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A B S T R A C T   

Optoacoustic (photoacoustic) mesoscopy bridges the gap between optoacoustic microscopy and macroscopy and 
enables high-resolution visualization deeper than optical microscopy. Nevertheless, as images may be affected by 
motion and noise, it is critical to develop methodologies that offer standardization and quality control to ensure 
that high-quality datasets are reproducibly obtained from patient scans. Such development is particularly 
important for ensuring reliability in applying machine learning methods or for reliably measuring disease bio-
markers. We propose herein a quality control scheme to assess the quality of data collected. A reference scan of a 
suture phantom is performed to characterize the system noise level before each raster-scan optoacoustic meso-
scopy (RSOM) measurement. Using the recorded RSOM data, we develop a method that estimates the amount of 
motion in the raw data. These motion metrics are employed to classify the quality of raw data collected and 
derive a quality assessment index (QASIN) for each raw measurement. Using simulations, we propose a selection 
criterion of images with sufficient QASIN, leading to the compilation of RSOM datasets with consistent quality. 
Using 160 RSOM measurements from healthy volunteers, we show that RSOM images that were selected using 
QASIN were of higher quality and fidelity compared to non-selected images. We discuss how this quality control 
scheme can enable the standardization of RSOM images for clinical and biomedical applications.   

1. Introduction 

Raster-scan optoacoustic mesoscopy (RSOM) yields high-quality and 
high-fidelity performance by utilizing broadband ultrasound trans-
ducers in the tens to hundreds of MHz, achieving resolutions in the tens 
of microns or better through millimeters of tissues [1–8]. Despite 
demonstrating new imaging ability, RSOM image quality is sensitive to 
motion, fluctuations of laser intensity and electrical noise [9–11]. Light 
attenuation in tissues and the effects of skin tone on the optoacoustic 
signal may also affect the signal collected and image quality [12,13]. As 
this technology is increasingly considered for clinical handheld appli-
cations, it is critical to pursue strategies that assess the quality of data 
collected and ensure consistency in measurements. Such assessment 
could be used for issuing warnings during the acquisition process, for 
quality control purposes in clinical studies, or for generating datasets of 
consistent quality for training of analysis algorithms [10,11,14]. 

The effect of motion on optoacoustic data has been previously 

studied and can be divided into two groups: periodic displacements due 
to tissue physiology, in particular arterial pulsation and heartbeat, and 
random muscular movement during acquisition [10]. During a given 
measurement, skin displacement normal to the detector surface (vertical 
displacement) in the tens to hundreds of micrometers can be observed 
[10]. We have reported two motion correction algorithms that address 
the effects of motion in RSOM systems [9,10]. Schwarz et al. first 
introduced a motion correction algorithm that relied on segmentation of 
the skin’s melanin layer [9]. Aguirre et al. further studied the origin and 
magnitude of vertical displacements of skin, and proposed an automated 
motion correction algorithm based on cross-correlation functions be-
tween raw data (A-lines or B-planes) [10]. These studies have shown 
that motion can significantly affect image quality and that suggested 
motion correction algorithms can offer marked improvements [9,10, 
14]. Nevertheless, the overall improvement afforded by motion 
correction algorithms varies depending on the number of motion effects 
present in the data [9,10,15–18] and the overall signal-to-noise ratio 
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(SNR). 
In this work we aimed to develop a scheme that could assess the 

quality and uniformity of RSOM datasets and provide an estimate of the 
resulting image fidelity. An implicit goal was to suggest methodology 
that reads all necessary information directly from the raw data so that it 
can be ubiquitously applied to datasets obtained from different experi-
mental systems, without the need of additional measurements requiring 
specialized hardware. While such analysis could also be performed 
directly at the image space, we consider quality extraction from analyses 
of raw data to develop a tool that could be used even during the 
acquisition process and that is independent of the image-reconstruction- 
algorithm. We hypothesized that raw data contains sufficient informa-
tion to extract parameters that describe the quality of the acquisition, 
and that this information could be summarized in a quality assessment 
index (QASIN) for the dataset. To minimize the noise variations, we 
characterized the RSOM system noise level by measuring a common 
phantom, ensuring the system performed consistently for every scan. 
Then we extracted motion variations found in the raw data to suggest a 
QASIN. Subsequently, using simulations, we evaluated the relationship 
of the QASIN to image quality and validated the performance of this 
quality index on RSOM data obtained from 160 measurements on vol-
unteers. We show that while motion-corrected images for QASIN values 
below a certain threshold result in marked image quality improvements, 
the same algorithms do not provide effective correction of data for 
values above the threshold value. We discuss how application of QASIN 
can help ensure high-fidelity data collection and improve the reliability 
of clinical measurements. 

2. Methods 

2.1. RSOM system 

The present study used an in-house RSOM system featuring a 

transducer with broad bandwidth (10–120 MHz) and central frequency 
of 50 MHz. Illumination was provided by a pulsed laser at a wavelength 
of 532 nm with repetition rate of 500 Hz, yielding an optical fluence 
(3.75 µJ/mm2) that is under the safety limit according to the American 
National Standards for Safe Use of Lasers in humans [1]. An optically 
and acoustically transparent plastic membrane (light grey rectangle,  
Fig. 1a) was affixed to the patient’s skin at the region of interest (ROI) 
using surgical tape. The scanning head containing the fiber bundle and 
transducer was brought close to the membrane to position the focal 
point of the ultrasound detector slightly above the skin surface and 
thereby maximize detection sensitivity [1,10]. Two mechanical stages 
(PI, Germany) were used to move the RSOM head. Two mechanical 
stages (PI, Germany) were used to move the RSOM head. The scanning 
head contained water as a coupling medium. Detailed information of our 
RSOM imaging setup has been described in our previous work [1,19]. 

2.2. SNR reference test 

The SNR of clinical RSOM data is primarily affected by light fluence 
attenuation inside tissue, the strength and intensity variations of the 
illumination source and sources of electrical noise [13]. In a previous 
study, we investigated the effect of skin phototype on the SNR of opto-
acoustic signals collected from the human dermis and suggested that 
compensating for signal intensity variations due to melanin content 
could improve the performance of quantitative analysis [12]. 

Herein, we established a reference measurement by attaching a black 
surgical polyamide suture (Braun, Germany, 100 µm in diameter) to the 
transparent membrane used for coupling the RSOM system to tissue 
(Fig. 1). Measurements over the suture provide a consistent measure-
ment which reports on system reproducibility. The suture was scanned 
with 266 × 1 points (step size of 15 µm) in each RSOM scan, over a 
period of 0.2 s. The distance between the RSOM scanning head and skin 
was chosen based on the maximum SNR measured from the suture. The 

Fig. 1. The scanning process of clinical raster-scan optoacoustic mesoscopy (RSOM). (a) Schematic of the RSOM scanning head, containing a 50 MHz ultrasound 
transducer (UT) and two fiber bundle. The head is positioned over the skin, where the region of interest (ROI) is covered with a transparent plastic foil. The reference 
suture for SNR characterization is illustrated as a thick black line. (b) A representative optoacoustic signal of the reference suture acquired at the optimal distance 
between the suture and the RSOM head. The SNR value is calculated as the ratio between peak single intensity and the standard deviation of noise background 
marked by the red rectangle. (c) Motion graph of point measurements acquired at the wrist pulse area from a healthy volunteer. (d, e) Skin surfaces extracted from 
RSOM data: the disrupted surface SD (d) and the smoothed surface SC (e). SD and SC are two dimensions (m×n) with the same size of the recorded RSOM data, m is the 
scanning position number in fast scan (fs) axis and n represents the scanning position number in slow scan (ss) axis. (f) Motion graph calculated by subtracting the 
disrupted surface (e) from the smoothed surface (f). 
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maximum SNR value is taken as the reference value of the suture SNR 
test (RSNR), which characterizes the functional noise level of the RSOM 
system. For every RSOM scan, the SNR of suture signals is first calculated 
and the full RSOM scan begins only when the SNR of the suture signal is 
above RSNR. When the SNR is below RSNR, system components like laser 
energy, or the coupling between the device and the tissue should be 
optimized before starting a full RSOM scan. 

2.3. Quantification of motion 

The noise of the RSOM system is calibrated by the suture reference 
test, achieving a standardized system noise level. Following this, we 

aimed to standardize the quantification of the amount of motion in the 
recorded RSOM data. As we have previously reported [9], the surface 
extraction-based motion correction algorithm is implemented by 
observing disruptions of the strong optoacoustic signals generated by 
the vertical movement of the melanin layer at the skin surface. A cor-
responding three-dimensional map of a skin surface that is disrupted by 
motion (SD) can be generated by aligning the maximum signal intensity 
of each scanning position from the RSOM scan (correlating to the 
melanin layer, see Fig. 1d). The disrupted skin surface can then be 
smoothed to obtain an artificial continuous surface (SC, see Fig. 1e). The 
differences between the two surfaces are assumed to be a result of the 
vertical motion (M) of the skin with respect to the detector: 

Fig. 2. Simulations to determine threshold values of Qmotion for classifying raster-scan optoacoustic mesoscopy (RSOM) images as low- or high-quality. The corrupted 
RSOM datasets are formed by adding artificial motion graphs with different variations to motionless RSOM raw data. (a-c) Three reconstructed maximum intensity 
projection (MIP) images after adding motion graphs (corresponding to labels 1–3 in j and k) to the RSOM raw data without motion correction. (d-f) Corresponding 
reconstructed MIP images after adding motion graphs to the RSOM raw data with motion correction. The images are color-coded to represent the two reconstructed 
frequency bands (red: larger structures in the bandwidth of 10–40 MHz; green: smaller structures in the bandwidth of 40–120 MHz). The skin epidermis (EP) and 
dermis (DR) layers are indicated in (d). (g-i) Comparisons between the added motion graphs (blue) and the corresponding retrieved motion graphs (red). (j) 
Relationship between changes of the contrast-to-noise ratio (CNR) and Mstd of the added motion graphs. (k) Cross-correlation values between the added and retrieved 
motion graphs. Labels 1–3 in (j) and (k) indicate the Mstd values of images (a)-(c).The red dashed lines indicate the determined value of Tstd. Scale bar 500 µm. 
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M = SD – SC                                                                                   (1) 

The three-dimensional maps of motion were transformed into a two- 
dimensional graph (see Fig. 1f) along the scanning time points for 
visualization. The standard deviation (Mstd) and maximum motion 
(Mmax) values of the motion graph were computed to characterize the 
overall motion of the skin. To quantify the motion levels of recorded 
RSOM data, we formulated the following quality assessment index of 
motion (Qmotion):  

Qmotion = Mstd + β*Mmax                                                                  (2) 

The threshold of Qmotion is determined by thresholds of Mstd and Mmax 
(Tstd and Tmax). As a weighting value to balance the contributions be-
tween Mstd and Mmax. β is defined as Tstd /Tmax, which is affected by the 
maximum motion that our motion correction algorithm can handle, and 
is explained in detail in the following section. 

2.4. Simulations to determine thresholds of Qmotion 

RSOM data was recorded with consistent system noise level char-
acterized by the SNR of the suture reference scan. The RSOM data and 
corresponding image quality were further assessed based on whether the 
amount of motion contaminating the data was likely to be less or greater 
than what our motion correction algorithm could handle. In this section, 
we investigated how motion correction algorithms performed for 
different amplitudes of motion and applied simulation studies to 
determine Tstd and Tmax. A base motion graph [blue line in Fig. 2g] was 
extracted from RSOM data acquired over a skin region of 4 × 2 mm in 
the lower arm of a healthy volunteer, where pulse, breathing and 
random motions are mixed, and was then treated as a complex vertical 
motion pattern. Ten artificial motion graphs were generated by multi-
plying weighting values (0.1 to 3 with step size of 0.3) of the base motion 
graph, achieving standard deviations from 0.5 µm to 15 µm indicated by 
the blue stars in Fig. 2j and corresponding maximum motions from 4 to 
120 µm. Then, the artificial motion graphs were added to a motion- 
corrected RSOM image shown in Fig. 2d, obtaining a sequence of 
motion-corrupted RSOM datasets. The motion correction algorithm 
developed by our previous study [9] was then applied to correct the 
motion-corrupted RSOM data. The differences between the added mo-
tions and the retrieved motions from the motion-corrupted data are 
characterized by cross-correlation C(n): 

C(n) = Mn
a ∗ Mn

r (3)  

Where n represents the number of the added motion graphs. Mn
a is the 

nth added motion graph and Mn
r corresponds to the nth retrieved motion 

graph. * is the cross-correlation operator. 
The contrast to noise ratio (CNR) of the motion corrected images was 

calculated to quantify the performance of the motion correction algo-
rithm on the ten motion-corrupted RSOM datasets. We defined CNR as: 

CNR = Ip
/

Sb (4)  

where Ip represents the peak intensity of RSOM features inside the 
reconstructed image. Sb refers to the standard deviation of a background 
region in the reconstructed image. The values of Tstd and Tmax were 
determined based on the decrement of the CNR values, where it dropped 
by 1 dB. According to Eq. 2, the threshold of Qmotion (TQmotion) equals: 
Tstd + β * Tmax. 

2.5. RSOM measurements 

In order to assess physiological motions inside the scanned area, the 
RSOM head was fixed for 5 s as a point measurement, and the vertical 
displacement of the point measurements were calculated based on cross- 
correlation methods from the collected optoacoustic A-line signals [10]. 
A point measurement at the wrist pulse area of a healthy volunteer was 

recorded as depicted in Fig. 1c. An RSOM scan of the lower arm from the 
healthy volunteer was also recorded for the simulations to determine 
Tstd and Tmax, and corresponding TQmotion values as shown in Fig. 2. To 
validate the quality control method, we acquired 160 RSOM measure-
ments at the lower extremities (pretibial area) of 80 volunteers (two 
measurements per volunteer) to evaluate the TQmotion. All measure-
ments were approved by the ethics committee of the Technical Uni-
versity of Munich. For all RSOM measurements, 266 × 135 points were 
scanned in an area of 4 × 2 mm. The scanning time was 70 s. All vol-
unteers were provided with written informed consent. Procedures were 
conducted in accordance with institutional and international guidelines. 

3. Results 

3.1. The SNR reference scan and the quantification of motion in RSOM 
data 

The schematic illustration of the RSOM head is shown in Fig. 1a, 
where the black line indicates the position of the suture. The maximum 
intensity of the suture signals (Fig. 1b) was obtained at the position 
where the suture was located at the focal point of the ultrasound 
transducer, generating a maximal SNR value of 45 ± 0.3 dB (five 
repeated measurements), which is defined as TSNR. Fig. 1c shows motion 
graphs of point measurements at the wrist pulse area (30 ± 5 µm), 
where periodical motions introduced by arterial pulsation were clearly 
resolved. The detected skin surfaces before and after motion correction 
of the RSOM data acquired from the healthy volunteer at the lower arm 
are shown in Figs. 1d and 1e, while the corresponding motion graph 
calculated based on Eq. 1 is depicted in Fig. 1f. The motion graph of the 
RSOM data contained mixed movements induced by arterial pulsation, 
wrist pulse and random muscular movement. Small displacements in the 
range of 10 ± 5 µm were observed in the first 30 s while large motions 
up to 35 ± 5 µm appeared after 40 s of scanning. 

3.2. Threshold determination of Qmotion by simulation study 

Simulations were performed to determine thresholds of Qmotion for 
classifying RSOM scans as low- or high-quality. The first row (Fig. 2a-c) 
shows the motion-corrupted RSOM images, while the corresponding 
motion-corrected images (Fig. 2d-f) are shown in the second row. The 
added motion graphs (blue lines) and the retrieved motion graphs (red 
lines) with different level of motion are depicted in Fig. 2g-i. Similarities 
between the ten added and retrieved motion graphs characterized by the 
cross-correlation values are shown in Fig. 2j. Labels (1, 2, 3) in Fig. 2j 
correspond to the added motion graphs from images in Fig. 2a-c 
respectively. We note that the similarities between the added and 
retrieved motion graphs were reduced with increments of Mstd in the ten 
added motion graphs. The cross-correlation values dropped significantly 
from point 2 to point 3 in Fig. 2j, which correlates with the image quality 
distortion in the motion corrected images as shown in Fig. 2e and f. The 
CNR values of the ten motion corrected images calculated by the ratio 
between the peak image intensity marked by the white arrows in Fig. 2d- 
f and standard deviations of the background area inside the white 
rectangle (Fig. 2d) are shown in Fig. 2k, which show similar changes of 
the cross-correlation values. The Mstd (7 µm) and corresponding Mmax 
values (75 µm) marked by the red dash lines in Fig. 2(j) and (k) were 
selected as the Tmax and Tstd, which was the turning point where the 
cross-correlation value and image contrast (reduced by 1 dB) both 
decreased significantly after point 2. 

3.3. Quality assessment of RSOM datasets based on motion values 

We extracted motion values from a large clinical RSOM dataset ac-
cording to the procedure outlined in Section 2. C and compared them to 
the threshold values determined in Section 2.D. Our goal was to 
demonstrate whether we could identify low-quality scans that could 
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then be excluded to generate a dataset of uniformly high quality, which 
would facilitate quantitative analysis in large clinical studies. For this, 
we validated Qmotion on a dataset of 160 RSOM measurements from the 
lower legs of 80 volunteers (two measurements per volunteer). Fig. 3a,b 
plot the Mstd and Mmax values calculated from the motion graphs of 160 
RSOM scans and corresponding Tstd and Tmax indicated by the red 
dashed lines. The Qmotion values calculated based on Eq. 2 is shown in 
Fig. 3c, where the red dashed line indicates the threshold TQmotion. It can 
be noted that 22 datasets were above the threshold Tstd and 17 datasets 
were above the threshold Tmax. All datasets above Tstd and Tmax were 
identified by the TQmotion value as shown in Fig. 3c. Fig. 3d-i show six 
representative images with Mstd, Mmax and Qmotion values corresponding 
to labels (1− 6) in Fig. 3a-c. Smoothed surface (Sc) of each data are 
displayed in the insets of Fig. 3d-i. It can be seen that the Mstd and Mmax 
values correspond well with the variations of the smoothed surface (Sc). 
The image quality improvement is correlated with the decrease observed 
in Mstd, Mmax and Qmotion values. For example, Fig. 3d,e, corresponding 
to labels 1 and 2 with high Qmotion values, shows markedly low image 
quality where obvious outliers were seen in the smoothed surface. Labels 
3 and 4 corresponding to the images shown in Fig. 3f,g present moderate 
quality with a smoother surface, which had Qmotion values close to the 
threshold lines. Fig. 3h,i corresponding to labels 5 and 6, depict higher 
image quality with both Qmotion values below the threshold values 
compared to Fig. 3d-g. 

4. Discussion 

In this work, we developed a quality assessment index (QASIN) to 
quantify and evaluate motion in order to keep data and image quality 
consistency among different RSOM scans. To do this, we defined the 
derivation of quantities for both the maximum (Mmax) and the standard 
deviation (Mstd) of the motion in a RSOM scan. We then introduced a 
method for determining a threshold for the maximum correctable mo-
tion per scan. These values were validated on 160 RSOM scans of the 
lower legs of volunteers, which showed that the motion artefacts in 
images with Mmax and Mstd above the determined thresholds could not be 
properly corrected, resulting in low image quality. We additionally 
applied an external standard to test the maximum SNR of the system 
prior to measuring, further improving the consistency of RSOM mea-
surements. The proposed quality control method enables high-fidelity 
data collection and improves the reliability of quantification analysis 
for RSOM studies. 

The SNR of the reference suture signal was first calculated and the 
full RSOM data was recorded only when the SNR was above the TSNR 
value of 45 dB, which allowed us to minimize variations of system 
performance between scans from same people, scans from different 
people, or scans from different RSOM setups. The reference scan will be 
implemented as a calibration procedure of commercial RSOM setups in 
the future. With the reference test, we could correctly position and keep 
the same distance between the RSOM scanning head and tissue for all 

Fig. 3. Quality assessment of 160 clinical raster-scan optoacoustic mesoscopy (RSOM) datasets based on Mstd, Mmax and Qmotion values and corresponding thresholds. 
(a, b) Mstd and Mmax values of motion graphs computed from 160 RSOM datasets. (c) corresponding Qmotion values. Red dashed lines indicate the positions of Tstd, 
Tmax and TQmotion values. (d-i) Cross-sectional maximum intensity projection (MIP) RSOM images, correspond to labels 1–6 marked in (a)-(c), which show various 
image quality, scale bar: 500 µm. The insets show the smoothed surfaces SCof RSOM data, scale bar: 1 mm. 
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scans. The reference test can further help to check the laser energy 
fluctuations, and the coupling quality between the detector and tissue, 
since air bubbles or other incorrect coupling can easily degrade the 
signal quality. In order to monitor signal quality during the whole RSOM 
scan period, we plan to position a thin film made of low absorption 
material between the transducer and the skin surface, which will 
generate a continuous reference optoacoustic signal to calibrate the 
system performance. In the future, we can investigate the effect of skin 
phototype on SNR in the dermis by analyzing the SNR of skin surface 
signals recorded during fast line suture measurements. 

We further reported the Qmotion that quantitatively classifies the 
recorded RSOM data quality based on the amount of motion contami-
nating the data. The threshold Tstd and Tmax values of Qmotion were 
determined based on the maximum motion that our motion correction 
algorithm could handle. As shown in Fig. 3, the Qmotion was evaluated on 
160 clinical RSOM scans, showing good correlation with the recon-
structed image quality. Previous motion correction methods have 
demonstrated significant improvements of image quality, but the 
correction improvements were not uniform at different RSOM scans. For 
example, serious motions up to 500 µm were seen in the motion surface 
of RSOM data shown in Fig. 3c-e, which may be caused by human jitter 
movements. Those motions with large variations posed challenges to the 
motion correction algorithm, resulting in inconsistent correction im-
provements. As reported in Fig. 3, 17 low quality datasets were deter-
mined by the Tstd and Tmax values simultaneously, while 6 more datasets 
were further selected based on Tstd value. However, all low-quality 
datasets identified by the Tstd and Tmax values are above the threshold 
of TQmotion. Therefore, the TQmotion value is determined as the motion 
QASIN. Selecting RSOM datasets with Qmotion smaller than TQmotion 
allowed us to obtain consistent motion correction improvements. 

The motion graphs of RSOM data and corresponding threshold 
values were calculated based on the surface motion correction algorithm 
developed by Schwarz et al.[9]. The skin surface was determined based 
on segmentation of the skin’s melanin layer in the three-dimensional 
sinogram, from which the disruptions could be quantified and cor-
rected. The algorithm developed by Schwarz et al. [9] may not work 
without sufficient melanin to generate a detectable optoacoustic signal. 
However, a cross-correlation based motion correction approach intro-
duced by Aguirre et al. [10], which does not need anatomical segmen-
tation, can be applied to calculate the motion graphs for our developed 
data quality assessment scheme. New simulation studies should be 
performed to investigate Tstd and Tmax when applying different motion 
correction algorithms. In addition, the threshold value Tstd and Tmax of 
the Qmotion was determined by simulations based on a specific motion 
pattern as shown in Fig. 3g. More complex motion patterns can be used 
in the simulation studies to further optimize the determination of Tstd 
and Tmax. Our data quality control method is determined by the 
computation accuracy of motion graphs derived from the motion 
correction algorithms. As the tissue motion in human skin is very com-
plex, signal analysis-based motion correction algorithms are limited to a 
certain motion level and correction errors are not uniform when 
handling different levels of motion. Besides extracting from the recorded 
data, the motion graphs of RSOM measurements can be obtained by 
using a laser distance meter that enables real-time tracking of skin 
movements, which can be integrated with the RSOM scanning head to 
allow real-time monitoring of motion during RSOM scanning. Moreover, 
rigid and non-rigid motion correction approaches can be combined to 
correct motion for future improvements [15,17,18]. 

The motion control method can select recorded RSOM data with 
similar motion levels, which can minimize motion effects in the final 
reconstructed image, resulting in uniform RSOM image quality. The 
QASIN is determined based on the motion value computed from the 
recorded RSOM raw data, which is independent of illumination wave-
lengths. Multi-wavelength RSOM requires the same quality in each 
wavelength scan. QASIN can select RSOM data of the same quality at 
each wavelength by excluding low quality scans with obviously high 

motion values, ensuring consistent quality of multi-wavelength RSOM 
data. The QASIN method can be applied to evaluate the data quality of 
other optoacoustic imaging systems, such as optoacoustic optical/ 
acoustic resolution microscopy, based on the quantification of motion 
recorded during the scanning period. RSOM has shown great skin im-
aging performance, which existing techniques cannot achieve, enabling 
novel clinical applications such as precise psoriasis treatment moni-
toring [7], melanoma non-invasive detection [6] and investigation of 
diabetic skin microvasculature complications [8]. To further demon-
strate the clinical potential of RSOM, large-scale clinical studies, with 
uniform image quality evaluated by a quality control scheme, are 
needed for the quantitative analysis of RSOM images. 

In conclusion, we developed a quality control scheme to evaluate 
RSOM data quality. In this scheme, the SNR reference scan allows the 
maintenance of consistent system performance between different scans 
or different imaging setups. The quality of RSOM datasets is evaluated 
by the Qmotion values, and data with server motions beyond the threshold 
of the Qmotion are excluded, resulting in consistent motion correction 
performance. Overall, the quality control scheme enables clinical RSOM 
images with uniformly high quality, which promotes quantitative 
analysis of RSOM images for applications in biology and clinics. 
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