenotypes such as initial cancer stage, initial treatment, evidence of cancer recurrence, and affected organs during 
recurrence were identified from 13 646 clinical notes for 63 NSCLC patients from Washington University in St. Louis, Missouri. The performance 
of the GPT-4 model is evaluated against GPT-3.5-turbo, Flan-T5-xxl, Flan-T5-xl, Llama-3-8B, medspaCy, and scispaCy by comparing precision, 
recall, and micro-F1 scores.
Results: GPT-4 achieved higher F1 score, precision, and recall compared to Flan-T5-xl, Flan-T5-xxl, Llama-3-8B, medspaCy, and scispaCy’s 
models. GPT-3.5-turbo performed similarly to that of GPT-4. GPT, Flan-T5, and Llama models were not constrained by explicit rule requirements 
for contextual pattern recognition. spaCy models relied on predefined patterns, leading to their suboptimal performance.
Discussion and Conclusion: GPT-4 improves clinical phenotype identification due to its robust pre-training and remarkable pattern recognition 
capability on the embedded tokens. It demonstrates data-driven effectiveness even with limited context in the input. While rule-based models 
remain useful for some tasks, GPT models offer improved contextual understanding of the text, and robust clinical phenotype extraction.

Lay Summary
Our study evaluates the effectiveness of OpenAI’s Generative Pre-trained Transformer (GPT)-4 model in identifying clinical phenotypes from 
electronic health records (EHRs) of non-small cell lung cancer (NSCLC) patients. We aim to extract critical phenotypes such as initial cancer 
stage, initial treatment, evidence of recurrence, and organs affected during recurrence from clinical notes. For this task, we evaluated GPT-4 
with other models, including GPT-3.5-turbo, Flan-T5-xl, Flan-T5-xxl, Llama-3-8B, scispaCy, and medspaCy. The study utilized 13 646 clinical 
notes from 63 NSCLC patients at Washington University in St. Louis, Missouri. GPT-4 demonstrated superior performance in terms of precision, 
recall, and F1 scores compared to the other models. GPT-3.5-turbo showed similar performance to GPT-4, while spaCy-based models lagged 
due to their reliance on predefined rules, limiting their contextual pattern recognition capabilities. Our findings indicate that GPT-4’s advanced 
pre-training and robust pattern recognition abilities make it highly effective for clinical phenotype extraction. While rule-based models remain 
relevant for certain tasks, GPT-4 offers enhanced understanding and extraction of clinical information from unstructured text.
Key words: generative pre-trained transformer (GPT); natural language processing; large language models; clinical phenotype extraction; electronic health 
records. 

Background and significance
Introduction
Extracting clinical phenotypes from unstructured Electronic 
Health Records (EHRs) is a critical task in natural language 
processing (NLP). Accurately identifying relevant phenotypes 

from unstructured text utilizing NLP techniques provides 
additional insights into patients’ health, especially when such 
information is unavailable in structured data. NLP extraction 
techniques facilitate this process by mapping unstructured 
text to a structured representation, making it easier to 
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evaluate patients’ disease progression, treatment modalities, 
and treatment effectiveness. This is particularly evident when 
analyzing data from non-small cell lung cancer (NSCLC) 
patients, where unstructured text is abundant. Accurately 
identifying disease stage, treatments, and progression from 
cancer text will contribute to continued research efforts 
aimed at improving treatment strategies for non-small lung 
cancer patients, assessing disease progression, and improving 
lung cancer-related outcomes.

Background
Clinical phenotype extraction is an ongoing research area where 
the type of extraction tasks and target phenotypes vary across 
different clinical domains. Rule-based, machine learning-based, 
and deep-learning models have been applied to phenotype 
extraction.1–7 While rule-based models extract phenotypes 
based on pre-defined patterns, most machine learning and deep- 
learning approaches are trained on sentences or documents 
labeled with the relevant phenotypes and the model 
subsequently classifies texts into these phenotypes.5,8 spaCy 
models, including medspaCy7 and scispaCy9 are 2 recent and 
frequently used hybrid frameworks that utilize statistical and 
machine-learning named entity recognition (NER) methods in 
conjunction with rule-based NLP to identify clinical 
phenotypes. There are studies that have utilized medspaCy and 
scispaCy to identify specific sections within EHR text for NER, 
extract phenotypes from relation extraction documents, and 
generate text embeddings.10–14

Although extracting clinical phenotypes is essential, several 
gaps remain in the literature. There is no effective model for 
direct extraction, as most of these models require additional 
training and fine-tuning.15,16 Moreover, current methods often 
lack robustness, leading to suboptimal performance.15-19
In addition, limited availability of labeled, publicly accessible 
cancer EHR text leaves an important domain underexplored for 
NLP.

Pre-trained transformer-based language models have recently 
been studied for tasks such as question answering, text genera-
tion, and machine translation.20,21 Despite the success of 
transformer-based language model in such tasks, their applica-
tion in the context of clinical phenotype extraction remain 
underexplored, opening numerous avenues of research. Recent 
research has demonstrated the use of large language models 
(LLMs) for entity extraction, including extraction of cancer 
entities.22–28 However, it is essential to investigate these recent 
transformer-based methods in extracting additional phenotypes 
from comprehensive EHRs, covering diverse note types with 
varying structure, and compare their performance to previously 
recognized machine learning and rule-based models to generate 
additional insights into their potential benefits for clinical phe-
notype extraction.

Objectives
The aim of this study was to investigate the most recent 
transformer-based language models as they remain underex-
plored for cancer phenotype extraction from real-world EHR 
text. We evaluated the application of OpenAI’s Generative 
Pre-Trained Transformer (GPT)-4 model25 for clinical pheno-
type extraction in an EHR retrospective study focusing on 
NSCLC patients as a specific case study. We used GPT-4 to 
identify individual words or tokens in a data sequence as dis-
tinct phenotypes. Specifically, we measure the prevalence of 

specific lung cancer phenotypes, including cancer stage, treat-
ment modalities, cancer recurrence instance, and organs 
affected by cancer recurrence. These phenotypes are impor-
tant for informing treatment decisions and assessing disease 
progression in NSCLC patients.

We built the model framework using a clinical text dataset 
from Washington University in St. Louis, Missouri, for a 
patient population diagnosed with NSCLC. To evaluate the 
effectiveness of GPT-4, we compared its results against 2 sub-
ject matter experts’ manual annotation. We also conducted a 
comparative analysis with GPT-3.5-turbo,29 Flan-T530 (Flan- 
T5-xl, Flan-T5-xxl), Llama-3-8B,31 and spaCy (medspaCy, 
scispaCy), currently frequently used rule-based and machine 
learning approaches in clinical phenotype extraction. While 
Flan-T5 models are LLMs, spaCy models are 2 recent and 
hybrid frameworks that utilize statistical and machine- 
learning methods in conjunction with rule-based NLP to 
identify clinical phenotypes. We selected these baseline mod-
els based on their inherent capacity for rapid extraction, and 
their ability to generate results without requiring training or 
additional fine-tuning.

Our comparison between scispaCy, medspaCy, Flan-T5-xl, 
Flan-T5-xxl, Llama-3-8B, GPT-3.5-turbo, and GPT-4 aims 
to highlight the strengths and weaknesses of each approach 
for cancer phenotype extraction from unstructured clinical 
text, providing valuable insights into their effectiveness and 
potential use for cases in cancer phenotype extraction from 
EHR. In evaluating these current approaches for phenotype 
extraction, we also note their limitations.

Methods
To extract a detailed representation of specific lung cancer phe-
notypes, we used GPT-4, available through Microsoft’s Azure 
OpenAI Service. We compared and evaluated the performance 
of the current models by comparing true positives (recall) and 
false positives at the patient-level. The following subsections dis-
cuss the datasets, annotation methods, and methodologies used 
for extracted information, baseline comparison techniques, 
and evaluation metrics used to quantify differences in results.  
Figure 1 illustrates the pipeline we followed for extraction. The 
study was approved with a waiver of consent by the Washing-
ton University in St. Louis Institutional Review Board.

Dataset
Retrospective outpatient and inpatient EHR data were 
obtained from Washington University Physicians/BJC 
Healthcare system in St. Louis, Missouri, for all patient 
encounters with a NSCLC diagnosis between 2018 and 2023. 
For this study, we extracted a total of 13 646 clinical texts 
from the EHR of a randomly selected subset of 63 patients.

Lung cancer phenotypes extraction from the clinical 
narratives
Our extraction pipeline currently targets 4 types of pheno-
types: cancer stage, cancer treatment (chemotherapy, radia-
tion, surgery), evidence of cancer recurrence, and organs 
affected by cancer recurrence. We selected these phenotypes 
based on suggestions from subject matter experts regarding 
which phenotypes would be most helpful for a proof-of- 
concept extraction work for a lung cancer cohort. The varia-
tions extracted for each phenotype are listed in Table 1. 
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We attempted to search for all variations of the targeted phe-
notypes from the corpus.

Gold-standard data annotation
The results from the phenotype extraction pipeline for each 
model were evaluated against gold-standard manual annota-
tion from 2 subject matter experts at the same institution, 
containing expert determination of initial cancer stage, initial 
treatment, recurrence instances, and organs affected by can-
cer recurrence for each patient in the cohort. A Research Elec-
tronic Data Capture (REDCap)32 form was designed to 
collect responses from the annotators to comprehensively 
capture patient phenotypes in a consistent format across 
annotators. The annotated dataset consisted of the 63 unique 
patients from the BJC EHR, comprising a total of 13 646 
clinical notes for all patients.

NSCLC phenotype extraction and model 
comparison
We implemented GPT-4 and compared its performance with 
GPT-3.5-turbo, medspaCy, and scispaCy. We constrained our-
selves to spaCy models because our initial investigation of 2 
transformer-based language models, T533 and ClinicalBERT,21

did not effectively capture the necessary phenotypes in its 
default setting as they are classifier models with labels assigned 
for each text. We opted against their inclusion in the main 
manuscript and made comparisons with spaCy’s rule-based and 
machine learning-based methods which demonstrated better 
results compared to T5 and ClinicalBERT for baseline compari-
son. Sample results utilizing a subset of clinical text for T5 and 
ClinicalBERT are included in Tables S1 and S2.

For all models, the input to the models were the pheno-
types and their variations. For GPT, we implemented the 
default zero-shot model where the model input was the text 
together with the prompt to guide the model for phenotype 
extraction. We opted for the zero-shot approach to directly 
compare its performance with the rule-based and machine 
learning-based approaches. We used the same phenotype var-
iations for extraction across all spaCy model implementa-
tions. GPT models did not require inclusion of all phenotype 
variations. GPT was able to identify stages 0-4 without 
explicitly mentioning each stage number in the prompt. Simi-
larly, we did not have to explicitly specify each organ type in 
the prompt to extract organs affected by recurrence.

Our current implementation on GPT, Flan-T5, and Llama 
models focused on capturing both exact and relaxed matches 
of the phenotype variations mentioned in Table 1. For exam-
ple, an exact match would be “Stage III,” where the results 
were identical between the desired output/gold standard and 
LLM. A relaxed match would be “The patient was diagnosed 
with Stage III adenocarcinoma of the lung,” where the con-
text matches the phenotype description despite minor devia-
tions in wording. We performed uncertainty analysis by 
bootstrapping and calculating confidence intervals to capture 
model variability and provide insights into the stability of the 
model’s performance. Bootstrapping resamples model predic-
tions to create a distribution of metrics which can then be 
used to estimate confidence intervals. GPT models may 
exhibit variability in their generated outputs.

Figure 1. Step-by-step approach to extracting phenotypes. Clinical narratives from the EHR were extracted as part of the data collection process. A 
subset of the narratives was randomly selected for manual annotation. scispaCy, medspaCy, Flan-T5-xl, Flan-T5-xxl, Llama-3-8B, GPT-3.5-turbo, and GPT- 
4 models were implemented for phenotype extraction. Extracted phenotypes were compared with the annotations.

Table 1. Variations of the relevant phenotypes used in the search for 
phenotype extraction. All strings were case-insensitive.

Phenotype Variations

Initial treatment Chemotherapy
Chemo-radiation
Radiation
Surgery
Lobectomy
Segmentectomy
Wedge resection

Initial stage Stage 0
Stage 1
Stage 2
Stage 3
Stage 4

Cancer recurrence instances Relapsed
Recurred
Recurrence
Recurrent

Organs affected by cancer recurrence Liver
Kidney
Bone
Brain
Lymph
Local lung
Adrenal glands
Pleura
Pericardium
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Development of the GPT pipeline as an information 
extractor to extract each phenotype
GPT-3.5-turbo and GPT-4 are a transformer-based language 
models developed by OpenAI, trained on large unspecified 
corpora for multiple NLP tasks. They have been used for nat-
ural language generation tasks using their chatCompletion 
and translations endpoint. Our setup is an adaptation of the 
sequence labeling task from the chatCompletion framework 
for phenotype extraction. The sequence labeling setup 
requires providing context to the model, where the model 
generates responses that include labeled phenotypes from the 
clinical notes. The model outputs are the expected pheno-
types we are trying to extract. The core idea involves assign-
ing specific labels to individual words or tokens in the clinical 
notes, capturing the relevant information while retaining the 
original context. Details on model architecture and training 
dataset for GPT are provided in Text S1.

To build the GPT framework, we used Microsoft’s Azure 
OpenAI Service, which provides REST API access to OpenAI’s 
language models. We deployed the OpenAI API endpoint via a 
HIPAA-compliant subscription within Washington University’s 
Azure tenant. This enabled us to study the performance of GPT 
on real-world data in a secure and HIPAA-compliant manner. 
Additionally, we applied for and received an exemption from 
content filtering, abuse monitoring, and human review of our use 
of the Azure OpenAI service, which removes the ability of Micro-
soft employees to perform any form of data review. At the time 
of our experiments, GPT-3.5-turbo Version 0301 and GPT-4 
Version 0613 were the most recent GPT models available.

For phenotype extraction, the model identifies treatment pro-
cedures, stage information, and recurrence information from 
the clinical notes (Table 1). For text pre-processing, we toke-
nized the notes using the GPT-4 tokenizer to break down the 
text into individual tokens. We further split the text into chunks 
to ensure the token length did not exceed model’s token limit. 
Each chunk is an input in the prompt along with an instruction 
to extract the relevant phenotype categories (eg, treatment, stag-
ing) or their sub-categories (eg, surgery, radiation, chemother-
apy, stage numbers) to extract desired information. The 
primary objective was to compare the performance of GPT-3.5- 
turbo and GPT-4 in the context of cancer phenotype extraction. 
Our goal was not to explore different prompting strategies. 
Therefore, we implemented a zero-shot prompt strategy as our 
only approach for GPT models. This approach involves provid-
ing the model with a single prompt without additional examples 
or contextual information. The same set of zero-shot prompts 
was used as input for both GPT-3.5-turbo and GPT-4 to main-
tain consistency in the evaluation of their performance. We 
attempted 3-5 variations of prompts for each phenotype, and 
we selected the prompt that had more accurate results. The final 
prompts used in this study are reported in Figure S1. Due to the 
probabilistic design of GPT models, the output may include 
extra words or phrases around the actual phenotypes, which 
were then parsed using regular expressions in the post- 
processing step (Table S3). The hyperparameters chosen for the 
model are reported in Table 2. We chose temperature¼0 to 
maintain consistency and control randomness in the model 
outputs.

Development of the spaCy-based NLP pipelines to extract 
each clinical phenotype using hybrid techniques
In our study, we implemented spaCy’s rule-based and machine 
learning-based approaches. scispaCy is a rule-based and NER- 

based Python library for biomedical text processing, which has 
demonstrated robust results on several NER tasks compared to 
the neural network models of the time.5 It is trained on gene 
data, PubMed articles, medications datasets, and one of their 
proprietary datasets. We implemented scispaCy version 0.5.2 
following the code structure specified in their documentation. 
For each phenotype of interest, we added specific phenotypes 
and their corresponding string variations as rules in the pipeline 
that were then extracted by the model. We incorporated 
scispaCy’s built-in functions to handle negation and NER. The 
results were strings extracted from the text and the position of 
the characters in that text. If a string was not present in the text, 
the output was null. Finally, the output was mapped into their 
specific phenotype categories.

medspaCy is also a rule-based and NER-based Python 
library that includes UMLS (Unified Medical Language Sys-
tem)34 mappings for clinical phenotype extraction. A similar 
approach was applied for medspaCy (version 1.0.1) as scis-
paCy. The output from medspaCy was similar to scispaCy, 
with strings extracted from the text and the position of the 
characters from that text. The final result from the pipeline 
were all the strings that medspaCy extracted.

For medspaCy and scispaCy, each existing output string 
from the clinical notes that matched with phenotype varia-
tions was later assigned to the relevant phenotype categories 
on a patient-level, which were then analyzed as the final 
extracted phenotypes.

Additional details on the model pipeline and training data-
set are provided in Text S2.

Development of the Flan-T5 and Llama transformer-based 
model pipeline
Flan-T5 and Llama are open-source LLMs developed by 
Google and Facebook, respectively, and has been fine-tuned 
on multiple question answering and text generation tasks. 
We conducted Flan-T5 and Llama experiments with the same 
prompts that we implemented for the GPT models to make 
sure the experiment setup was consistent across models. The 
Flan-T5 models were downloaded from the HuggingFace 
model hub at https://huggingface.co/google/flan-t5-xxl and 
https://huggingface.co/google/flan-t5-xl and Llama was 
downloaded from https://huggingface.co/meta-llama/Meta- 
Llama-3-8B-Instruct. Similar to the GPT models, we used 
regular expressions to parse the Flan-T5 and Llama output to 
extract the relevant phenotypes. Additional details on the 
model architecture and training data are provided in Texts S3 
and S4.

Results and evaluation
Patient population and corpus creation
For the 63 patients selected for this study, average length of 
each text in corpus is 814 tokens (SD¼5022.72). Table 3 

Table 2. Hyperparameters used in the model.

Hyperparameter Value

Tokenization and context window 200 tokens
Temperature (Randomness of the model output) 0
Top p (Top-K Sampling Technique) 0.95
Presence_penalty (Penalty to discourage model from 

generating responses that contain certain specified 
tokens)

−1.0
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describes the patient demographics used in this study. The 
unstructured texts for these patients included letters, progress 
notes, and telephone encounters. Distribution of text types 
for each phenotype are included in Table S5. The texts pri-
marily describe patients’ disease trajectory during their visit, 
ranging from primary cancer diagnosis, cancer stage, treat-
ment type, treatment completion, and cancer recurrence 
(Figure 2).

Data annotation
Inter-annotator agreement initially calculated for each pheno-
type using Cohen’s Kappa demonstrated high agreement 
between the annotators (0.68-1.00; Table S4). Differences 
between annotators were resolved through discussions and 
manual review of the annotations to establish a gold standard 
for final evaluation.

The annotators annotated the narratives by identifying 
each phenotype from the clinical text for each patient. All the 
phenotypes mentioned in Table 1 were identified in the 
annotator’s annotation, with some phenotypes being identi-
fied more frequently than others, depending on the nature of 
the patient’s disease trajectory. Some patients show cancer 

recurrence in multiple organs, and the percentage is inclusive 
of each affected organ. Table 4 summarizes the frequency of 
annotations corresponding to each phenotype variation.

We evaluated the performance of each model at identifying 
the targeted cancer phenotypes (staging, treatment, recur-
rence, and organs) using precision, recall, and micro-F1 
scores to collectively assess the effectiveness of each model in 
capturing the phenotypes (Figure 3; Table S6). The inclusion 
of micro-F1 scores in our evaluation process reflects our 
emphasis on achieving a balanced assessment, considering 
both precision (the proportion of correctly identified instan-
ces among all instances identified by the model) and recall 
(the proportion of correctly identified instances among all 
actual instances) to accurately identify relevant information 
while minimizing false positives and false negatives, espe-
cially in tasks like phenotype extraction from clinical text.

Comparison of models
The GPT-4 model demonstrated higher F1 scores with high 
precision and recall, indicating its ability to correctly identify 
all instances of recurrence, staging, treatment, and organs in 
the clinical text better than Flan-T5-xl, Flan-T5-xxl, Llama- 

Table 3. Patient demographics.

Total number of patients

Number of patients with  
cancer recurrence

Number of patients with  
no cancer recurrence P-value

Number of samples, n (%) 63 (100.00%) 21 (33.33%) 42 (66.67%)
Age, median (IQR) 61 (54-68) 58 (55-64) 65 (52-68) .297
Gender, n (%)

Female 34 (53.97%) 10 (47.62%) 24 (57.14%) .655
Male 29 (46.03%) 11 (52.38%) 18 (42.86%) .655

Race, n (%)
White 51 (80.95%) 17 (81.95%) 34 (80.95%) 1.000
African American 10 (15.87%) 3 (14.29%) 7 (16.67%) 1.000
Asian 2 (3.17%) 1 (4.76%) 1 (2.38%) 1.000

Smoking status, n (%)
Quit 45 (71.43%) 14 (66.67%) 31 (73.81%) .767
Yes 5 (7.94%) 3 (14.29%) 2 (4.76%) .410
Never 13 (20.63%) 4 (19.05%) 9 (21.43%) 1.000

Smoking status and Age were recorded at first encounter. IQR ¼ interquartile range.

Figure 2. Sample text from unstructured narratives of non-small cell lung cancer patients. The text highlighted in red are the targeted phenotypes for 
extraction. To protect patient privacy, dates in the figure have been replaced with “XX/XX/XXXX” to protect patient privacy.
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3-8B, scispaCy, and medspaCy. GPT-4 achieved a higher F1 
score of 0.96 in identifying recurrence instances compared to 
staging (0.92), treatment (0.92), and recurrence organs 
(0.68). GPT-3.5-turbo and GPT-4 had comparable perform-
ance across most phenotypes with the recurrence phenotype 
showing identical F1 score of 0.96. Although scispaCy had 
lower F1 scores than Flan-T5-xl, Flan-T5-xxl, Llama-3-8B, 
GPT-3.5-turbo, and GPT-4, it outperformed medspaCy in 
most phenotype extraction tasks. medspaCy had the lowest 
F1 score for all phenotypes, suggesting it is less effective at 
information extraction than other models. This is potentially 
due to its less advanced NER techniques than scispaCy, Flan- 
T5, Llama, and GPT models. Evidently, all models were less 
effective at accurately identifying organ information, likely 
due to the lack of specific training data for this task. The 
model-generated output of GPT-3.5-turbo and GPT-4 varied 
across each run but maintained the underlying meaning of 
the result across all runs (Table S3).

Qualitative review of the results
We performed a qualitative review of the results made by 
each model in phenotype extraction to better understand 
their strengths and weaknesses.

GPT-4 was better able to correctly identify cancer pheno-
types while minimizing misclassifications, leading to a higher 
F1 score compared to GPT-3.5-turbo, Flan-T5, Llama-3-8B, 
medspaCy, and scispaCy. When comparing GPT-3.5-turbo 
and GPT-4, we found that both models captured contextual 
information accurately. However, the generated text from 
GPT-4 is more relevant to the prompt than the text generated 
from GPT-3.5-turbo (Table S7). Upon examining the errors, 
we observed that GPT models sometimes mislabeled pheno-
types when the context was ambiguous, especially when the 
same sentence discussed multiple phenotypes.

medspaCy and scispaCy could not identify contextual phe-
notypes or phenotypes mentioned in a negated context, syno-
nyms not part of the rules, and spelling errors. GPT-3.5- 
turbo and GPT-4 were far better in these cases. For example, 

GPT-3.5-turbo and GPT-4 were able to identify “T1c N0 
M0” as an indication of a cancer stage, whereas the other 
models could not identify stage without significant further 
pipeline engineering (Tables S8 and S9). This could be due to 
spaCy’s inability to learn contextual information.

Discussion
Our study highlights GPT-4’s remarkable performance in 
identifying phenotypes with minimal preprocessing and post-
processing steps compared to rule-based or traditional 
machine-learning-based algorithms. This aligns well with the 
established notion that LLMs are data-driven and highly 
effective even with limited contextual information, unlike 
rule-based or traditional machine learning algorithms that 
rely solely on predefined patterns or rules known to research-
ers or clinicians.35

GPT-3.5-turbo performs similarly to GPT-4 for some phe-
notypes. The choice of GPT-3.5-turbo versus GPT-4 would 
depend on model run-time and cost of the runs. While GPT-4 
is more scalable as its results are more relevant to prompts, 
GPT-3.5-turbo may be more cost-effective for larger tasks, 
even when accounting for the additional engineering time 
necessary to process its output (Table S10). Overall, GPT 
models, with their robust unsupervised pre-training and 
remarkable pattern recognition capability on tokens, outper-
form other models as they extract relevant patterns and rela-
tionships without being constrained by the need for prior 
knowledge of explicit patterns, rules, or meaning. Based on 
the context provided in the prompt, GPT can capture varia-
tions in the representation of the clinical phenotypes, making 
it well suited for information extraction tasks that could 
extend beyond this study’s focus on its application in 
oncology.

Our analyses also revealed that GPT demonstrated signifi-
cantly better performance improvement than the other mod-
els, even in its default zero-shot setup without fine-tuning on 
clinical text. Fine-tuning with clinical text requires additional 
labeled clinical text, which is not readily available and would 
have been time-consuming to procure.

For the GPT model outputs, we also obtained varying texts 
from the API across multiple iterations of the same query 
despite using the same prompt, suggesting that GPT model 
might not provide identical results across multiple iterations 
of the same query. This could be due to its probabilistic 
design. After analyzing the output texts, we found that all the 
extracted phenotypes were correctly identified within the 
text, with only differences in the words and language used.

The comparative analysis also revealed that scispaCy per-
formed better than medspaCy in our study, possibly because 
of the additional NER components and diverse data sources 
that it is trained on, in addition to handling the specific type 
of data that medspaCy is trained on. However, both 
approaches exhibited limitations in handling complex pat-
terns and context-specific phenotypes. Results from meds-
paCy and scispaCy also indicate that rule-based models do 
not handle speculation, and context ambiguity adequately, 
particularly within complex sentence structures (Tables S8 
and S9).

Furthermore, while medspaCy and scispaCy offer deter-
ministic results based on predefined rules, they fall short of 
capturing the contextual information required for effective 
information extraction in clinical text. Because of that, 

Table 4. Frequency of annotations corresponding to each phenotype 
variation identified for each patient within the cohort, based on the 
available annotations.

Phenotype Variations
Percentage of patients  
with annotations (%)

Initial treatment Chemotherapy 14.29
Chemo-radiation 53.97
Radiation 11.11
Surgery 9.52

Initial stage Stage 0 1.61
Stage 1 12.90
Stage 2 6.45
Stage 3 51.61
Stage 4 24.11

Recurrence instances Recurrence 33.33
No recurrence 66.67

Organs affected by  
cancer recurrence

Liver 15.79
Kidney 5.26
Bone 26.31
Brain 47.37
Lymph 5.26
Local lung 5.26
Adrenal glands 5.26
Pleura 5.26
Pericardium 5.26
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researchers must also have comprehensive knowledge of the 
phenotypes and variations of the phenotypes for extraction.

Finally, it is worth considering the interpretability aspect of 
these models. While medspaCy and scispaCy’s rule-based 
nature allows for more straightforward interpretability, there 
might be some challenges in interpreting the results of the 
GPT model due to its unknown internal parameters.

Limitations
Despite these promising results, we acknowledge some limita-
tions in this study. We evaluated our results using F1 metrics, 
which have proven effective in comparing the performance of 
LLMs to that of rule-based and machine learning-based mod-
els for information extraction. However, it is important to 
reconsider the utility of traditional evaluation metrics when 

comparing LLM-generated text with human-generated refer-
ence text. This is crucial due to the potential discrepancies in 
reference texts and variations in the representation of results 
across different LLMs, suggesting that traditional informa-
tion retrieval metrics may not be well suited for all LLM 
tasks. Addressing these limitations will be a key focus in our 
future research.

Additionally, we note that our random selection of a subset 
of patients may introduce bias and affect model performance. 
While the dataset was extracted from a 5-year cohort, the 
evaluation was based on a random subset of patients. Biases 
in the EHR data and data used for training the models could 
also lead to limitations in handling diverse clinical text or 
phenotypes and affecting model performance. Including a 
larger dataset in future research would address this 
limitation.

Figure 3. Phenotype extraction performance results for the targeted phenotypes. Comparison of F1-score, precision, and recall for scispaCy, medspaCy, 
Flan-T5-xl, Flan-T5-xxl, Llama-3-8B, GPT-3.5-turbo, GPT-4 models. The figures illustrate the effectiveness of each model in accurately identifying stage 
(A), treatment (B), recurrence instances (C), and recurrent organs (D) from clinical text data.
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Finally, we acknowledge that our study did not conduct 
multiple runs of the GPT models or test multiple prompts for 
each phenotype on all patients due to cost limitations. While 
some recent work in the non-clinical domain has demon-
strated LLMs’ highly consistent results over multiple runs, 
further research is necessary to determine the optimal number 
of runs required for reliable clinical phenotype extraction, 
particularly in the context of lung cancer.36 Future work will 
focus on random subsampling on a subset of the data and 
permutation testing on the subsample to assess model 
variability.

Conclusion
In conclusion, the study highlights the potential of GPT-4 for 
accurate phenotype recognition in clinical text. GPT-3.5- 
turbo model demonstrates performance similar to that of 
GPT-4. Both GPT models seem to be effective not only for 
text generation tasks but also surprisingly for information 
extraction tasks. While medspaCy and scispaCy offer deter-
ministic results and have utility for some tasks, they exhibit 
limitations in handling complex patterns and context-specific 
phenotypes. Therefore, leveraging data-driven and contextu-
ally aware advanced language models like GPT-4 and GPT- 
3.5-turbo and addressing their current limitations opens up 
new possibilities for robust clinical phenotype extraction, 
ultimately leading to additional insights into patients’ health 
and improved care.
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