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aDepartamento de Qúımica Módulo 13, Universidad Autónoma de Madrid, 28049
Madrid, Spain

bInstituto Madrileño de Estudios Avanzados en Nanociencias (IMDEA-nanociencia),
Cantoblanco 28049 Madrid, Spain

Abstract

Diffraction experiments of atoms and molecules under fast grazing incidence

conditions have opened a new field in surface science. This experimental ef-

fort calls for complementary theoretical studies, which would allow a detailed

analysis of experimental data. Here, we have analyzed the ability of classical

dynamics simulations to reproduce experimental results. To perform this

study, a DFT (Density Functional Theory) based potential energy surface,

describing the interaction between a H atom and a LiF(100) surface, has

been computed. Diffraction probabilities have been simulated by means of a

classical binning method. Our results have been found to be in qualitative

good agreement with recent experimental measurements.
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1. Introduction

Since its theoretical prediction [1, 2], and especially, since the first inde-

pendent experimental measurements few years later [7, 8], the diffraction of

atoms and molecules from surfaces under fast grazing incidence (FGI) con-

ditions has attracted much attention (see Ref. [10] and references therein),

mainly due to its potential use as a surface analysis tool.

As already discussed in the literature [2, 8, 11, 12], the physical mech-

anism behind this phenomenon is the strong decoupling between the fast

motion parallel to the surface, and the slow motion normal to it. Due to

the grazing incidence conditions, the potential felt by the projectile is peri-

odic (or quasi-periodic). If we apply the perturbation theory to the case of

a classical particle moving on a periodic potential [13], it can be seen that

the parallel momentum change along the incidence direction x is given by

∆Kx = − 1
vx

∫ a

0
dx∂V (x,y)

∂x
= 0, a being the parameter periodicity of the poten-

tial along the incidence direction, V the potential felt by the projectile, and

vx its velocity. In contrast, the parallel momentum change along the perpen-

dicular direction, y, is given by ∆Ky = − 1
vx

∫ a

0
dx∂V (x,y)

∂y
6= 0. Therefore, the

change of the wave vector along this direction is zero (or almost zero). Thus,

any significant change of the parallel wave vector (K), induced in the pro-

jectile when approaching the surface, is due to a transfer of momentum from

the slow motion, normal to the surface, to the motion parallel to the surface,

and perpendicular to the incidence direction. At this point, it should be

remembered that diffraction occurs whenever the change of the parallel wave

vector (Kf -Ki) coincides with a reciprocal lattice vector (Gn,m), Ki and Kf

being the initial and final parallel wave vector, respectively. And that the de
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Broglie wave length associated with the slow normal motion (λ = 2π/k⊥) is

of the order of magnitude of Gn,m, which allows the observation of diffraction.

Diffraction under FGI conditions has been already observed for many

different systems, including atomic (Ar, Ne, He and H) and molecular (H2)

projectiles, and a wide variety of surfaces [10]. First measurements were

performed in 2007 on insulators, LiF(100) [7, 8] and NaCl(001) [8, 14]. At

that time, it was unclear whether diffraction from metal surfaces could be

measured, due to electronic excitations. But one year later, first diffrac-

tion measurements from a metal surface were published [15]. Since then,

grazing incidence experiments have been performed in a wide diversity of sys-

tems: He, Ne, Ar, N/KCl(001) [16]; He/Ni(110) [17]; He, Ar/Al(111)[18]; He,

H2/Mo(112) [19]; He/Ag(110) [20]; He/monolayer of silica in Mo(112) [21];

He/c(2 × 2) reconstructed ZnSe(001) [22]; He, H2/c(2×2)S-Fe(110) and he,

H2/c(1×3)O-Fe(110) [23]; He/c(2×4)O-Mo(112) [24]; H/Al2O3(112̄0) [25];

H, He/MgO(001) [26]. However, diffraction of H and, in particular, He atoms

from LiF(100) is still the most studied system [27, 28, 29, 30, 31, 32]. Among

theses experimental studies, it is worth mentioning the study of decoherence

induced by electronic excitations carried out by Winter et al.[31, 32] for H

and He/LiF(100). They have shown, on the one hand, that electronic ex-

citations are far more important for H than for He atoms, in contrast to

previous studies for slow projectiles scattered from metal surfaces [33]. And,

on the other hand, they have shown that, even in the case of H atoms, the

decoherece induced by the electronic excitations in the scattering process is

not strong enough to prevent diffraction.

This experimental effort has inspired a number of theoretical studies.
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For example, Ruiz et al. [34, 35] have studied the momentum and the en-

ergy transfer between the intramolecular degrees of freedom (DOF’s) in the

quasiresonance region, using classical trajectory calculations and a diatom-

rigid surface collision model. Classical trajectory calculations have also been

used to study classical rainbow angles [16]. In this latter study, Hartree-Fock

based pair potentials were employed. But, subsequent semiclassical studies,

using DFT (density functional theory) based potentials, have shown that su-

perposition of interatomic pair potentials may not be adequate to describe

atom/surface interactions under FGI conditions [19, 18]. Schüller et al. [26],

using a semiclassical approach, have shown that potentials based on superpo-

sition of individual Hartree-Fock pair potentials describe fairly well classical

scattering phenomena, whereas DFT based potentials are needed to describe

diffraction for normal incidence energies below 0.1 eV. Angular distributions

and interference structures have been investigated by means of the surface

eikonal approximation [36, 29], and very recently [37, 20] by using a three-

dimensional (3D) potential energy surface (PES), obtained by applying the

corrugation reducing procedure (CRP) method to a set of DFT data points.

Mason et al. [38] have developed a theory based on quantum-mechanical

transition rates, aiming to study thermal effects. These thermal effects have

also been studied using a quantum trajectory Monte Carlo method [28, 30].

Here, we have analyzed to what extent classical dynamics can be used to

analyze experimental measurements of scattering (and diffraction) of atoms

from surface under FGI conditions. The reliability of our study is supported

by previous studies, performed for molecular diffraction at thermal and quasi-

thermal energies [3, 4, 5, 6, 48, 50], showing that a classical binning method,
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proposed for the first time by Bowman et al. [3, 4], is able to reproduce

qualitatively quantum theoretical and experimental diffraction peaks. The

binning method should work better under FGI conditions, because the paral-

lel momentum change (respect to the total momentum) leading to diffraction

is smaller than in the case of thermal energies.

2. Theoretical approach

Taking advantage of the different time scales of the nuclear and elec-

tronic motions, we describe the interaction between the atoms and the sur-

face within the Born-Oppenheimer approximation (BOA). The validity of the

BOA is supported by recent experiments [31] showing that, although there

are electronic excitations inducing decoherence in the system, they neither

suppress completely nor modify the diffraction patterns. In fact, in Ref. [31]

it was shown that diffraction can be observed experimentally for total ener-

gies (ET ) up to 1 keV and incidence angles (θi) up to 1.7 deg. -see Fig. 1

(b) for the definition of the diffraction angles. In Ref. [31], it was also shown

that diffraction patterns could be recorded for higher ET values (up to ≈ 1.5

keV) using smaller θi values.

The 3D PES, describing the electronic structure of the system, has been

computed by applying the CRP method of Busnengo et al. [39] to a set

of DFT-GGA (density functional theory within the generalized gradient ap-

proximation) data. Within the CRP scheme, the 3D PES (V3D) is written

as:

V3D(R) = I3D(R) +
n∑

i=1

V Li
1D(ri) +

n∑

i=1

V F
1D(ri), (1)

where R represents the Cartesian coordinates of the H atom over the surface
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and ri the distance between the H atom and the Li or F atom. The smooth

I3D function has been interpolated over Z using third-order cubic splines, and

over (X,Y ) using a symmetry adapted Fourier expansion. The DFT-GGA

data set contains 510 single points energy values, computed over the six sites

shown in Fig. 1 (a). For each site, 85 DFT single point energies for Z values

between -1.16 Å and 5.45 Å have been evaluated. The overall errors in the

fitting procedure are found to be smaller than 1%. DFT calculations have

been performed with the package VASP [40, 40, 41]. In applying the GGA,

the PW91 functional [42] has been used. The PAW (projector augmented

wave) method [43] is used to describe the ion cores. And to model the system

adsorbate/substrate a five-layer slab and a (2 × 2) surface unit cell have been

used. To avoid artifacts caused by the use of periodic boundary conditions

in the direction perpendicular to the slab, a vacuum layer of 20 Å has been

placed between the slabs in the z direction. The plane-wave expansion has

been limited by a cutoff energy of 800 eV, and a 5 × 5 × 1 k-point grid

has been used to sample the Brillouin zone. Using these parameters, the

lattice constant (see Fig 1) has been found to be 2.88 Å, in good agreement

with previous theoretical results [30, 44] and with the experimental value

of 2.84 Å [45]. The interlayer distance after relaxation has been found to

be 1.98 Å, the top-most layer presents a rumpling of 0.065 Å, with the F−

ions displaced outwards and the Li+ ions inwards, in good agreement with

previous theoretical calculations [46, 47, 30].

In Fig. 2 we display several 2D(x,y) cuts showing the characteristics of the

interpolated 3D-PES. From this plot it can be seen that far from the surface

(Z ≥ 1.66 Å) the potential over the F (VF
1D) ion is higher than over the Li

6



(VLi
1D) ion. For distances around Z=1.5 Å, both potentials are very similar.

Closer to the surface (1.33 Å ≤ Z), VLi
1D > VF

1D. When the H atom reaches

shorter distances Z ≤ 0.6 Å (do no show in Fig. 2) VF
1D becomes higher than

VLi
1D once again. The corrugation complexity of this PES is reflected in the

diffraction patterns, as we discussed in Sec. 3.

To study the scattering of H atoms from LiF(100), we have performed

classical calculations [48, 11]. Within the classical dynamics framework, a

classical trajectory is computed by solving the Hamilton equations of mo-

tion. The classical scattering probability as a function of the polar angle,

θi, (see Fig. 1 (b)), and the incidence energy (ET ) is calculated as an av-

erage over 15000 trajectories, which ensures low statistical errors. But, in

order to compare our theoretical simulations with experimental measure-

ments, diffraction probabilities have to be evaluated. Since diffraction is a

quantum phenomenon related to discrete changes of the parallel wave vec-

tor, in principle, quantum calculations would be needed. However, as already

shown in the case of diffraction of molecules at low incidence energy [3, 4, 49],

molecular and atomic diffraction can be qualitatively evaluated by means of

a classical binning method. In this case, the intensity of a given diffraction

peak (n,m) is evaluated as the fraction of classical trajectories in which the

atoms scatter with a parallel momentum change (∆P||=~K) contained in the

2D Wigner-Seitz cell of the (n,m) lattice point in reciprocal space (see Fig.

3). In particular, this method has shown to be able to mimic fairly well the

relative intensities of the experimental diffraction spectra of H2/Pd(111) [48],

H2/Cu(111) and H2/Cu/Ru(0001) [50].
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3. Results and discussion

In order to test the classical binning method, a detailed comparison be-

tween experimental and theoretical simulated diffraction spectra have been

performed. In Fig. 4 (b) we show the diffraction pattern of H/LiF(100) for

ET =0.8 keV and θi=1.48 deg. obtained by Winter et al. [10]. This spectrum

shows, additionally to the specular peak, first and second order peaks. Fur-

thermore, the first order peaks are more intense than the specular one. Our

classical theoretical simulations, displayed in Fig. 4 (a), show the same trend,

i.e., five peaks are present in the spectrum, and the first order peaks are more

intense that the specular one, which supports the suitability of our method.

At this point, it is should be noticed that in order to compare with this

experimental spectrum, our delta-shape theoretical diffraction probabilities

have been convoluted using a Gaussian function.

The above comparison is merely qualitative, a more quantitative compar-

ison is shown in Fig. 5. In this figure we compare our classical results with

the diffractogram obtained by Rousseau et al. [9] for diffraction of H atoms

along the < 100 > direction. This experimental spectrum shows that the

first order peaks are more intense that the specular one, for a normal energy

Ez=300 meV. From this figure we observe that our theoretical calculations

reproduce the experimental results with a shift of 100 meV. As it could be

expected, classical diffraction probabilities can not reproduce quantitatively

the experimental probabilities, but they are able to reproduce the experimen-

tal trend. This would be more clearly seen if a set of experimental results

for different normal energies were available.

Although, to our knowledge, experimental data as a function of the nor-
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mal energy have not been systematically recorded for H/LiF(100), we show

this study in Fig. 6. In this figure we have displayed a series of theoret-

ical diffractograms as a function of the normal energy, for a total energy

(incidence angle) between 1.0 keV (0.81 deg.) and 2.0 keV (1.21 deg.), for

diffraction along the crystallographic directions < 110 > and < 100 >. At

this point, it should be pointed out that, to avoid spurious results on the

simulated diffraction probabilities due to the classical rainbow effect, [51],

classical trajectories with a final azimuthal angle φ ≥ φ+
CR − 0.005i deg. or

φ ≤ φ−
CR + 0.005 deg. are not taken into account during the binning proce-

dure. In these two equations φ+
CR and φ−

CR represent the positive and negative

rainbow angle, repectively (see 6 and 7).

From Fig. 6 several interesting properties of this system are observed:

(i) The normal energy for which the first order peaks become higher than

the specular peak is smaller for incidence along the < 100 > direction, in

good agreement with experimental results by Rousseau and et al. [9]. These

authors have shown that along the < 110 > direction, the specular peak is

still more intense than the first order ones for Ez=560 meV; (ii) The number

of diffraction peaks, along the < 100 > direction is higher than along the

< 110 > direction, despite the fact that the parallel momentum change

required to excite a diffraction peak along the < 110 > direction is smaller

than the one required to excite a peak along the < 100 > one. This latter

result also agrees with the experimental findings [9]. Thus, both experiment

and theory agree in the fact that the corrugation felt by the atoms is higher

along the < 100 >. It is also worthy to mention that the experimental

diffraction spectra recorded for H2 and He show, as expected, more diffraction
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along the < 110 >. The unexpected results obtained for H/LiF(100) reveal

the complexity of the system, which is essentially captured by the classical

binning method.

The complexity of H/LiF(100) may be understood by turning our at-

tention to the geometrical structure factor, because the amplitude of the

diffraction peaks, for polyatomic surfaces, depends on it. The geometrical

structure factor can be written as a function of the atomic form factors as:

SG = fLi(G)eiGdLi + fF (G)eiGdF (2)

where fLi and fF are the atomic form factors for Li and F ions, respectively.

G = nb1 + mb2 represents the reciprocal lattice for LiF(100), and dLi and

dF are the atomic basis set vectors. From Eq. 2 we see that SG is equal to

fLi + fF if n+m is an even number, and equal to fLi − fF if n+m is an odd

number. This equation reveals the first remarkable difference between the two

incidence directions. All the diffraction peaks observed along the < 100 >

direction correspond to n + m=even, i.e., for all them SG = fLi + fF . On

the other hand, diffraction along the < 110 > direction shows peaks with

n + m even and odd alternately, which may explain the stronger modulation

on this direction. It should be also remembered that the atomic form factors

depend on the electronic density, i.e., there is a close relationship between

the form factors and the corrugation of the PES, which varies quite a lot as

a function of the distance to the surface (see Fig. 3). Thus, depending on

the classical turning point (zav), fLi + fF could be similar to fLi − fF , if fLi

>> fF or fLi << fF , or very different, if fLi ≈ fF . This phenomenon could

explain the results displayed in Fig. 6. At this point, it should be noticed

that this explanation holds independently of the projectile. And, that the
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different behavior observed for different proyectiles depends on the specific

values of the form factors, and therefore, on the corrugation of PES for each

projectile/surface system.

For the sake of completeness, in Figs. 6 and 7 we have also included the

raw classical reflection probabilities, which show the classical rainbow peaks.

Interestingly, the angular distributions obtained for the < 110 > direction

show four rainbow peaks, whereas, for the < 100 > direction, they only

show two. This is a consequence of the average periodic potential: while in

the former case, the potential exhibits two different maxima, over the F-F

and Li-Li rows (see Fig. 2-4, Ref [10]), in the latter case, it only exhibits

one maximum, over the F-Li rows, and one minimum. Furthermore, in the

case of the < 110 > direction, only two rainbow peaks are observed for the

incidence conditions, ET = 1.3 keV, θi = 1.07 deg. (see Figs. 6 and 7),

for which the classical turning point (zav) is located in a region where the

potential over the F atoms is similar to the potential over the Li atoms (see

Fig. 2).

Finally, we have also corroborated that changing H by D atoms in our

classical simulations leads to entirely different diffraction patterns (see Fig.

7). At the same energy, a D atom is slower than a H atom, and therefore, its

de Broglie wavelength is smaller, which implies that, for the same energy, the

diffraction spectra measured for deuterium present a different peaks distribu-

tion than the ones measured for hydrogen. This behavior is observed in our

classical simulations (see Figs. 6 and 7). Unfortunatelly, to our knowledge,

D/LiF(100) experimental diffractograms are not available in the literature.

Those experimental measurements would help us to futher assay our classical
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binning method.

4. Summary

In this manuscript we have analyzed to what extent classical dynamics

can be used to analyze experimental results on scattering of atoms under FGI

conditions. To perform this study we have used an accurate potential energy

surface (PES) built by interpolation of a DFT data set. We have shown that

diffraction probabilities obtained using a classical binning method reproduce

fairly well the experimental trends. Thus, classical dynamics can be used to

perform coarse analysis, which could be used to lead the quantum dynamics

simulations to the systems and incidence conditions of most interest. These

coarse analyses will be even more useful for molecules/surface systems, for

which quantum dynamics simulations are very time-consuming from a com-

putational point of view.
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Figure 1: (a) Schematic representation of the LiF(100) unit cell. Red dots represent the

configurations used to computed the DFT data set. (b) Schematic representation of a

grazing incidence collision of H with a LiF(100) surface. The coordinate system used in

the dynamics is also shown.
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Figure 2: 2D (X,Y) cuts. (a) Z=1.66 Å with a contour level spacing ∆E=0.015 eV, the

thick black line (TBL) represents an energy value of 0.195 eV; (b) Z=1.45 Å with ∆E=0.04

eV and TBL=0.40 eV; (c) Z=1.32 Å with ∆E=0.07 eV and TBL=0.56 eV; (d) Z=1.22 Å

with ∆E=0.1 eV and TBL=0.8 eV; (e) Z=1.10 Å with ∆E=0.15 eV and TBL=1.15 eV.
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Figure 3: Reciprocal lattice of LiF(100). The dotted lines demarcate the 2D Wigner-Seitz

cells around each lattice point. Number within parentheses indicate the corresponding

Miller indices. Numbers within brackets indicate the incidence direction considered in this

work.
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Figure 4: (a) 2D (θf ,ψf ) calculated intensities for the diffraction spectrum along the

incidence direction < 100 > for ET =0.8 keV and θi=1.48 deg. 2D results have been

convoluted with a 2D Gaussian function of width σφ=0.025 deg. and σθ=0.12 deg. to

simulate a typical experimental resolution. (b) Diffraction spectrum measured by Winter

et al. taking from Ref. [10].
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Figure 5: Diffraction spectrum of H/LiF(001) along the < 100 > direction. Red crosses:

Experimental data from Ref. [9]. Dashed and dotted lines: Classical theoretical results,

which have been convoluted with a 1D Gaussian function of width σφ=0.052 deg. to

simulate the experimental resolution. Ez is the normal energy.
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Figure 6: Simulated diffraction spectra for H/LiF(100) as a function of the azimuthal angle.

Left panels: Incidence direction < 110 >. Right panels: Incidence direction < 100 >. Back

(green) solid (dotted) line: The results have been convoluted with a Gaussian function

of width σ=0.052 deg. (0.02 deg.) to simulate the experimental resolution of Ref. [9].

Ez (ET ) represents the normal (total) energy, θi the polar incidence angle, and zav the

classical turning point. Red dashed line: classical reflection probabilities ×10 without

bining.

22



0.00

0.20

0.40

0.60

0.80
(0,0)

(0,1)(0,1
−

)

A) Ez = 200 meV
     Etot  = 1 keV
     θin  = 0.81 deg
     zav = 1.66 Å

0.00

0.20

0.40

0.60

0.80
(0,0)

(0,1)(0,1
−

)

A) Ez = 200 meV
     Etot  = 1 keV
     θin  = 0.81 deg
     zav = 1.66 Å

0.00

0.20

0.40

0.60

0.80
(0,0)

(0,1)(0,1
−

)

A) Ez = 200 meV
     Etot  = 1 keV
     θin  = 0.81 deg
     zav = 1.66 Å

0.00

0.20

0.40

0.60

0.80

(0,0)

(0,1)(0,1
−

)

B) Ez = 350 meV
     Etot  = 1 keV
     θin  = 1.07 deg
     zav = 1.45 Å

0.00

0.20

0.40

0.60

0.80

(0,0)

(0,1)(0,1
−

)

B) Ez = 350 meV
     Etot  = 1 keV
     θin  = 1.07 deg
     zav = 1.45 Å

0.00

0.20

0.40

0.60

0.80

(0,0)

(0,1)(0,1
−

)

B) Ez = 350 meV
     Etot  = 1 keV
     θin  = 1.07 deg
     zav = 1.45 Å

0.00

0.20

0.40

0.60

0.80

(0,0)

(0,1)(0,1
−

)

C) Ez = 500 meV
     Etot  = 1.3 keV
     θin  = 1.12 deg
     zav = 1.32 Å

0.00

0.20

0.40

0.60

0.80

(0,0)

(0,1)(0,1
−

)

C) Ez = 500 meV
     Etot  = 1.3 keV
     θin  = 1.12 deg
     zav = 1.32 Å

0.00

0.20

0.40

0.60

0.80

(0,0)

(0,1)(0,1
−

)

C) Ez = 500 meV
     Etot  = 1.3 keV
     θin  = 1.12 deg
     zav = 1.32 Å

0.00

0.20

0.40

0.60

0.80

(0,0)
(0,1)(0,1

−
)

(0,2)(0,2
−

)

D) Ez = 650 meV
     Etot  = 2 keV
     θin  = 1.32 deg
     zav = 1.22 Å

0.00

0.20

0.40

0.60

0.80

(0,0)
(0,1)(0,1

−
)

(0,2)(0,2
−

)

D) Ez = 650 meV
     Etot  = 2 keV
     θin  = 1.32 deg
     zav = 1.22 Å

0.00

0.20

0.40

0.60

0.80

(0,0)
(0,1)(0,1

−
)

(0,2)(0,2
−

)

D) Ez = 650 meV
     Etot  = 2 keV
     θin  = 1.32 deg
     zav = 1.22 Å

0.00

0.20

0.40

0.60

0.80

−0.40 −0.20 0.00 0.20 0.40

(0,0) (0,1)(0,1
−

) (0,2)(0,2
−

)

(0,3)(0,3
−

)

E) Ez = 900 meV
     Etot  = 2 keV
     θin  = 1.21 deg
     zav = 1.10 Å

0.00

0.20

0.40

0.60

0.80

−0.40 −0.20 0.00 0.20 0.40

(0,0) (0,1)(0,1
−

) (0,2)(0,2
−

)

(0,3)(0,3
−

)

E) Ez = 900 meV
     Etot  = 2 keV
     θin  = 1.21 deg
     zav = 1.10 Å

0.00

0.20

0.40

0.60

0.80

−0.40 −0.20 0.00 0.20 0.40

(0,0) (0,1)(0,1
−

) (0,2)(0,2
−

)

(0,3)(0,3
−

)

E) Ez = 900 meV
     Etot  = 2 keV
     θin  = 1.21 deg
     zav = 1.10 Å

(0,0)

(1,1
−

) (1
−

,1)

F) Ez = 200 meV
     Etot  = 1 keV
     θin  = 0.81 deg
     zav = 1.66 Å (0,0)

(1,1
−

) (1
−

,1)

F) Ez = 200 meV
     Etot  = 1 keV
     θin  = 0.81 deg
     zav = 1.66 Å (0,0)

(1,1
−

) (1
−

,1)

F) Ez = 200 meV
     Etot  = 1 keV
     θin  = 0.81 deg
     zav = 1.66 Å

(0,0)
(1,1

−
) (1

−
,1)

(2,2
−

) (2
−

,2)

G) Ez = 350 meV
     Etot  = 1 keV
     θin  = 1.07 deg
     zav = 1.45 Å

(0,0)
(1,1

−
) (1

−
,1)

(2,2
−

) (2
−

,2)

G) Ez = 350 meV
     Etot  = 1 keV
     θin  = 1.07 deg
     zav = 1.45 Å

(0,0)
(1,1

−
) (1

−
,1)

(2,2
−

) (2
−

,2)

G) Ez = 350 meV
     Etot  = 1 keV
     θin  = 1.07 deg
     zav = 1.45 Å

(0,0)(1,1
−

) (1
−

,1)(2,2
−

) (2
−

,2)

H) Ez = 500 meV
     Etot  = 1.3 keV
     θin  = 1.12 deg
     zav = 1.32 Å

(0,0)(1,1
−

) (1
−

,1)(2,2
−

) (2
−

,2)

H) Ez = 500 meV
     Etot  = 1.3 keV
     θin  = 1.12 deg
     zav = 1.32 Å

(0,0)(1,1
−

) (1
−

,1)(2,2
−

) (2
−

,2)

H) Ez = 500 meV
     Etot  = 1.3 keV
     θin  = 1.12 deg
     zav = 1.32 Å

(0,0)(1,1
−

) (1
−

,1)
(2,2

−
) (2

−
,2)

(3,3
−

) (3
−

,3)

I) Ez = 650 meV
     Etot  = 2 keV
     θin  = 1.32 deg
     zav = 1.22 Å

(0,0)(1,1
−

) (1
−

,1)
(2,2

−
) (2

−
,2)

(3,3
−

) (3
−

,3)

I) Ez = 650 meV
     Etot  = 2 keV
     θin  = 1.32 deg
     zav = 1.22 Å

(0,0)(1,1
−

) (1
−

,1)
(2,2

−
) (2

−
,2)

(3,3
−

) (3
−

,3)

I) Ez = 650 meV
     Etot  = 2 keV
     θin  = 1.32 deg
     zav = 1.22 Å

−0.40 −0.20 0.00 0.20 0.40

Direction [110]

Azimuthal exit angle φ (deg)

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

Direction [100]

(0,0)(1,1
−

) (1
−

,1)(2,2
−

) (2
−

,2)
(3,3

−
) (3

−
,3)

(4,4
−

) (4
−

,4)

J) Ez = 900 meV
     Etot  = 2 keV
     θin  = 1.21 deg
     zav = 1.10 Å

−0.40 −0.20 0.00 0.20 0.40

Direction [110]

Azimuthal exit angle φ (deg)

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

Direction [100]

(0,0)(1,1
−

) (1
−

,1)(2,2
−

) (2
−

,2)
(3,3

−
) (3

−
,3)

(4,4
−

) (4
−

,4)

J) Ez = 900 meV
     Etot  = 2 keV
     θin  = 1.21 deg
     zav = 1.10 Å

−0.40 −0.20 0.00 0.20 0.40

Direction [110]

Azimuthal exit angle φ (deg)

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

Direction [100]

(0,0)(1,1
−

) (1
−

,1)(2,2
−

) (2
−

,2)
(3,3

−
) (3

−
,3)

(4,4
−

) (4
−

,4)

J) Ez = 900 meV
     Etot  = 2 keV
     θin  = 1.21 deg
     zav = 1.10 Å

Figure 7: Simulated diffraction spectra for D/LiF(100) as a function of the azimuthal angle.

Left panels: Incidence direction < 110 >. Right panels: Incidence direction < 100 >. Back

(green) solid (dotted) line: The results have been convoluted with a Gaussian function

of width σ=0.052 deg. (0.02 deg.) to simulate a typical experimental resolution of Ref.

[9]. Ez (ET ) represents the normal (total) energy, θi the polar incidence angle, and zav

the classical turning point. Red dashed line: classical reflection probabilities ×10 without

bining.
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