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E N G I N E E R I N G

Python tooth–inspired fixation device for enhanced 
rotator cuff repair
Iden Kurtaliaj1,2,3, Ethan D. Hoppe4,5, Yuxuan Huang4,6, David Ju4,5, Jacob A. Sandler4,5,  
Donghwan Yoon4,5, Lester J. Smith7, Silvio Torres Betancur1, Linda Effiong1,8,  
Thomas Gardner1, Liana Tedesco1, Sohil Desai1, Victor Birman9, William N. Levine1,  
Guy M. Genin4,5,6*, Stavros Thomopoulos1,2*

Rotator cuff repair surgeries fail frequently, with 20 to 94% of the 600,000 repairs performed annually in the United 
States resulting in retearing of the rotator cuff. The most common cause of failure is sutures tearing through ten-
dons at grasping points. To address this issue, we drew inspiration from the specialized teeth of snakes of the 
Pythonoidea superfamily, which grasp soft tissues without tearing. To apply this nondamaging gripping approach 
to the surgical repair of tendon, we developed and optimized a python tooth–inspired device as an adjunct to 
current rotator cuff suture repair and found that it nearly doubled repair strength. Integrated simulations, 3D print-
ing, and ex vivo experiments revealed a relationship between tooth shape and grasping mechanics, enabling op-
timization of the clinically relevant device that substantially enhances rotator cuff repair by distributing stresses 
over the attachment footprint. This approach suggests an alternative to traditional suturing paradigms and may 
reduce the risk of tendon retearing after rotator cuff repair.

INTRODUCTION
Rotator cuff tears are among the most prevalent tendon injuries, af-
fecting more than 17 million individuals in the United States each 
year (1–6). The incidence of injury increases with age, as evidenced 
by more than 40% of the population over 65 years old experiencing a 
rotator cuff tear (2–6). These tears result in loss of shoulder strength, 
leading to pain, lost workdays, and limitations in recreational activi-
ties for patients (5, 7–9). Rotator cuff tears typically occur at the 
tendon-to-bone insertion site, with the goal of rotator cuff repair be-
ing the anatomic restoration of the tendon attachment (10).

Rotator cuff surgical repair is the primary treatment for restoring 
shoulder function, with more than 600,000 procedures performed 
annually in the United States at a cost of $3 billion (3, 11, 12). How-
ever, successfully reattaching tendon to bone remains a significant 
clinical challenge. High failure rates occur following surgery, with 
rates increasing with patient age and tear severity. These rates range 
from 20% in younger patients with minor tears to a staggering 94% 
in elderly patients with massive tears (13–15). Rotator cuff repairs 
often fail due to sutures tearing through the tendon at the two or four 
grasping points where forces concentrate (Fig. 1, A to C).

Rotator cuff repair techniques have evolved over the past two 
decades, shifting from open surgery to arthroscopy and from man-
ual knots to knotless suture anchor systems, reducing proce-
dure time and costs (Fig. 1B) (16–22). Despite these advancements, 

the fundamental approach of sewing two tissues together has re-
mained largely unchanged since at least ancient Egypt, still rely-
ing on sutures transferring tension at high-stress insertion points 
(23). Following tendon-to-bone reattachment surgery, sutures 
can tear through tendon at these points of high stress, a phenom-
enon referred to as “suture pull-through” or “cheesewiring,” lead-
ing to repair site gapping or rupture (Fig.  1, B and C) (24–31). 
Although advancements have been made to improve rotator cuff 
repair mechanics, including the use of modified repair configura-
tions (25, 30), suture “tape” (32), and orthobiologics (33–38), 
these advancements have not succeeded in reducing the retear 
rates postrepair. Current methods of suture anchor repair have 
reached a limit: Increasing the number of strands and anchors 
does not lead to improved outcomes, as demonstrated by studies 
showing that single-row repairs perform comparably with double-
row repairs (25, 30). Marginal improvements have been achieved 
using modified repair configurations and suture tape, which seek 
to provide more compression and minimize suture pull-through 
(32). More recently, orthobiologics have been used to stimulate 
healing (33, 35–37). However, these approaches do not affect ini-
tial mechanical fixation, and their long-term biological benefits 
remain uncertain (33, 35–37). In more recent years, US Food and 
Drug Administration (FDA)–approved reinforcement materials 
such as grafts, patches, or meshes have been used to provide ad-
ditional mechanical support to the repair, with only modest im-
provements (39–43). Thus, there is a critical need for innovative 
and effective strategies to enhance rotator cuff repair mechanics 
and improve postoperative outcomes.

To address this need, we designed a biomimetic device, drawing 
inspiration from the relationship between tooth shape and gripping 
function observed in various predators. Snakes of the Pythonoidea 
superfamily grasp prey using teeth that are hooked and project in-
ward, so that efforts by prey to escape pulls the teeth further into 
tissue, without tearing tissue (44–46). In contrast, certain shark teeth 
are triangular and serve to cut prey (47–49). Integrated finite element 
analysis and ex vivo experiments revealed relationships between tooth 
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shape, tooth organization, and gripping mechanics that could be used 
to design a clinically relevant, three-dimensional (3D) printed, fixa-
tion device. This python-inspired device consisted of an optimized 
array of teeth and a base matching the curvature of the humeral head 
attachment site, with a profile that maintains compatibility with stan-
dard surgical techniques. Biomechanical testing demonstrated that 
the device nearly doubles the mechanical strength of state-of-the-art 
rotator cuff repair.

RESULTS
Curved teeth grasp rather than tear
To test the hypothesis that tooth shape drives the balance between 
cutting and grasping of tendon, we studied tendon-tooth interac-
tions using finite element analysis and ex  vivo experimentation. 
Teeth were circular at the base (diameter d) and curved backward a 
distance w as they tapered to a point (Fig. 2A). Tooth designs stud-
ied spanned the range from shark-like to python-like by varying w/d 

s

s/d = 1.5w/d = 2.5
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Fig. 1. 3D-printed biomimetic device for rotator cuff repair. (A) Schematic of a massive rotator cuff tear. (B) Schematic of a standard rotator cuff repair using sutures to 
repair tendon back to bone. (C) Schematic of repair failure due to sutures cutting through tendon. (D) Integrating simulations, 3D printing, and experiments, we deter-
mined the optimal grasping tooth shape and the optimal distribution of an array of grasping teeth and applied these results to develop a python tooth biomimetic device 
for rotator cuff repair. (E) The python tooth–inspired device interposed between tendon and bone significantly enhanced rotator cuff repair mechanics by improving 
stress distribution across the attachment footprint.
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(Fig. 2A). Simulations predicted that the peak principal Cauchy 
stress was highest in more conical teeth (low w/d) and decreased in 
teeth with greater curvature (Fig. 2, B and C). The contact area be-
tween the tooth and the substrate increased with increasing w/d, sup-
porting the hypothesis that python-like teeth promote grasping 
(Fig. 2C). Contact area plateaued at w/d = 2.5, suggesting that a tooth 
with w/d = 2.5 would provide a balance between reducing stress and 
increasing contact area (to provide grasping) (Fig. 2C). Stresses along 
the tendon-tooth interface were more uniformly distributed for high-
er w/d, where stress concentrations were lower (Fig. 2D). Peak tooth 
stresses increased as tendon thickness increased relative to tooth size 
and decreased with increasing w/d, indicating that tooth size can be 
adjusted to the thickness of a specific tendon to optimize grasping 
strength (Fig. 2E).

To verify these predictions, we performed modified lap shear tests 
using 3D-printed teeth with prescribed w/d values inserted into bo-
vine tendons. Results (Fig. 3) were consistent with the key predic-
tions of the finite element simulations. First, the force required for 
the tooth to tear through the tendon increased to a plateau at ap-
proximately w/d = 1.5 (Fig. 3F), consistent with the decrease in peak 
stress observed in the finite element simulations to a plateau at ap-
proximately w/d = 1.5 (Fig. 2C). This plateau extended to w/d = 2.5 
in both simulation and experiment. The experiments continued fur-
ther, with less consistent results for w/d = 3 and w/d = 3.5 (Fig. 3, C 
to H). Second, like the finite element simulations, experimental ob-
servations were consistent with the hypothesis that curved teeth 
grasp better. The likelihood of a tooth completely disengaging from 
the tendon decreased markedly with increasing w/d (Fig. 3B), with 
no disengagement observed for w/d > 2. Analogously, in the simula-
tions, contact area between the tooth and substrate reached a plateau 

at w/d = 2.25. We therefore chose w/d = 2.5 for the teeth that were 
studied subsequently.

The distribution of teeth affects repair strength
We hypothesized that tooth spacing of a clinically relevant tooth ar-
ray would affect load distribution and thereby dictate the strength 
and energy absorption of the tooth-tendon attachment. Using the 
tooth shape defined in the previous section, three 3D tooth array pat-
terns were studied numerically and in an ex vivo setting. Each tooth 
array was arranged in a consistent pattern. Teeth within the arrays 
were spaced uniformly, with the gap between them being d/2, d, or 
3d/2, where d is the tooth diameter. Finite element analyses predicted 
that wider spacing resulted in more uniform distribution of force 
among teeth and increased the sharing of stresses across rows of 
teeth (Fig. 4A). This prediction was verified by experimental modi-
fied lap shear tests on arrays of teeth with w/d = 2.5 embedded in 
bovine tendon (Fig. 4B). In each of these tests, force-displacement 
curves began concave-up and then shifted to concave-down. The 
maximum force over 7 mm of displacement increased with tooth 
spacing [44.9 ± 8.5 N (n = 8), 53.8 ± 9.9 N (n = 10), and 59.3 ± 11 N 
(n = 8) for spacings s/d = 0.5, 1, and 1.5, respectively; Fig. 4, C to E]. 
Energy absorption also increased with s (Fig. 4, F to H). No signifi-
cant differences in stiffness were observed between groups. While 
spacing the teeth further apart showed benefits, this adjustment was 
limited by the size of the attachment footprint at the repair site. 
Therefore, we did not further increase the spacing between the teeth.

A biomimetic device doubles the surgical repair strength
Advancing toward translational application in clinical tendon-to-bone 
repair, we designed and 3D printed a biomimetic, rotator cuff-specific 
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device using a biocompatible resin (Biomed Clear, Formlabs) (Fig. 5A). 
The biomimetic device consisted of an array of teeth atop a curved 
base. The base could be customized to match the patient-specific cur-
vature of the humeral head at the supraspinatus tendon attachment 
site, as determined from computed x-ray tomography data (fig. S2). 
The device was designed to be secured to the humerus bone through 
four suture holes located at the corners of the rectangular base (fig. S7).

To evaluate the efficacy of the device compared to state-of-the-
art rotator cuff repair, we conducted double-row suture anchor re-
pairs on five paired cadaveric shoulders, with or without the device. 
For each of n = 5 shoulder cadavers, a rotator cuff tear was created 
at the supraspinatus tendon. Then, chosen blindly, one shoulder un-
derwent standard double-row suture repair, while its paired cadav-
eric counterpart received the double-row suture repair along with 
the device (Fig. 5B). The repairs were loaded to failure using uniax-
ial tensile testing. Paired comparisons revealed that repairs incorpo-
rating the device exhibited an average increase in maximum force 
(i.e., strength) of 83% relative to matched controls without the de-
vice (Fig.  5D) and significantly greater energy absorption (fig.  S9 
and Fig. 5F). When adding the device, the failure mode shifted from 

the typical cheesewiring effect observed in standard repairs to mid-
substance failure, where a portion of the tendon remained attached 
to the device. Postfailure inspections consistently showed that the 
device remained securely attached to the bone, with no breakage of 
any teeth.

DISCUSSION
Our findings establish a python tooth–inspired approach for increas-
ing repair strength immediately following rotator cuff repair surgery. 
The approach specifically addresses the main cause of high failure 
rates following traditional rotator cuff repair, namely, sutures pulling 
through the tendon due to tension at the medial side of the repair 
(24, 40). Our device is positioned strategically between the two su-
ture anchors in the medial row to strengthen these tendon-suture 
interfaces, which are prone to mechanical failure. The curved teeth 
added significant mechanical strength to the repair, due to what our 
simulations predicted to be a more even distribution of loads across 
the attachment footprint; the teeth grasp the tendon without tearing 
through the tissue. This approach may be adapted by changing the 
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size and distribution of teeth as well as the base design to serve as a 
platform for enhanced repair of other connective tissues to bone 
(e.g., anterior cruciate ligament reconstruction and Achilles tendon 
repair). For high force attachments such as that at the Achilles enthe-
sis, additional care might be needed in the design of teeth, such as 
rounding the base to reduce stress concentrations. In addition, in sit-
uations in which teeth might be in danger of breaking, a range of 
mechanisms from nature might be considered. Notable among these 
is the gomphosis, the peg-and-socket mechanism that allows teeth to 
move relative to the jaw at high stress and thereby reduce the likeli-
hood of tooth or jaw fracture (50). Such a mechanism is attractive 
and will require additional optimization and analysis to account for 
how loss of stiffness of a tooth will affect the sharing of loads among 
other teeth.

Nature presents other examples of grasping systems analogous to 
teeth (51), including the burrs of hitchhiker plants (52), the prickles 
of roses (53), and the spines of asparagus (53). Burrs of the hitch-
hiker plant Harpagonella palmeri may be designed to distribute forc-
es evenly and have been explored as inspiration for new suturing 
strategies (52). Prickles on roses come in a tremendous diversity of 
shapes and sizes, with some prickles of certain cultivars having a sig-
nificantly recurved shape analogous to python teeth (54, 55). Larger 
prickles in, for example, Rosa arvensisi may function to stabilize the 

plant against neighboring vegetation and appear to have a recurve 
w/d much less than the 2.5 that was found to be optimal in this study 
(53). This may suggest that in their interactions with soft tissues, they 
evolved to puncture rather than grasp flesh. Leaf-derived spines such 
as those of Asparagus falcatus and Asparagus setaceus, hook climbing 
plants that must grasp neighboring vegetation for mechanical stabil-
ity after growing to a critical height, appear to have hooks that are far 
more recurved than those of pythons (53), perhaps suggesting that 
they serve exclusively to grasp.

Results add to prior studies of the functional role of tooth shape 
across species. Studies of shark tooth biomechanics demonstrate that 
specialized arrays of shark teeth, including tight ligamentous re-
straints against the jaw and optimized tooth orientation relative to 
the jaw, contribute to enhanced efficiency in tearing through tissue 
(47, 49). Well-known relationships between tooth shape and specific 
diets demonstrate that tooth shape, including curvature, is adapted 
to accommodate feeding habits. Carnivorous species have complex 
and sharp occlusal surfaces for shearing meat, while insectivorous 
species feature simpler, blunt cusps for crushing insect exoskeletons 
(56). The current study extends this understanding by examining 
how tooth shape affects the balance between soft tissue tearing and 
grasping. Differences between triangular (shark-like) and curved 
(python-like) teeth suggest factors that enable posterior-curved teeth 
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to facilitate the trapping of prey by pythons (44–46). Specifically, grasp-
ing is achieved through tooth curvature by reducing peak stresses 
and increasing contact between the jaw and the soft tissue. Grasping 
teeth must balance a trade-off between increasing contact area and 
mitigating stresses. Results showed that for insufficiently recurved 
teeth (that is, w/d < 2), a compressive force was required to ensure 
engagement; in the absence of compressive force restraining such a 
tooth against the tendon, the tooth could slide out of the tendon.

The number of sutures and their spacing is crucial to successful 
repair of the rotator cuff, where load transfer is typically concen-
trated at just two suture anchor points. Our studies suggest suture 
pull-through, a critical flaw of current repair techniques, can be ad-
dressed by increasing the number of attachment points, provided 

that all attachment points contribute to load bearing. This principle 
of load distribution is evident in tooth arrangements across species, 
with uniform tooth spacing believed to reduce risk of tooth fracture 
through efficient distribution of biting forces (46). Sharks continu-
ously regenerate lost teeth, possibly in part for this purpose (48). 
Pythons have teeth that are less densely packed and, unlike many 
other species, have no differentiation between tooth types—all py-
thon teeth serve the same functional purpose (46, 57, 58). Our sim-
ulations suggest that this increased spacing may reduce peak tissue 
stresses and thereby protect against soft tissue rupture. In addition 
to these factors relating to gripping strength, sutures that are spaced 
too far apart may cause gapping across the repair site, whereas sutures 
positioned too close together risk inducing tissue necrosis (23).
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Fig. 5. Biomimetic python tooth–inspired device nearly doubles the strength of rotator cuff repair. (A) 3D-printed python tooth–inspired device is placed at the 
native attachment site. (B) Schematic biomechanical testing setup for human cadaver rotator cuff tendons repaired with double-row suture only or device and suture.  
(C) Representative force-displacement curves for biomechanical tests of cadaver supraspinatus repairs with and without the device. (D to F) Mechanical evaluation of the 
device compared to the state-of-the-art rotator cuff repair. N = 5 biologic replicates per group. P values were determined using a two-tailed, paired Student’s t test (*P < 
0.05). The device significantly increased the maximum force and energy absorption of the repaired rotator cuff.
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The clinically relevant embodiment for rotator cuff tendon-to-
bone repair was designed for compatibility with existing surgical 
methods. The device was positioned at the native supraspinatus ten-
don footprint between the greater tuberosity and the articular carti-
lage of the humerus, with a base manufactured to accommodate 
footprint sizes in patients (fig. S3) and teeth rising to grasp the ten-
don and distribute loads to lower stress concentrations and im-
prove overall repair performance. The resultant doubling of repair 
strength could significantly affect postoperative outcomes by re-
ducing the high rerupture rates now observed (22, 26, 31).

The success of rotator cuff repairs relies on both the mechanical 
strength provided by sutures and the application of biologics for 
tendon-to-bone healing. Despite the mechanical support offered by 
techniques such as the double-row suture bridge repair, the postsur-
gical failure rates remain alarmingly high. Biological approaches, in-
cluding platelet-rich plasma, platelet-derived growth factors, and 
stem cells, show promise in promoting tendon-to-bone healing but 
lack mechanical reinforcement (33, 35–37). More recently, FDA-
approved devices, such as grafts, patches, or meshes, are being used 
to enhance the mechanical strength of rotator cuff repairs (39–43). 
However, these solutions have only shown modest mechanical im-
provements and do not target tendon-to-bone healing (39–43). Bio-
mimetic tendon grasping represents a promising solution for rotator 
cuff repair, offering mechanical support and compatibility with stan-
dard of care, with the potential for localized drug delivery.

Our approach has several limitations. While the biomimetic de-
vice was 3D printed using a biocompatible resin, use of bioabsorb-
able materials may be preferable to improve long-term healing and 
reduce the risk of debris in the joint. In addition, the solid base of 
the device could be a barrier for tendon-bone integration. Future 
versions should consider a porous base that might better support 
tendon-to-bone healing and also serve as a depot for localized drug 
delivery. Our future studies will address these limitations and will 
refine this device using bioabsorbable materials and a porous struc-
ture to promote tendon-to-bone healing. We will also assess long-
term outcomes through large animal model studies, investigating 
both mechanical integrity of the repair and healing. Overall, our 
research not only introduces a device that significantly improves 
mechanical strength, but also, in future design iterations, aims to 
facilitate the delivery of biologics using bioabsorbable materials 
with a porous structure to improve tendon-to-bone healing.

MATERIALS AND METHODS
Finite element analysis
Single tooth optimization
Idealized geometry: To quantify how teeth of different designs in-
teract with tendon, 3D models of an isotropic tooth interacting 
with an orthotropic tendon were studied using finite element 
analysis in the Abaqus environment (Dassault Systèmes, Vélizy-
Villacoublay, France). Teeth had circular cross sections and curved 
backward as they tapered to a point. The goal of the modeling ef-
fort was to determine first-order effects of how tooth shape could 
be varied to affect the stress distribution and contact area. Linear 
elasticity was adequate for capturing these first-order effects be-
cause the large strains that would necessitate hyperelasticity were 
evident only around the tips of teeth, in a small region where the 
nature of the appropriate hyperelastic constitutive law is unclear. 
Although strains could be high in the vicinity of the tips of teeth, 

the experimental validations supported that the linear modeling 
approach was effective for achieving the aims of optimizing the 
device performance. Seven tooth geometries were examined, with 
w/d = {0.5,1.0,1.5,2.0,2.5,3.0,3.5} (Fig. 2A). The interaction be-
tween the tendon and both the elastic tooth and rigid foundation 
were traction free. Because of symmetry, a half space was modeled, 
with tendon and teeth cut along the center plane shown (Fig. 2A), 
and symmetric boundary conditions were applied. Two different 
tendon thicknesses H were used, with the ratio of the tendon thick-
ness H to the tooth height h being H/h = {1.33,2.67}. For the typi-
cal range of human supraspinatus tendon thicknesses, varying 
from H  =  2 to 4 mm (59), this corresponds to teeth of heights 
h = 1.5 to 3 mm. All teeth had the same tooth base width of 1.5 mm 
and height of 3 mm. The tendon slab had dimensions 2 mm by 
14 mm by t mm, with the tooth base centered at 0.92 mm along the 
length (Fig. 2A). Material properties: The tendon was modeled as 
linear elastic and transversely isotropic with modulus E1 = 450 MPa 
along the length of the tendon slab and E2 = 100 MPa transverse to 
it, and Poisson’s ratio ν12 = 0.55, and G12 = E2/2; the tooth was 
modeled as isotropic with E = 10 GPa and Poisson’s ratio ν = 0.3 
(60–62). The longitudinal to transverse elastic modulus E1/E2 ratio 
was selected on the basis of literature to accurately represent the 
supraspinatus tendon’s biomechanical properties at the attach-
ment, where the device is placed (60). This ratio is substantially 
smaller for the supraspinatus near its attachment than it is for 
other ligaments and tendons in the body. Boundary conditions: 
Traction parallel to the long direction of the tendon slab was ap-
plied to the tendon, pulling the tendon onto the tooth horizontally. 
The net pulling force was 0.96 N. Discretization: A convergence 
study was performed by increasing the number of quadratic inter-
polation tetrahedral elements until the stored energy converged to 
within 1%. This required finite element models with approximate-
ly 18,000 elements. Stress and displacement fields were recorded 
for further analysis. Input files are available for download.
Tooth array optimization
Idealized geometry: To optimize the spatial distribution of teeth, 
plane stress finite element analyses were conducted using models of 
rigid “teeth” of diameter d in a homogeneous, orthotropic “tendon” 
of size 8.93 d by 8.93 d (Fig. 4A). The primary goal of these simula-
tions was to understand how tooth spacing affects the relative distri-
bution of forces among the teeth during tendon loading. A 2D plane 
stress model capturing a representative cross section of the array 
proved sufficient for gaining these insights about the in-plane me-
chanics, the idea being that the teeth were all relatively stiff compared 
to the tendon, and the force distribution could thus be expected to be 
dominated by their 2D spatial disposition rather than the details of 
their 3D geometry. Three tooth array patterns were examined, with 
spacing s between adjacent teeth being s/d = {0.1,1.0,1.5}. Arranged 
in staggered rows, teeth in the second row were equidistant between 
the teeth in the first and third row (Fig. 4A). The first and third rows 
had four teeth while the second row had three teeth, the maximum 
number that could practically fit beneath the supraspinatus tendon at 
a tendon-to-bone attachment. The spacing between rows was kept 
constant at d. Material Properties: Tendon was modeled as ortho-
tropic, as above. Boundary conditions: Traction was applied as 
shown (Fig. 4A) to achieve a 150 N force; all other boundaries were 
traction free. The interfaces between the rigid teeth, immovable, and 
the tendon were frictionless, with separation of the tendon from the 
teeth permitted. Discretization: A convergence study was performed, 
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with convergence achieved for a mesh of approximately 10,000 
eight-node biquadratic plane stress quadrilateral with reduced inte-
gration (CPS8R) elements. A free meshing algorithm with an ad-
vancing front was used. The maximum principal stress and the 
forces on each tooth were recorded (Fig. 2A). All equations were 
solved in the Abaqus finite element analysis environment (Das-
sault Systèmes, Vélizy-Villacoublay, France). Input files are avail-
able for download.

Biomechanical testing
Single tooth optimization
To test the grasping capacity of single teeth in tendon, a modified 
single lap shear test was developed (Fig. 3A). Bovine deep digital flex-
or tendons (age 14 to 30 months; Animal Technologies, Tyler, TX) 
were fresh-frozen in phosphate-buffered saline–soaked gauze and 
stored at −20°C. Before testing, tendons were thawed overnight at 4°C 
and then cut into 10 cm by 6 cm by 0.8 cm planks using scalpel blades. 
Fixtures containing the seven different tooth geometries were 3D 
printed (EDEN 260VS, Stratasys Ltd.) in a stiff (E = 2.5 GPa) polymer 
(VeroWhitePlus, Stratasys, Rehovot, Israel). Each 3D-printed tooth 
shape (n = 6 per group) was inserted into a precut tendon block so 
that the entire tooth was fully engaged within the tendon but did not 
penetrate through the other side (fig. S1). To avoid slippage, the upper 
extremity of the bovine tendons and the bottom of the 3D-printed 
fixtures were secured using custom-made grips (Fig. 3A). A uniaxial 
tension test was then performed at 0.05 mm/s for up to 10 mm of 
displacement (ElectroForce, TA Instruments, Newcastle, DE). From 
the force elongation curves, peak force for 5-mm elongation, stiffness, 
and energy to yield were determined. Tooth engagement with the ten-
don was determined by visual inspection and verified through video 
captured during testing (movies S1 and S2).
Tooth array optimization
Similar testing methods were used to test the grasping capacity of 
three different teeth array patterns in bovine deep digital flexor ten-
don (9.91 cm by 6.10 cm by 0.318 cm, n = 8 to 10). Each fixture 
contained an array of 3D-printed teeth and was inserted into the pre-
cut tendon block so that all teeth were fully engaged within the ten-
don and did not penetrate through the other side (fig. S1 and Fig. 4B). 
A tensile test was performed at 0.05 mm/s for up to 7 mm of dis-
placement (ElectroForce, TA Instruments, Newcastle, DE). From the 
force-elongation curves, peak force for 7-mm elongation, stiffness, 
and energy to 7 mm were determined. Tooth engagement with the 
tendon was determined by visual inspection and verified through 
video captured during testing.

Biomechanical characterization
Stiffness was determined from the force-elongation curve using ran-
dom sample correlation. Data were first trimmed to remove data 
below 10% and above 95% of maximum load to identify the region 
of interest. Then, two points were selected at random, and a line was 
drawn between them for n = 1000 iterations. All data points within 
a threshold range of 0.5% of the robust fit stress at the 80th percen-
tile were considered as within an acceptable range of the best fit line. 
Of the n iterations, the iteration with the most inliers was deemed 
the best fit. This approach represents a “robust” fit, which, compared 
to a least squared errors fit, minimizes the effect of outlier points on 
the best fit line. The best fit was confirmed by visual inspection for 
each force-elongation curve. Energy was calculated as the area un-
der the load-deformation curve up to the yield point.

Device design and cadaveric fitting
To translate the idealized model and lap shear test results for clinical 
tendon-to-bone repair, a rotator cuff-specific device was designed us-
ing SolidWorks (Dassault Systèmes, Waltham, MA, USA). The device 
consisted of the optimized array of teeth, each 3 mm in height (fig. S6), 
placed in a curved base that matched the curvature and dimensions of 
a human humeral head supraspinatus tendon attachment site (17 mm 
by 10 mm footprint area) (31, 63). The humerus 3D model used in 
this study was created from a deidentified patient computed tomogra-
phy (CT) scan (approved by the Columbia University Institutional 
Review Board), processed into a 3D model using Mimics Innovation 
Suite (version 21.0.0.406, Materialise, Leuven, Belgium). The humeral 
attachment footprint was used as a mold to shape the device’s base. 
Given the generally flat nature of the attachment footprint, a model 
from a single patient was adequate to finalize the design. To address 
anatomical differences across patients, we designed multiple device 
footprints (15.5 mm by 6 mm to 17.5 mm by 8 mm) with 0.5-mm 
incremental adjustments. During cadaver shoulder tests, the surgeon 
selected the most suitable device size, similar to the standard clinical 
practice of choosing device sizes to match the patient’s anatomy.

The humerus 3D model used in this study was created from dei-
dentified CT scans of patient data. The humerus’s attachment foot-
print from was used as a mold to shape the device’s base. Given the 
generally flat nature of the attachment footprint, a model from a 
single patient was adequate to finalize the design. To address ana-
tomical differences across patients, we designed multiple device 
footprints (15.5 mm by 6 mm to 17.5 mm by 8 mm) with 0.5-mm 
incremental adjustments.

To check for the best design fit at the repair site, the following 
criteria were considered: (i) The device surface should match the 
attachment site surface, (ii) the device should not encroach on the 
articular cartilage, and (iii) the base thickness should be no more 
than 2 mm (figs. S4 and S5). The fit of the device at the repair site 
and the grasping ability of the teeth were evaluated in human ca-
daver shoulders for five different device prototypes (figs. S4 and S5). 
These tests led to subsequent adjustments in the design of the device 
that informed the final device design implemented in cadaver tests. 
Human cadaver shoulders were obtained from Anatomy Gifts Reg-
istry (Anatomic Gift Foundation Inc., Hanover, MD).

Human cadaver rotator cuff repairs
To assess the device in a clinically relevant rotator cuff repair setting, 
paired human cadaver rotator cuff samples were used (Anatomic 
Gift Foundation Inc., Hanover, MD). Clinically relevant supraspina-
tus tendon tears were created with a scalpel and then repaired using 
a double-row suture bridge technique, in a paired fashion either 
with or without the device (n = 5 per group). After repair, humerus-
supraspinatus tendon-muscle samples were carefully isolated and 
stored at 4°C overnight (fig. S8).

Biomechanical testing of cadaveric specimens
The humerus was secured in a pipe with two orthogonal k-wires and 
Rockite cement (Hartline Products Co. Inc., Cleveland, OH). The 
pipe was secured close to the humeral head to prevent flexion. The 
rotator cuff muscle was secured in a freezing clamp using liquid 
CO2. The humerus was angled at 120° relative to the tendon so that 
muscle was pulled parallel to the tendon fibers at the insertion. Re-
paired supraspinatus samples were held in tension at 15 N for 20 s 
and then pulled in uniaxial tension to failure at 0.5 mm/s (movies S3 

D
ow

nloaded from
 https://w

w
w

.science.org at W
ashington U

niversity on July 14, 2024



Kurtaliaj et al., Sci. Adv. 10, eadl5270 (2024)     28 June 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

9 of 10

and S4 and fig. S8). Force and grip displacement data were recorded 
(MTS Systems Corporation, Eden Prairie, MN, USA), and maxi-
mum force, stiffness, and energy to failure were determined.

Statistical analysis
Details of the sample size and appropriate statistical test are included 
in the figure captions. All data are shown as mean ± SD. Statistical 
analysis for all experiments was performed in GraphPad Prism 7 soft-
ware. The threshold for statistical significance was defined at P < 0.05.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S9
Legends for movies S1 to S4
Legend for data file S1

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S4
Data file S1
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