
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

2020-Current year OA Pubs Open Access Publications 

1-1-2024 

Accuracy of TrUE-Net in comparison to established white matter Accuracy of TrUE-Net in comparison to established white matter 

hyperintensity segmentation methods: An independent validation hyperintensity segmentation methods: An independent validation 

study study 

Jeremy F Strain 
Washington University School of Medicine in St. Louis 

Maryam Rahmani 
Washington University School of Medicine in St. Louis 

Donna Dierker 
Washington University School of Medicine in St. Louis 

Christopher Owen 
Washington University School of Medicine in St. Louis 

Hussain Jafri 
Washington University School of Medicine in St. Louis 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4 

 Part of the Medicine and Health Sciences Commons 

Please let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Strain, Jeremy F; Rahmani, Maryam; Dierker, Donna; Owen, Christopher; Jafri, Hussain; Vlassenko, Andrei 
G; Womack, Kyle; Fripp, Jurgen; Tosun, Duygu; Benzinger, Tammie L S; Weiner, Michael; Masters, Colin; 
Lee, Jin-Moo; Morris, John C; Goyal, Manu S; and ADOPIC and ADNI Investigators, "Accuracy of TrUE-Net 
in comparison to established white matter hyperintensity segmentation methods: An independent 
validation study." NeuroImage. 285, 120494 (2024). 
https://digitalcommons.wustl.edu/oa_4/3771 

This Open Access Publication is brought to you for free and open access by the Open Access Publications at 
Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized 
administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/oa_4
https://digitalcommons.wustl.edu/open_access_publications
https://digitalcommons.wustl.edu/oa_4?utm_source=digitalcommons.wustl.edu%2Foa_4%2F3771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Foa_4%2F3771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://becker.wustl.edu/digital-commons-becker-survey/?dclink=https://digitalcommons.wustl.edu/oa_4/3771
mailto:vanam@wustl.edu


Authors Authors 
Jeremy F Strain, Maryam Rahmani, Donna Dierker, Christopher Owen, Hussain Jafri, Andrei G Vlassenko, 
Kyle Womack, Jurgen Fripp, Duygu Tosun, Tammie L S Benzinger, Michael Weiner, Colin Masters, Jin-Moo 
Lee, John C Morris, Manu S Goyal, and ADOPIC and ADNI Investigators 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/oa_4/3771 

https://digitalcommons.wustl.edu/oa_4/3771


NeuroImage 285 (2024) 120494

Available online 10 December 2023
1053-8119/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Accuracy of TrUE-Net in comparison to established white matter 
hyperintensity segmentation methods: An independent validation study 

Jeremy F. Strain a,h,1,*, Maryam Rahmani b,h,1, Donna Dierker b,h, Christopher Owen b, 
Hussain Jafri b, Andrei G. Vlassenko b,h, Kyle Womack a, Jurgen Fripp f, Duygu Tosun e, 
Tammie L.S. Benzinger b,c,  Michael Weiner e, Colin Masters g, Jin-Moo Lee a,b,d, John 
C. Morris a,c, Manu S. Goyal b,h, for the ADOPIC and ADNI Investigators 
a Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA 
b Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA 
c Knight Alzheimer Disease Research Center, St. Louis, MO, USA 
d Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA 
e Division of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, CA, USA 
f The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, QLD, Australia 
g The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia 
h Neuroimaging Labs Research Center, Washington University School of Medicine, St. Louis MO, USA   

A R T I C L E  I N F O   

Keywords: 
WMH 
Segmentation Tools 
TrUE-Net 
Aging 
LST 

A B S T R A C T   

White matter hyperintensities (WMH) are nearly ubiquitous in the aging brain, and their topography and overall 
burden are associated with cognitive decline. Given their numerosity, accurate methods to automatically 
segment WMH are needed. Recent developments, including the availability of challenge data sets and improved 
deep learning algorithms, have led to a new promising deep-learning based automated segmentation model 
called TrUE-Net, which has yet to undergo rigorous independent validation. Here, we compare TrUE-Net to six 
established automated WMH segmentation tools, including a semi-manual method. We evaluated the techniques 
at both global and regional level to compare their ability to detect the established relationship between WMH 
burden and age. We found that TrUE-Net was highly reliable at identifying WMH regions with low false positive 
rates, when compared to semi-manual segmentation as the reference standard. TrUE-Net performed similarly or 
favorably when compared to the other automated techniques. Moreover, TrUE-Net was able to detect relation
ships between WMH and age to a similar degree as the reference standard semi-manual segmentation at both the 
global and regional level. These results support the use of TrUE-Net for identifying WMH at the global or regional 
level, including in large, combined datasets.   

1. Introduction 

Neuroimaging has enabled the quantification of various senescent 
changes in the aging brain, including those which impact cognition and 
neurodegenerative diseases. Among the most common changes observed 
on brain MRI are white matter hyperintensities (WMH), which are 
hyperintense lesions that are particularly discernible on T2-weighted 
fluid attenuated inversion recovery (FLAIR) magnetic resonance imag
ing (MRI) sequences (Caligiuri et al., 2015; Wardlaw et al., 2013). WMH 
presence may arise from various pathologies but have robust 

associations with age, hypertension and other vascular risk factors 
(Debette and Markus, 2010; Gouw et al., 2011). The burden of WMH is 
associated with cognitive decline and vascular dementia, and there is 
increasing interest in their association with Alzheimer disease and other 
related neurodegenerative diseases (Haley et al., 2009; Inzitari et al., 
2009; Prins and Scheltens, 2015). 

Numerous approaches have been introduced for assessing WMH but 
none is universally applied. Initial methods applied qualitative visual 
reads by radiologists to grade WMH severity, which remains a common 
practice, particularly in clinical case studies (Fazekas et al., 1987; 
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Scheltens et al., 1993). However, this method is spatially limited, 
vulnerable to poor inter-rater reliability, and applies varying criteria 
among different studies (Mäntylä et al., 1997). Manual segmentation of 
WMH has been used but is labor-intensive and not feasible for large 
sample sizes, and is vulnerable to rater bias and sequence variability 
(Grimaud et al., 1996; Vanderbecq et al., 2020). 

Automated WMH segmentation pipelines have evolved as an alter
native using a variety of computational techniques, including deep 
learning (Balakrishnan et al., 2021). Early approaches applied arbitrary 
thresholds using one or multiple image sequences to capture intensity 
outliers designated as WMH (Beare et al., 2009). More advanced stra
tegies such as Bayesian regression approaches subsequently emerged 
(Maillard et al., 2022; DeCarli et al., 2013). Most current popular neu
roimaging toolboxes incorporate some combination of such methods 
including the Lesion Segmentation Toolbox (LST) (Schmidt et al., 2012; 
Schmidt, 2017) and the MarkVCID pipeline (Maillard et al., 2022). 

In 2017, an ambitious WMH segmentation challenge was initiated to 
assess the capabilities and reliabilities of various WMH segmentation 
tools. In 2019 the study revealed that deep learning techniques based on 
convolutional neural networks far surpassed other methods (Kuijf et al., 
2019; Maillard et al., 2022; DeCarli et al., 2013). The technique that 
outperformed the other algorithms, sysu media (SM, Li et al., 2018), 
exhibited strong reliability across various sequence and scanner types 
implicating the value of convolutional neural networks for structural 
imaging. A newer techniques called the Triplanar U-Net ensemble 
network (TrUE-Net) outperformed several existing pipelines within this 
class and is of particular interest due to the triplanar model that im
proves robustness to scanner and acquisition protocol differences, 
thereby eliminating the need for post-processing measurement harmo
nization (Sundaresan et al., 2021). However, TrUE-Net has yet to be 
independently validated. Moreover, the WMH segmentation challenge 
parameters did not adequately evaluate accuracy regionally nor for 
biological relevance, which are of critical interest with respect to 
cognitive decline and neurodegeneration (Biesbroek et al., 2017). 

Accordingly, here we report on an independent assessment of the 
TrUE-Net algorithm in comparison to sysu media (SM), two techniques 
from LST, MarkVCID, FreeSurfer (Fischl 2012) and a semi-manual seg
mentation based on intensity thresholding (MSIT) method, the latter as 
the reference standard. We demonstrate the performance of these six 
automated segmentation techniques based on three criteria: 1) consis
tency in assessing global and regional WMH burden in reference to 
semi-manual segmentation, 2) accuracy in identifying lesions (DICE, 
Hausdorff Distance), and 3) detection of biological effects namely the 
association between WMH and age, at the global and regional level. 

2. Methods 

2.1. Test data 

MRI data from a total of 160 individuals were used to assess the 
capabilities of the WMH segmentation methods. These data were ob
tained from the Aging Metabolism & Brain Resilience (AMBR) dataset 
(Goyal et al., 2023), which included advanced brain MRI and PET, 
among other assessments in community dwelling adults with or without 
Alzheimer disease; other known significant neurological illnesses were 
an exclusion criterion including for example symptomatic stroke. Details 
have been posted previously described elsewhere (Goyal et al., 2023). 
The brain MRIs in the AMBR dataset include a high-resolution 3D FLAIR 
sequence described below. Visual ratings were conducted to provide a 
clinical metric in terms of WMH burden across our entire cohort. The 
ratings were classified as none/minimal, mild, moderate, or severe by a 
neuroradiologist based on the higher Fazekas score for deep versus 
periventricular regions. 

Structural imaging sequences included high-resolution 3D FLAIR 
(TR/TE = 4800/417 ms, FOV 256 mm, voxel size 1 × 1 × 1 mm, matrix 
size 256 × 256 × 160 voxels) and T1-weighted rapid gradient-echo 

(MPRAGE) sequence (TR/TE = 2500.0/(1.81–7.18) ms, FOV 256 mm, 
voxel size 0.8 × 0.8 × 0.8 mm, matrix size 256 × 256 × 208 voxels, vNav 
prospective motion corrected). All images were acquired on 3T Trio/ 
Prisma Siemens scanners. 

The goal of this WMH technique comparison was not to optimize any 
of the pipelines but rather perform them as efficiently as possible in 
order to assess their capability for the general population with unknown 
cohort size or characteristics. Therefore, no fine-tuning of algorithmic 
parameters (TrUE-Net and SM) were conducted on our cohort; rather, 
WMH segmentation parameters were derived from their baseline 
training dataset. Further details on technique specific adjustments can 
be found below in the Image Processing section. 

2.2. Image processing 

A set of standardized preprocessing steps was established to ensure 
efficient segmentation across all WMH techniques. These steps include: 
registering the T1-weighted image to the corresponding FLAIR with 
rigid body registration using FLIRT from FSL, followed by brain 
extraction and bias field correction using FSL FAST (Jenkinson and 
Smith, 2001). Several of the applied segmentation techniques incorpo
rated one or more steps of the standardized preprocessing to maximize 
the number of individuals that passed visual QC for each technique. The 
full preprocessing pipeline was used for MSIT, MarkVCID and TrUE-Net. 
The preprocessing for SM only included the co-registration of the T1 to 
the FLAIR as the remaining preprocessing steps are embedded within the 
SM package itself. The LST tool box contains all of the above mentioned 
preprocessing and therefore the raw T1 and FLAIR were used as inputs. 
No preprocessing or fine tuning was done for FreeSurfer which uses 
T1-weighted images for WMH segmentation. 

Following WMH segmentation, each T1 image in FLAIR space was 
linearly and nonlinearly registered to the MNI152 template using FLIRT 
and FNIRT, respectively (Jenkinson and Smith, 2001). The warp pa
rameters created for the T1 were then applied to the binary lesion masks 
with nearest-neighbor interpolation for further analyses. Finally, the 
MNI white matter mask was applied to WMH Lesion masks across all 
techniques to isolate voxels that only resided within the white matter. 

2.3. MSIT 

The MSIT approach segments WMH by initial intensity thresholding 
followed by trained manual selection of lesions, seed growing, and 
quality assessment by a trained neuroradiologist (MG) (Strain et al., 
2013). The resulting segmentations were deemed to be the reference 
standard in this study given this highly rigorous but labor-intensive 
approach. In short, this method uses an in-house MATLAB code to 
determine the average intensity and standard deviation at each image 
slice along the z-plane. A threshold of 1.2 SD was applied as a liberal 
measurement to have high sensitivity but low specificity. This threshold 
has shown to be reliable in several prior studies across different se
quences and cohorts (Hubbard et al., 2017; Hubbard et al., 2016; Strain 
et al., 2013). Manual selection of lesions (and as needed tracings) were 
then performed by identifying true lesion from false positives due to 
motion, fat signal, ventricles or other sources that would not be 
considered WMH. To ensure that all WMH clusters were fully repre
sented, the manually selected clusters were treated as seed regions and 
allowed to expand one voxel in all directions provided the signal in
tensity was ≥0.5 SD from the slice average intensity. 

All WMH binary masks were drawn by the same two raters (MR and 
CO). Inter- and intra-rater reliability were assessed in a separate cohort 
of 20 individuals with a range of WMH burden. Each rater was assessed 
against one another and against an expert with extensive prior experi
ence in WMH segmentation (JS). Each rater was blind to the testing 
cohort prior to reliability assessment. Following the inter-rater reli
ability evaluation, the 20 scans were randomized with instructions to 
identify the WMH a second time with a week between tracings. An 
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average Dice cut-off of 85 % was set as an acceptable reliability rating 
where >70 % is often considered excellent agreement (Zhang et al., 
2007). 

2.4. TrUE-Net 

We chose not to bias the TrUE-Net algorithm by retraining the model 
to our data; instead, we utilized the established parameters derived from 
the MICCAI dataset (Kuijf et al., 2019) and the Neurodegenerative 
(NDGEN) cohort (Zamboni et al., 2013), to optimize the generalizability 
of our results. The TrUE-Net segmentation is a convolutional neural net 
that consists of an ensemble of U-Nets. Briefly, the TrUE-Net algorithm 
uses a 3-layer deep U-Net consisting of 2D networks for detecting WMH 
in each plane. Additionally, the TrUE-Net algorithm uses a loss function 
that considers the anatomical location and distribution of WMHs. To 
compensate for the bias of larger periventricular WMHs, deep WMH 
were up-weighted to favor finding small lesions and reducing false 
negatives. The TrUE-Net algorithm includes a weighted map that in
crease the likelihood of WMH selection outside PVWMH in order to 
identify small deep WMH. Further details can be found in the TrUE-Net 
publication cited in the manuscript (Sundaresan et al., 2021). We 
selected the recommended threshold of 0.5 from the final probabilistic 
map to evaluate the model performance. 

2.5. LST 

The lesion segmentation algorithm toolbox includes two separate 
algorithms, lesion growth algorithm (LGA, Schmidt et al., 2012) and 
lesion prediction algorithm (LPA, Schmidt, 2017). 

The LGA algorithm needs both T1 and FLAIR images. An initial lesion 
probability map is produced by combining FLAIR intensities and T1 
images segmented into three main tissue classes (CSF, GM and WM). 
This map is then binarized and lesions were treated as seeds and sub
sequently grown based on surrounding voxel intensity on FLAIR. The 
toolbox includes a routine to determine the best initial threshold for the 
seed map, but in order to not bias the model the default value of 0.3 was 
used. Masks were then binarized at an a-priori threshold of 0.5. 

LPA uses parameters from a high dimensional logistic regression 
model to estimate the probability of each voxel being a lesion, with 
lesion belief maps based on FLAIR intensity and tissue classification 
incorporated as a covariate; a spatial covariate is also included. The 
established logistic regression was trained on binary lesion maps of 
multiple sclerosis patients We did not train the model in our data and 
used the established training parameters. A recommended threshold of 
0.5 was then used to create the binary mask from the lesion probability 
maps. 

2.6. Freesurfer 

FreeSurfer is a widely used software for brain surface mapping and 
morphometry and uses T1-weighted images to identify white matter 
hypointense lesions. The software uses a spatial intensity gradient across 
all tissue classes to identify WM hypointensities. 

2.7. Sysu media (SM) 

This algorithm ranked 1st in the evaluations done on the WMH 
Segmentation Challenge, MICCAI 2017. To avoid biasing the results we 
used the parameters set by the MICCAI training dataset and did not re- 
train the model on our data. Sysu Media is an ensemble of 3 fully con
volutional U-net like structures. Original training model also included 
data augmentation and a loss function. A final post processing removes 
any lesions detected in the first and last 1/8 of the slices in order to 
exclude any unreasonable lesion detections. The final lesion probability 
mask is then binarized at the recommended 0.5 to produce a WMH 
lesion map. 

2.8. MarkVCID 

The established MarkVCID WMH segmentation method utilizes a 
Bayesian regression by creating a four-tissue segmentation based on the 
multimodal T1-weighted and FLAIR images. Each voxel is converted to a 
probability value that pertains to the likelihood of being a WMH lesion. 
Standard cut-offs were applied to create a binary mask as previously 
defined (Maillard et al., 2022; DeCarli et al., 2013). 

2.9. Statistics 

Global WMH volumes were computed as the sum of all voxels 
designated as lesion in cubic millimeters for each WMH segmentation 
technique. Total WMH volumes followed a log-normal distribution, and 
were thus log10 transformation prior to further analysis. Regional WMH 
volumes were calculated by overlaying the binary lesion masks onto 18 
predefined WM tracts in MNI space (Strain et al., 2017). All voxels that 
resided within the WM tract masks were added together to represent the 
total lesion burden within the corresponding tract. 

The WMH techniques were evaluated with three different criteria: 1) 
consistency in assessing global and regional WMH burden, 2) accuracy 
in identifying lesions, and 3) detection of biological effects—namely the 
association between WMH and age. 1) Pearson correlations were 
computed between the semi-manually segmented WMH volumes and 
each automated WMH technique to assess WMH segmentation consis
tency globally. 2) We calculated Dice coefficients, false positive and false 
negative rates of voxels and clusters using the Bianca_overlap_measures 
function within FSL to assess accuracy for identifying lesions (Udupa 
et al., 2006). In addition, we calculated the average Hausdorff distance 
which evaluates the lesion boundaries between the reference standard 
(MSIT) and the respective WMH segmentation method (Aydin et al., 
2021; Taha and Hanbury, 2015). As the focus of this paper is on 
TrUE-Net we evaluated the overlap and distance measures computed for 
TrUE-Net compared to every other technique using a Wilcoxon 
signed-rank test. 3) Pearson correlations were conducted for each 
technique comparing WMH volumes (global and regional) to age, as the 
most readily available and highly established correlate of WMH burden. 
In a subsequent analysis we evaluated the reliability of each technique 
for quantifying WMH burden in young and elderly individuals with a 
cut-off of 50 to define the two groups. As WMH can differ across gender 
similar analyses were performed on this demographic variable as well. 
The correlation coefficients for each WMH technique with age and MSIT 
were then compared. To ascertain the strength of the correlations be
tween the three techniques we calculated the test of the difference be
tween two dependent correlations (Lee and Preacher, 2013). 

3. Results 

3.1. Demographics 

Among the 160 individuals, 14 had cognitive impairment/dementia 
(Clinical Dementia Rating®, CDR®>0), including 11 who had AD 
pathological levels of PET amyloid and 3 who were PET amyloid 
negative. Mean age was 63.7 ± 13.7 years; 93 of the participants were 
female and 67 were male. Participants included 53 participants without 
significant WMH according to neuroradiology assessment (mean age 
51.9 ± 13.8 years), 78 had mild and 26 had moderate WMH burden 
(mean ages of 67.4 ± 9.3 and 74.6 ± 7.4 years, respectively). Another 7 
participants had severe WMH burden (mean age of 74.1 ± 8.8). Details 
of demographic characteristics subdivided by qualitative WMH burden 
are available in Table S1. 

3.2. MSIT ratings 

For the MSIT technique, both segmentation raters achieved an 
average DICE coefficient that exceeded our established cutoff of 85 % 
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with the expert rater (90 % and 88 %) and between each other (87 %). 
The median DICE for each inter-rater reliability assessment was 94 %. 
The average intra-rater reliability agreement exceeded 90 % for each 
rater. These DICE percentages are similar to prior publications that have 
used similar semi-manual tracing techniques (Hubbard et al., 2016, 
2017). 

3.3. Method time 

On average (based on work time divided by number of scans), the 
MSIT technique per subject took approximately 25 min of manual effort 
to complete, though this varied significantly according to the degree of 
WMH burden. The MarkVCID technique took approximately 120 min of 
computing time, whereas TrUE-Net and both LST techniques needed 
approximately 2 min to complete, and computing time for SM was 3 
min. Each of these times exclude preprocessing time of about 15 min per 
scan for MarkVCID and TrUE-Net and 7 min for SM; reorientation of T1 
and FLAIR scans for the LST algorithms took less than a minute per scan. 

3.4. WMH frequency maps 

All WMH frequency maps were created in template space for each of 
the WMH segmentation strategies (Fig. S1). In general, each segmen
tation map revealed higher frequency of WMH in similar regions, 
particularly along the anterior and posterior horns of the lateral ven
tricles. Visually, the MSIT technique produced the highest WMH fre
quency but the LPA had the largest distribution. TrUE-Net and SM 
reported the lowest WMH burden compared to all the other methods. 
Anatomically, all techniques showed modest WM coverage but the LST 
methods and MarkVCID technique labeled regions of the septum, and 
the hippocampal commissure as WMH (Fig. S1). 

3.5. Correlation among WMH segmentation methods 

All WMH segmentation methods strongly correlated with MSIT for 
log-transformed global WMH volumes across participants with correla
tion coefficients ranging from 0.45 (SM) to 0.96 (TrUE-Net) (Fig. 1). 

Although all techniques associated MSIT, the correlation coefficient for 
TrUE-Net was significantly stronger than all other techniques (p < 0.001 
all). Individuals that contained fewer WMH revealed more variability 
across most of the WMH techniques. 

3.6. Reliability 

Most techniques revealed low Dice values (Table 1) compared to the 
MSIT output (Fig. 2). In comparison to TrUE-Net the LST and Freesurfer 
methods had significantly higher DICE but the SM had significantly 
lower reliability (Table 1). Similar results were observed for the 
Matthew correlation coefficient (MCC) metric (Fig. S2) with the LPA 
showing greater reliability with MSIT. However, TrUE-Net revealed 
significantly better Hausorff distance values than all other techniques 
except for LPA (Fig. 3). See Table 1 for statistical comparisons. 

With MSIT as the reference standard, TrUE-Net demonstrated very 
few false positive voxels (Fig. 4) and clusters (Fig. S3) but relatively high 
number of false negative voxels (Fig. S4) and clusters (Fig. S5). In 
contrast, LPA had a relatively lower false negative rate compared to all 
other techniques but also had a high false positive rate. When analyzed 
within WM tracts of interest, TrUE-Net and LPA demonstrated similar 
amount of WMH burden across all WM tracts. Across all techniques 
higher variability was visually observed in the forceps major, forceps 
minor, and fronto-occipital fasciculus tracts (Fig. S6). Similarly, as 
observed with the global metrics TrUE-Net consistently underreported 
the amount of WMH within each track in reference to MSIT. However 
greater subject variability was visually observed for other techniques. 
SM and LGA methods did not perform as well when evaluating WMH 
burden within WM tracks suggesting a lack of focal reliability. 

3.7. Correlation with demographic variables 

All techniques demonstrated strong positive correlations between 
global WMH burden and age (Fig. S8) the highest being for MSIT (r =
0.71, Fig. S7). The TrUE-Net (r = 0.7, respectively) correlation coeffi
cient was significantly higher compared to the other automated WMH 
techniques (MarkVCID p = 0.031; FreeSurfer p = 0.029; LPA p = 0.028; 

Fig. 1. Global WMH volume for each participant was computed as the summation of all segmented voxels (mm3) and was log10 transformed for normalization. 
Pearson correlation was calculated between each WMH segmentation technique with MSIT as the ground truth. All techniques showed a high correlation with MSiT, 
and increased variability in lower lesions burdens. (Lines represent linear correlation with shaded bars reflecting standard errors). 
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SM p < 0.001) except for LGA, and showed a similar association when 
compared to the reference standard MSIT (p = 0.431). Regional WM 
track associations with age revealed similar findings for TrUE-Net, LPA, 
MSIT, and FreeSurfer. However, MarkVCID had weaker associations in 
the cingulum and LGA and SM showed weaker relationships among 
several WM tracks (Fig. 5). Dichotomizing the individuals into young 
(<50) and elderly (≥50) revealed similar findings of reliability as 
observed across the entire cohort. All techniques performed better in 
reference to MSIT values in the elderly cohort compared to the younger 
cohort (Figs. S9–S11). The LPA technique performed the best in terms of 
overall Dice values but TrUE-Net had the lowest false positive rate for 
both elderly and young individuals. Performing similar analyses across 
gender revealed comparable reliability for most techniques except for 
the sysu media that was less reliably for males (Figs. S12–S14). 

4. Discussion 

The aim of our study was to evaluate the consistency, accuracy, and 
strength of the TrUE-Net method compared to other established WMH 
techniques along with a semi-manual reference standard and a biolog
ical standard. We specifically avoided retraining any of the algorithms to 
better test their “out-of-box” efficacy. In this context, TrUE-Net corre
lated best with the reference standard MSIT, produced minimal false 
positives albeit with greater false negatives, and detected high associa
tions between WMH burden and age. Moreover, TrUE-Net was compu
tationally efficient. However, the potentially resistance of TrUE-Net to 
different FLAIR acquisition parameters is a particularly valuable feature, 
likely resulting from its training using a wide variety of FLAIR sequences 
and tri-planar decomposition of the data. Altogether, these results sug
gest that TrUE-Net is highly suited for WMH segmentation in large and 
small data sets. 

A “gold standard” for WMH segmentation is not well-defined (Van
derbecq et al., 2020), and it is difficult to determine where to mark a 
boundary around WMH. This is in part due to the partial volume effects 
occurring at the irregular margins of WMH, which might themselves be 
smaller than the resolution of the MRI sequence, and in som cases might 
also be due to a gradient of signal change at the boundary. Nonetheless, 
manual segmentation is often used as a reference standard and has been 
shown to be superior to automated segmentation across different per
formance parameters (Commowick et al., 2018). Indeed, our 
semi-manual segmentation method (MSIT) also found the strongest 
WMH to age associations. However, manual segmentation is highly 
labor intensive, dependent like other methods on arbitrary threshold 
selection, and vulnerable to inter-study bias. 

In our comparison to reference standard MSIT WMH volume esti
mates, we observed relatively low Dice similarity coefficients for all 
WMH segmentation methods except notably for LPA. The Dice coeffi
cient is a common metric for defining similarity between two segmen
tation techniques but has been subjected to increased scrutiny in the 
field. The Dice coefficient has a known bias towards true lesion voxels 
and is not adquately by correct identification of non-lesion voxels (Taha 
and Hanbury, 2015). The percentage of false positives was dramatically 
reduced between TrUE-Net and MSIT compared to the other WMH 
segmentation techniques, suggesting that the low Dice coefficient for 
TrUE-Net resulted from a high false negative rate, i.e., TrUE-Net iden
tified less WMH as compared to MSIT. Based on our findings we 
encourage future studies to evaluate the FDR or FNR directly in addition 
to DICE or measures that incorporate both (e.g., Hausdorff distance and 
MCC). 

Indeed, our data shows that only focusing on DICE performance may 
unjustly favor techniques that sacrifice sensitivity over specificity. This 
confound was observed in the LPA mask that yielded a significantly 
higher DICE than TrUE-Net in association with MSIT. However, TrUE- 
Net far surpassed LPA in terms of false positives and specificity. More
over, this increased specificity of TrUE-Net is further reflected in a 
stronger biological signal in terms of the relationship between WMH and Ta
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age, which was significantly weaker with LPA. This does not suggest that 
methods that weight specificity over sensitivity will always produce 
stronger results because MSIT associated with age just as strongly as 
TrUE-Net. Accordingly, the sacrifice that LPA makes to increase the 
sensitivity and thereby inflate reliability metrics like DICE may actually 
produce noisier outcomes and potentially reduce biological relevance. 
Accordingly, TrUE-Net may have innate advantages on identifying 
biologically relevant global or regional WMH values compared to other 
techniques that sacrifice specificity over sensitivity. 

WMH severity is commonly calculated as a single global value but 
recent studies have suggested that the spatial pattern of WMH can be 

disease specific (McAleese et al., 2021). The WM tract analysis was thus 
conducted to assess the reliability of the WMH segmentation techniques 
within different regions. Tract size is not a factor in this analysis as the 
goal was to evaluate the pattern across tracts among WMH segmentation 
methods and not the level of burden within an individual tract. Inter
estingly, our findings suggest some variability among the different tracts 
in comparing TrUE-Net with MSIT but Bayesian methods in particular 
were far less reliable at regional burden across all tracks as opposed to 
the global burden. This suggests that differences in regional perfor
mance is indeed a concern when comparing WMH segmentation 
methods and should also be considered when evaluating segmentation 

Fig. 2. Dice similarity coefficient between the automated techniques and MSIT as the ground truth. Box plots represent the median and quartile ranges for each WMH 
segmentation association with MSIT. (Lines represent a Loess function with shaded bars reflecting standard errors). 

Fig. 3. Average Hausdorff distance values for each WMH segmentation technique. Box plots represent the median and quartile ranges for each WMH segmentation 
association with MSIT (Lines represent a Loess function with shaded bars reflecting standard errors). 
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performance in the future. 
It is important to restate that we did not train TrUE-Net or SM on our 

data set, which would almost certainly improve their performance on 
the metrics assessed in this study. This was done deliberately to assess 
the generalizability of these techniques for any dataset despite cohort 
size. This innately provides more stringent criteria on the machine 
learning techniques over others that incorporate subject specific infor
mation for producing WMH segmentation maps. Nevertheless, TrUE-Net 
performed relatively well compared to the other techniques. 

There are some limitations to our study. The AMBR dataset includes 
sequences not routinely performed and/or available in all clinical set
tings. The AMBR data set is comprised of a large data set with varying 
WMH severity levels but the number of severe WMH cases are limited 
and therefore our findings may not generalize to more severe degrees of 
WMH burden. We were unable to preprocess every technique with the 
exact same tools, which may have introduced additional bias. However, 
the decision to alter the preprocessing was to maximize the number of 
individuals for each technique that would pass our quality control 

Fig. 4. Overlap measures for each WMH technique were computed as the number of voxels incorrectly labeled as lesion (false positive) compared to MSIT divided by 
the total number of WMH voxels. All WMH values were log10 transformed (mm3). (Lines represent a linear function with shaded bars reflecting standard errors). 
TrUE-Net showed consistently lower false-positive voxels compared to all other techniques. 

Fig. 5. Regional age correlation with WMH volumes and bootstrapped 95 % confidence intervals were computed within individual WM tracts. (Dots represent 
bootstrapped Pearson correlation values, and the bars show the 0.025, and 0.975 bootstrapped confidence intervals. Each color represents different segmenta
tion techniques.). 
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checks for evaluation. In order to avoid suboptimal results from specific 
techniques due to preprocessing requirements, we adapted the order or 
inclusion of the brain extraction and bias field correction. Although 
manual segmentations are typically used as reference standards for 
estimating segmentation reliability this can still introduce bias. To 
address these concerns, we used age as an unbiased measure of a known 
biological correlate of WMH burden. Although age is not the only known 
biological source it is a consistent finding among prior work and based 
on our results we believe it was an appropriate unbiased reference 
metric for segmentation technique evaluation. We did not determine the 
effects of other demographic or biological factors aside from age, as 
these are being reserved for more detailed analyses in the future. 
Furthermore, the association with age could have been affected by other 
factors and further validation studies are required. Finally, this study 
only investigated cross-sectional data; future longitudinal studies are 
underway. 

5. Conclusion 

Compared to a semi-manual reference standard segmentation tech
nique, TrUE-Net demonstrates high accuracy and reliability in identi
fying WMH and is also computationally efficient. Though currently 
conservative in defining WMH boundaries, TrUE-Net is well suited to 
large and potentially mixed datasets for estimating WMH burden at the 
global and regional level. 
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