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Abstract 

The accuracy of factor retention methods for structures with one or more gen-

eral factors, like the ones typically encountered in felds like intelligence, personality, 

and psychopathology, has often been overlooked in dimensionality research. To 

address this issue, we compared the performance of several factor retention meth-

ods in this context, including a network psychometrics approach developed in this 

study. For estimating the number of group factors, these methods were the Kaiser 

criterion, empirical Kaiser criterion, parallel analysis with principal components 

(PAPCA) or principal axis, and exploratory graph analysis with Louvain cluster-

ing (EGALV). We then estimated the number of general factors using the factor 

scores of the frst-order solution suggested by the best two methods, yielding a 

“second-order” version of PAPCA (PAPCA-FS) and EGALV (EGALV-FS). Additionally, 

we examined the direct multilevel solution provided by EGALV. All the methods 

were evaluated in an extensive simulation manipulating nine variables of interest, 

including population error. The results indicated that EGALV and PAPCA displayed 

the best overall performance in retrieving the true number of group factors, the 

former being more sensitive to high cross-loadings, and the latter to weak group 

factors and small samples. Regarding the estimation of the number of general 

factors, both PAPCA-FS and EGALV-FS showed a close to perfect accuracy across all 

the conditions, while EGALV was inaccurate. The methods based on EGA were 

robust to the conditions most likely to be encountered in practice. Therefore, we 

highlight the particular usefulness of EGALV (group factors) and EGALV-FS (general 

factors) for assessing bi-factor structures with multiple general factors. 

Keywords: Dimensionality Assessment, Exploratory Bi-Factor Analysis, Ex-

ploratory Graph Analysis, Hierarchical Data, Parallel Analysis 
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1 1 Introduction 

2 Dimensionality assessment plays a central role in psychometrics, as it constitutes one of the 

3 cornerstone decisions during test validation. It is known that a wrong assessment misguides the 

4 construction and refnement of psychological instruments, undermining also the interpretability 

5 of the results from the forthcoming data analysis. However, simulation studies that focus on 

6 bi-factor structures with multiple general factors are lacking in dimensionality research, and 

7 it is uncertain how to proceed when assessing the dimensionality of these structures. This 

8 comes as a surprise given the current popularity of bi-factor models in felds like intelligence 

9 (Beaujean, 2015), personality (Abad et al., 2018), and psychopathology (Bornovalova et al., 

10 2020), where psychometric theories often comprise multiple general factors. 

11 If we had reliable methods for assessing such complex structures, we could test the evidence 

12 in favor or against the theories underpinning these felds. Therefore, the aim of this study 

13 was three-fold: frstly, investigating for the frst time the capability of some popular factor 

14 retention methods to uncover the number of group factors in bi-factor structures with one or 

15 multiple general factors. The second goal of the study involved testing the performance of two 

16 new methods that we developed to detect the number of general factors in these structures. 

17 Finally, the third goal consisted of showing how these methods can be applied to uncover the 

18 hierarchical structure of the HEXACO-100 using open data. 

19 2 Bi-factor structures with multiple general factors 

20 The main feature of bi-factor models is that items are allowed to simultaneously load on a 

21 collection of group factors (e.g., generosity and tolerance), also called specifc factors, and one 

22 general factor (e.g., agreeableness), with the group factors representing narrower traits that 

23 explain the common variance that is left after accounting for the general factor (Reise, 2012). 

24 Although the development of exploratory bi-factor techniques is still an active line of 

25 research, with proposals involving analytic rotation criteria (Jennrich & Bentler, 2011) and 
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26 target-based procedures (Abad et al., 2017; Garcia-Garzon et al., 2019), they have been 

27 recently generalized to cover more than one general factor. Some examples are the two-tier 

28 hierarchical model of Tian and Liu (2021) and the exploratory bi-factor model with multiple 

29 general factors of Jiménez et al. (2022; Figure 1). These generalizations have the advantage of 

30 estimating several bi-factor structures in a single model, uncovering relationships that would 

31 remain hidden if we performed independent bi-factor analyses for each domain of the factor 

32 structure (e.g., correlations and cross-loadings among the general factors). 

33 The incorporation of multiple general factors to the bi-factor model refects the consensus 

34 that many psychological phenomena are hierarchically organized, with the semantic content 

35 of narrow traits being subsumed into broader, multiple general factors.1 In fact, there 

36 have already been some eforts to explore and test these hierarchical organizations, such as 

37 the Hierarchical Taxonomy of Psychopathology (HiTOP; Kotov et al., 2017; Ringwald et 

38 al., 2021), which is a dimensional alternative to the Diagnostic and Statistical Manual of 

39 Mental Disorders (DSM) that conceptualizes psychopathology across diferent strata, namely 

40 symptoms, syndromes, sub-factors, and spectra. Detecting the organization of such general 

41 traits is essential to make a comprehensive assessment of the main pathological features 

42 of patients as well as to facilitate the communication of diagnoses among mental heath 

43 researchers and professionals. In these regards, the bi-factor model provides a way to the 

44 estimation of general traits that are concomitant to the narrower ones. 

45 Despite recent advancements in exploratory bi-factor analysis, its application still requires 

46 a decision regarding the number of group and general factors to extract. Up to now, simulation 

47 studies including general factors are scarce and usually focus on structures with second-order 

48 general factors instead of on the broader class of bi-factor structures. Bi-factor models 

49 are only equivalent to second-order models when proportionality constraints between the 

50 group and general factors are satisfed (Mansolf & Reise, 2016), so simulations covering the 

51 specifc bi-factor case are required to understand what factor retention methods are suited to 

1Along the manuscript, we adopt the nomenclature of Yung et al. (1999) and Molenaar (2016), who 
considered the bi-factor and the higher-order models as particular cases of hierarchical structures. 
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52 assess unrestricted hierarchical organizations. In this context, some researchers have already 

53 investigated the behavior of parallel analysis methods (Crawford et al., 2010; Green et al., 

54 2015, 2016, 2018; Levy et al., 2021). However, the extent to which other factor retention 

55 methods work for this purpose is unknown and the quality of the recovery of the number of 

56 general factors remains largely untested. 

57 3 Dimensionality assessment methods 

58 To overcome the lack of dimensionality assessment research in bi-factor structures with 

59 multiple general factors, we designed an exhaustive simulation study. In this section, we 

60 review the rationale behind all the factor retention methods that we decided to include in 

61 the simulation to estimate the number of group factors. We also mention their qualities and 

62 pitfalls as reported in the simulation literature. Finally, we describe a new procedure to 

63 determine the number of general factors. 

64 3.1 The Kaiser Criterion 

65 The Kaiser criterion (K1; Kaiser, 1960), also known as the eigenvalue-greater-than-one 

66 criterion, is one of the frst and most popular factor retention methods. According to K1, the 

67 frst k greater-than-one eigenvalues of a correlation matrix are indicative of k factors. This 

68 criterion was devised under the rationale that substantive factors should explain at least more 

69 variance than the average variance of the variables, which is one for correlation matrices, and 

70 to prevent the estimated factors from having negative reliability (Clif, 1988). However, K1 

71 gives an asymptotic lower bound for the number of true dimensions (Guttman, 1954). At 

72 the sample level, its low accuracy has been replicated by a large body of simulation research 

73 (Auerswald & Moshagen, 2019; Ruscio & Roche, 2011; Yeomans & Golder, 1982; Zwick & 

74 Velicer, 1986). 

75 The poor performance of K1 can be attributed to the bias of the sample eigenvalues. 
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76 The frst sample eigenvalue is the maximum value obtained from the optimization problem 

77 argmax x⊤Sx, where S is the sample correlation matrix and x is estimated from the set of 
x∈Q 

78 unit vectors Q. Subsequent eigenvalues are estimated similarly, but constraining the new 

79 estimated vectors (i.e., eigenvectors) to remain orthogonal to all the previous ones. This 

80 serial dependency results in the frst sample eigenvalues being upwardly biased, as they have 

81 more variance to capitalize on by chance with fewer constraints. Thus, the bias of the sample 

82 eigenvalues is inversely related to the sample size and positively related to the number of 

83 variables, as there is more noise in small samples with a large number of variables, leading K1 

84 to overestimate the true number of factors. 

85 However, learning this important shortcoming has not prevented the widespread use of K1. 

86 Goretzko et al. (2021) reviewed the exploratory factor analysis literature published between 

87 2007 and 2017 in two psychological journals with a special focus on test development and 

88 found that K1 was the most common method either when several factor retention methods 

89 were simultaneously used (55.6%) and when a single method was used (10.5%). To our 

90 knowledge, the performance of K1 has not been investigated in the presence of general factors 

91 in a bi-factor context. 

92 3.2 The Empirical Kaiser Criterion 

93 Braeken and Assen (2017) proposed the Empirical Kaiser Criterion (EKC), a modifcation of 

94 K1 that considers the serial dependency between the sample eigenvalues. EKC compares the 

95 sample eigenvalues to reference eigenvalues (λEKC ) that are sequentially computed under a 

96 null model with no latent factors. Asymptotically, if the variables are normally distributed, 

97 the eigenvalues of the sample correlation matrix follow the Marčenko-Pastur distribution 

98 (Marčenko & Pastur, 1967). Hence, Braeken and Assen (2017) set the frst reference eigenvalue 

99 under the null model (λEKC 
1 ) to the expected value of the frst sample eigenvalue from the 

100 Marčenko-Pastur distribution, (1 + 
q 

J/n)2, where n is the sample size and J is the number 

101 of variables. The subsequent reference eigenvalues, λEKC for j = {2, 3, . . . , J}, are thenj 
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102 computed multiplying this value by the average variance that is left after taking out the frst 

103 j − 1 factors, (J − j
j
=0 
−1 λj )/(J − j + 1), where λ0 = 0. The resulting reference eigenvalues 

104 can then be interpreted as an estimate of the population value of λj if the null model of 

105 conditional independence was true after accounting for j − 1 factors. 

106 Altogether, the overall formula for computing the reference eigenvalues can be written as 

  
j−1 qJ − 

λEKC j=0 λj  
j = max (1 + J/n)2 , 1 . (1)

J − j + 1 

107 Notice that the minimum reference eigenvalue is set to one to guarantee that, at the population 

108 level, K1 and EKC match in the number of factors to retain, representing a lower bound for 

109 the true number of factors (Guttman, 1954). 

110 EKC has been suggested to be more robust than parallel analysis in conditions involving 

111 few variables per factor and high factor correlations (Auerswald & Moshagen, 2019; Braeken 

112 & Assen, 2017) and in the presence of cross-loadings in multivariate normal data (Li et al., 

113 2020). However, its performance has not been tested in bi-factor structures. 

114 3.3 Parallel Analysis 

115 Parallel analysis (PA; Horn, 1965) has been considered the gold-standard method for dimen-

116 sionality assessment for many decades, with many simulation studies recommending its use 

117 for either continuous (Fabrigar et al., 1999; Lim & Jahng, 2019; Zwick & Velicer, 1986) and 

118 ordinal data (Garrido et al., 2016, 2013; Timmerman & Lorenzo-Seva, 2011). PA would 

119 emulate the sampling process of the original correlation matrix if no latent factors were 

120 present, controlling the impact that the sample size and the number of variables bear in 

121 the magnitude of the eigenvalues. Similarly to the EKC method, PA compares the sample 

122 eigenvalues to reference eigenvalues obtained by simulating data from a null model, with 

123 the frst k sample eigenvalues greater than their corresponding reference eigenvalues being 

124 indicative of k meaningful factors. 
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125 The reference eigenvalues can be computed in many ways. In the original formulation, 

126 Horn (1965) performed principal component analysis in a large number of n × J matrices 

127 of uncorrelated normally distributed random variables, using the average of the empirical 

128 distribution of the eigenvalues as the reference eigenvalues. Later proposals involved the use 

129 of the 95th percentile of the empirical distribution instead of the mean (Buja & Eyuboglu, 

130 1992; Glorfeld, 1995), the resampling of the observed data matrix for generating new random 

131 data (PAPCA; Buja & Eyuboglu, 1992), the replacement of principal components either by 

132 principal axis factoring (PAPAF; Humphreys & Ilgen, 1969) or minimum rank factor analysis 

133 (Timmerman & Lorenzo-Seva, 2011), and the assessment of each j factor in a sequential 

134 manner, taking the j − 1 factor model as the null model for generating random data (Green 

135 et al., 2012). 

136 Several simulation studies comparing diferent versions of PA have found that even though 

137 no single method outperformed others in all conditions, PAPCA presented the highest overall 

138 accuracy (Lim & Jahng, 2019; Xia, 2021). However, other authors support employing PAPAF 

139 instead, arguing that it outperforms PAPCA under conditions with multiple correlated factors 

140 (Crawford et al., 2010; Keith et al., 2016). In the particular case of structures including 

141 general factors (in both second-order and bi-factor structures), Crawford et al. (2010) found 

142 that PAPCA tended to recover the number of general factors while PAPAF accurately recovered 

143 the number of group factors. However, Lim and Jahng (2019) noted that this superiority 

144 vanishes when the realistic condition of population error is included. This current controversy 

145 prompted the examination of both methods in our simulations. 

146 Finally, concerning the cut-of value needed to derive the reference eigenvalues, Xia (2021) 

147 showed that the performance of PAPCA using the 95th percentile was more robust to model 

148 misspecifcation than the mean value. In contrast, the mean of the empirical eigenvalues was 

149 more robust to multiple correlated factors. These results are explained by stringent cut-ofs 

150 ignoring minor factors and larger cut-ofs avoiding the collapse of correlated factors. 
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151 3.4 Exploratory Graph Analysis 

152 Network psychometrics is an alternative method to factor analysis to model and interpret 

153 psychological data. In a network model, a random variable is a node connected to other 

154 nodes by edges representing their relationship after conditioning on all the other variables. In 

155 the same way that factor models are commonly displayed with diagrams, networks models 

156 are visualized with a graph containing all the nodes and edges connecting them, with nodes 

157 belonging to the same cluster being placed closer, and edge’s thickness representing the 

158 strength of the associations between the nodes (Figure 2). 

159 For multivariate normal data, the most straightforward way to model such pairwise 

160 relationships among the variables is using their partial correlations. This is the simplest way 

161 of estimating a Gaussian Graphical Model (GGM; Epskamp et al., 2018). However, Epskamp 

162 and Fried (2017) warned that when two variables are conditionally independent, the partial 

163 correlation matrix usually refects spurious relationships due to sampling variation, leading 

164 to large standard errors and unstable parameter estimates. As a solution, regularization 

165 techniques such as the graphical least absolute shrinkage and selection operator (GLASSO; 

166 Friedman et al., 2008) are used to estimate sparse partial correlations. GLASSO regularization 

167 contains a tuning parameter controlling the sparsity of the network that is selected by 

168 minimizing a complexity function such as the Extended Bayesian Information Criterion 

169 (EBIC; Chen & Chen, 2008). With this approach, small partial correlations are shrunk 

170 towards zero, yielding a more parsimonious and interpretative network with more unconnected 

171 nodes refecting conditional independence. Latent factors underlying the data can then be 

172 related to clusters of nodes, with edges within a cluster being stronger than between clusters 

173 (Golino & Epskamp, 2017). Such reciprocity between clusters of nodes and latent variables 

174 is not only justifed by the fact that network models are statistically consistent with factor 

175 models under certain conditions (Bork et al., 2021) but also supported by empirical research 

176 and simulation studies (Golino & Demetriou, 2017; Golino, Shi, et al., 2020). 

177 Network psychometrics provides a foundation for Exploratory Graph Analysis (EGA; 
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178 Golino & Epskamp, 2017) as a factor retention method. Firstly, EGA estimates the partial 

179 correlations between the variables by ftting a GGM with the GLASSO regularization and then 

180 applies a community detection algorithm for weighted networks to classify items into clusters. 

181 Usually, the clustering is achieved by maximizing modularity, an index measuring the extent 

182 to which nodes within a cluster are more connected than between clusters. Christensen et al. 

183 (2020a) performed a simulation comparing eight clustering algorithms and found that the 

184 Louvain (Blondel et al., 2008) and Walktrap (Pons & Latapy, 2006) algorithms (both based 

185 on modularity) attained the best overall results in identifying the true number of dimensions. 

186 Interestingly, the Louvain algorithm can also provide a direct estimate of the number of 

187 general factors. However, despite this appealing feature, no EGA method has ever been tested 

188 in bi-factor structures. 

189 4 Assessing the number of general factors 

190 If the number of group factors and their confgural structure were known, we could roughly 

191 estimate the number of general factors by summing or averaging the items corresponding to 

192 each scale and then employing any previous factor retention method over the resulting scores. 

193 However, this strategy is unrealistic because the group-factor dimensionality and the factor 

194 pattern are often unknown or unclear. 

195 One alternative is Goldberg’s Bass-Ackwards method (Goldberg, 2006), a sequential 

196 top-down approach that starts by estimating a unidimensional exploratory factor model and 

197 continues extracting and rotating more factors until no variable primarily loads on a factor. 

198 Then, the factor scores for each factor solution are estimated, and their correlations are used 

199 to build a hierarchical representation of all the factor solutions, with the frst-factor solution 

200 depicted at the top, followed by the two rotated factors solution, and so on. Then, high 

201 correlations between an upper and a lower-order factor indicate the perpetuation of the factor 

202 down the hierarchy. In contrast, medium correlations between a certain upper and lower-order 
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203 factor indicate that the former was split to yield the latter, narrower factor. 

204 An inconvenient of the Bass-Ackwards method is that it rests on a top-down approach, 

205 assessing frst the higher-order factors in the hierarchy. Condon et al. (2020) warned that 

206 top-down approaches are at risk of missing important features of the factor structure. For 

207 instance, they are unable to identify the presence of gaps in content concerning the higher-

208 order domains and are also susceptible to the jingle-jangle fallacy (e.g., we are at risk of 

209 labeling with diferent names the same trait down the hierarchy (jingle) and using the same 

210 label for diferent traits (jangle)). In contrast, they argue for a bottom-up approach that 

211 starts by assessing all the traits or nuances that exhaust a domain, taking into account item 

212 complexity and facilitating item revision and content expansion. 

213 An example of a bottom-up approach is the one proposed by Golino, Jotheeswaran, et al. 

214 (2020). First, the authors estimated the number of group factors using EGA. Secondly, they 

215 estimated a loading matrix for the group factors from the ftted network and obliquely rotated 

216 the structure employing geomin. Finally, they used the resulting frst-order latent factor 

217 correlation matrix to perform a second-order EGA, yielding an estimation of the number 

218 of general factors. However, this procedure was developed to investigate the relationship 

219 between several cognitive and health-related variables in the context of aging research, and no 

220 exhaustive simulation was performed to test its accuracy under diferent scenarios of interest. 

221 In this study, we followed a bottom-up method based on the correlation between the factor 

222 scores of the group factors, as they are expected to refect the latent dependencies between 

223 the general factors. We would like to remark that we are not the frst in suggesting nor using 

224 factor scores from lower-order factors to determine the number of general factors (see Friborg 

225 et al., 2009 and Milfont & Duckitt, 2004). However, previous proposals were not fully explicit 

226 or included steps that did not align with what we understand for best practices (e.g., using 

227 composites of items for estimating the factor scores, performing orthogonal rotation, or using 

228 K1 to assess the number of general factors). The solution that we propose is straightforward 

229 and can be obtained through the following steps: (a) estimate the number of group factors 
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230 with some factor retention method; (b) perform an oblique exploratory factor analysis of the 

231 observed correlation matrix extracting the number of group factors suggested in the previous 

232 step; (c) estimate the factor scores with some method that contemplates correlated factors 

233 (e.g., Thurstone’s regression method); and (d) estimate the number of general factors on the 

234 factor scores using the same factor retention method employed in the frst step. 

235 5 Methods 

236 5.1 Simulation design 

237 Following a similar design to these found in Abad et al. (2017), Garcia-Garzon et al. (2021), 

238 and Jimenez et al. (2021), nine variables were manipulated to create realistic full-rank 

239 bi-factor structures with one or multiple general factors: (a) number of general factors (N.GF: 

240 1, 2, 3); (b) correlation between the general factors (COR.GF: 0, .30); (c) sample size (N: 

241 500, 1000, 2000, 5000); (d) number of group factors per general factor (N.GRF: 4, 5, 6); (e) 

242 number of variables per group factor (VAR.GRF: 4, 6, 8, 10); (f) factor loadings on the general 

243 factors (LOAD.GF: low, medium); (g) factor loadings on the group factors (LOAD.GRF: low, 

244 medium); (h) model error or misft (MF: zero, close); and (i) cross-loadings among the group 

245 factors (CROSS.GRF: 0, .15, .30). These variables were crossed to yield a fnal number of 

246 5760 conditions, after removing the incompatible conditions in which the number of general 

247 factors was set to one but the correlation between the general factors was not zero. 

248 Factor loadings ranged from .30 to .50 for the low condition and from .40 to .60 for 

249 the medium condition. The loadings on the general factors were sampled from a uniform 

250 distribution, whereas the loadings on the group factors varied by equal increments across 

251 their variables (e.g., for the low condition with four items per group factor, the population 

252 factor loadings were .30, .37, .43, and .50). To create conditions with cross-loadings, the item 

253 with the greatest loading on each group factor had a cross-loading of .15 or .30 in another 

254 group factor. We maintained the communality constant by subtracting a small value from 
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255 the remaining non-zero item loadings to make the conditions with and without cross-loadings 

256 comparable (see Abad et al., 2017). To illustrate how the data were simulated under these 

257 conditions, Table 1 shows a randomly generated loading pattern matrix corresponding to a 

258 bi-factor model before and after introducing the cross-loadings. Bi-factor structures with 

259 more than one general factor were created by simply joining these single bi-factor structures. 

260 5.2 Population misft 

261 In real situations, the population correlation matrix between the variables does not resemble 

262 the correlation matrix reproduced by the true model parameters (MacCallum, 2003). In 

263 other words, all models are misspecifed because of many unmodeled minor factors explaining 

264 some common item variance. According to this perspective, the true number of factors 

265 underlying a population correlation matrix corresponds to the number of major factors, and 

266 the resulting population misft is interpreted as trivial, nonsubstantive common variance. In 

267 our simulations, population misft was created following the method proposed by Cudeck and 

268 Browne (1992). This method generates small random values that are added to the population 

269 implied correlation matrix such that ftting a confrmatory factor model with unweighted least 

270 squares (ULS) reproduces the intended amount of misft while preserving a global minimum 

271 at the original model parameters, as long as the error is not excessive. 

272 We selected the population standardized root mean square residual (SRMR) as the 

273 indicator of the amount of global misft, following Shi et al. (2018) and Ximénez et al. (2022). 

274 Shi et al. (2018) investigated the behavior of the population SRMR under diferent types 

275 and degrees of model misspecifcation to suggest a corrected cut-of for the population SRMR 

276 that corresponds to a close-ftting model. They established that a close-ftting model at 

277 the population level exists when (1) the largest absolute value of the standardized residual 

278 covariance matrix ≤ 0.10, and (2) SRMR ≤ 0.05 × R ¯2, where R ¯2 is the average communality 

279 of the manifest variables in the population. For example, for conditions with medium 

280 loadings (.50) on both group and general factors, an exact close ft is achieved if SRMR 
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281 = 0.05 × (0.502 + 0.502) = 0.025, and the absolute value of the largest residual is ≤ .10. 

282 The choice of the SRMR was motivated by several reasons. Firstly, the easiness of 

283 interpretation of the index. Second, the estimated SRMR is more robust than RMSEA and 

284 CFI to diferent estimation methods, like maximum likelihood and ULS (Xia & Yang, 2019). 

285 Finally, the unbiased SRMR is less sensitive than other ft indexes to many of the variables 

286 manipulated in the current simulation (i.e., incidental parameters; Saris et al., 2009), like the 

287 number of items or the number of factors (Fan & Sivo, 2007; Shi et al., 2018; Ximénez et al., 

288 2022). For completeness, we also carried out the simulations without population error to use 

289 the results as a baseline for comparison. 

290 5.3 Data generation and analysis 

291 Simulations were run in the R programming language, version 4.2.2 (R Core Team, 2022). A 

292 population correlation matrix for each condition was created and stored using the sim_factor 

293 function from the R package bifactor, version 0.1.0 (Jimenez, Abad, Garcia-Garzon, Garrido, 

294 et al., 2022). Regarding the conditions involving population error, Cudeck and Browne (1992) 

295 warned that their method only ensures a global minimum at the intended discrepancy value 

296 when the generated error is small enough. Hence, to confrm that close ft was ascertained 

297 in each condition, a confrmatory factor analysis using the true model specifcation was 

298 ftted with ULS, and the resulting SRMR was compared with the intended SRMR at a 

299 tolerance of 1e-09. Similarly, we also checked whether the estimated parameters were equal to 

300 the population parameters. The sim_factor function was iterated until a positive defnite 

301 correlation matrix with error was obtained and satisfed the aforementioned requirements. 

302 Table A1 in the Appendix displays the average and worst misft values across every variable 

303 level for SRMR, as well as two additional ft indices (CFI and RMSEA), and the maximum 

304 absolute residual. 

305 Once the population structures were created, we extracted 50 random samples from a 

306 multivariate normal distribution for each population correlation matrix using the function 
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307 mvrnorm from the R package MASS, version 7.3-57 (Venables & Ripley, 2002). The methods 

308 that we tested to identify the number of group factors in these samples were K1, EKC, PAPCA, 

309 PAPAF, and EGALV. As our simulations included model error and at the same time the group 

310 factors were correlated due to the presence of the general factors, we decided to conduct 

311 PAPCA and PAPAF with both the mean and the 95th percentile cutofs. In addition, we decided 

312 to test EGA with the Louvain algorithm (EGALV) because it performs at least as well as the 

313 Walktrap algorithm and potentially provides a solution with multilevel clusters (Christensen 

314 et al., 2020a). That is, the Louvain algorithm creates clusters of items that, in turn, may 

315 be grouped into higher-order clusters. Thereby, the lowest-level cluster that EGALV provided 

316 was used to estimate the number of group factors, while the highest-level cluster, when it 

317 existed, was taken to be an estimate of the number of general factors. Another important 

318 detail of EGALV is that it performs an initial check using the Leading Eigenvector community 

319 detection algorithm (LE; Newman, 2006) on the raw correlation matrix. LE is a clustering 

320 method that also aims to maximize modularity. To achieve this, the LE algorithm creates a 

321 modularity matrix (i.e., a matrix containing the diference between the observed and random 

322 edges’ strengths), computes its frst eigenvector, and chooses the partition that maximizes 

323 the modularity index in terms of this frst eigenvector. This maximization is obtained when 

324 the positive values of the eigenvectors are classifed in one cluster and the negatives ones 

325 are classifed in the other cluster. According to Christensen et al. (2020a), LE provides an 

326 adequate balance between correctly recovering one and more than one factors. As such, if LE 

327 delivered one factor, the data was judged to be unidimensional. Contrary, when it estimated 

328 more than one factor, the Louvain algorithm was applied instead. 

329 We developed two new methods based on factor scores to estimate the number of general 

330 factors, following the second-order procedure described before, yielding an hierarchical version 

331 of both PA (PAPCA-FS ) and EGA (EGALV-FS). For these methods, we performed two oblique 

332 factor analyses with ULS, extracting the number of factors suggested by PAPCA and EGALV and 

333 rotating the solution with direct oblimin. Then, we computed the factor scores of each solution 
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334 using Thurstone’s regression method. On the one hand, we decided to use factor scores instead 

335 of the factor correlations because the latter would require the assumption of a particular 

336 distribution for the factors in order to simulate data for parallel analysis. On the other hand, 

337 we chose the Thurstone’s scores because they maximize validity (i.e., the correlation between 

338 the factor scores and their corresponding factors), so the proportion of indeterminacy in the 

339 factor scores is minimized (Grice, 2001). Finally, for EGALV-FS, we used EGALV on the factor 

340 scores obtained from the frst-order solution and extracted the highest-level cluster provided 

341 by the Louvain algorithm (using the same LE check for unidimensionality as in the previous 

342 step). 

343 We used the function parallel from the R package bifactor to conduct the methods 

344 based on parallel analysis. For all the parallel analysis methods, 100 random datasets 

345 were created by within-variable permutation of the empirical dataset to obtain the mean 

346 and 95th percentile of the eigenvalues under the null model of no latent factors. For the 

347 implementation of EGALV, we used the function EGA from the EGAnet package, version 1.1.0 

348 (Golino & Christensen, 2022). Importantly, the EGA function does not provide the complete 

349 hierarchical solution but automatically returns the dimensions that correspond to the highest-

350 level cluster of the hierarchy. Hence, when the LE algorithm determined that the data was 

351 not unidimensional, we analyzed the estimated network with the cluster_louvain function 

352 from the R package igraph, version 1.3.1 (Csardi & Nepusz, 2006), to obtain the complete 

353 mutilevel organization as estimated by the Louvain algorithm. 

354 Following Garrido et al. (2016) and Golino, Shi, et al. (2020), three indices were calculated 

355 to diagnose the accuracy of the methods. The frst index is the hit rate (HR) or the proportion 

356 of correct dimensionality assessments. While HR refects each method’s accuracy, it does 

357 not provide information about the direction of the errors. We thus computed the mean bias 

358 error (MBE), conceptualized as the average diference between the estimated dimensionality 

359 and the true dimensionality, with positive and negative values refecting overextraction and 

360 underextraction of the true number of factors, respectively. Additionally, as these errors may 
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361 cancel out in specifc conditions, we also computed the mean absolute error (MAE), which 

362 takes the mean of the absolute error values. Analyses of variance (ANOVA) estimating up 

363 to third-order interactions among all the experimental conditions were carried out using the 

364 absolute error as the outcome. The partial omega squared (Ω2) was then used as an efect 

365 size to measure each model coefcient’s importance. We decided to report all the main efects 

366 and only the interactions whose corresponding Ω2 values were greater than .14 or close to this 

367 threshold for at least one method, following Cohen’s criterion for a large efect (Cohen, 1988). 

368 All the simulated data, analysis code, and research materials are available at https: 

369 //osf.io/u7qwj/. 

370 6 Results 

371 Firstly, we present the marginal accuracies, biases, and absolute errors obtained by each factor 

372 retention method with respect to the true number of group factors. Then, we describe the 

373 two and third-order interactions that were found for each method. Thirdly, we describe the 

374 same results for the recovery of the number of general factors. 

375 Our results suggested that the mean and the 95th percentile cut-points behaved similarly 

376 across all the levels of the variables in each parallel analysis method. Hence, for simplicity’s 

377 sake, we will only describe the results of PAPCA and PAPCA-FS with the mean value and those of 

378 PAPAF with the 95th percentile. This decision was motivated by the fact that the mean value 

379 was slightly more accurate than the 95th percentile for PAPCA and PAPCA-FS whereas the 95th 

380 percentile was slightly more accurate than the mean value for PAPAF. 

381 6.1 Recovery of the number of group factors 

382 Overall, EGALV was the method with the highest hit rate in detecting the number of group 

383 factors (HR = .86), closely followed by PAPCA (HR = .83), and then by EKC (HR = .70), 

384 PAPAF (HR = .64), and K1 (HR = .60; Table 2). If no population model error existed, PAPAF 
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385 would have been considered the best method, with an almost perfect hit rate of .98. However, 

386 its accuracy was severely impacted when considering model error (HR[MF = close] = .29). In 

387 a similar vein, EKC and K1 also experimented a strong deterioration under this condition, 

388 with absolute drops in accuracy of .45 and .32, respectively. In fact, EKC would have been 

389 considered the second best method if no population error was simulated, with a hit rate of 

390 .93. On the other hand, the efect of model error on PAPCA was moderate, whereas EGALV 

391 remained robust to population error. 

392 The number of general factors was a critical variable in our results. Under one general 

393 factor, the hit rates of EGALV and PAPCA were above .95. Whereas increasing the number 

394 of general dimensions from one to three decreased the hit rate of K1 by .29 points, those 

395 of EGALV and PAPCA by about .20 points, and that of EKC by .16 points, PAPAF moderately 

396 increased its accuracy. However, the accuracy of PAPAF in conditions with three general 

397 factors (HR[N.GF = 3] = .65) was still inferior to those of EGALV (HR[N.GF = 3] = .76) 

398 and PAPCA(HR[N.GF = 3] = .74). On the other hand, all the factor retention methods were 

399 impaired by the presence of correlations between the general factors, with EGALV presenting 

400 the highest performance in this situation (HR[COR.GF = .30] = .84). 

401 However, EGALV did not always perform best. While it attained almost perfect accuracy 

402 in simple structures (HR[CROSS.GRF = 0] = .99), it showed drops of .10 (HR = .89) and .29 

403 points (HR = .70) when the size of the cross-loadings increased to .15 and .30, respectively. 

404 On the contrary, PAPCA was only moderately afected by the presence of high cross-loadings, 

405 with the former attaining the best average performance across high cross-loadings conditions 

406 (HR[CROSS.GRF = .30] = .79). Conversely, PAPAF , K1, and EKC were not afected by item 

407 complexity, but their performances were still inferior to those of EGALV and PAPCA in the 

408 presence of medium and high cross-loadings. 

409 Increasing the number of group factors per general factor negatively afected all the 

410 methods. EGALV and PAPAF were only moderately afected, with the former retaining the 

411 highest accuracy across all the levels. However, K1, EKC, and PAPCA were more afected by 
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412 the increase in the number of group factors from four to six, showing declines of .16, .12, and 

413 .10 points in accuracy, respectively. On the other hand, increasing the number of variables per 

414 group factor also increased the accuracy of all the methods but K1, EKC, and PAPAF. EKC 

415 and K1 were the most accurate methods across conditions with four variables per group factor 

416 with hit rates of .91 and .90, respectively, but the worst across conditions with eight and ten 

417 variables (HR[VAR.GRF = 10] = .42 and HR[VAR.GRF = 10] = .34, respectively). Conversely, 

418 PAPCA benefted by switching from four to six variables per group factor (HR[VAR.GRF = 4] 

419 = .60; HR[VAR.GRF = 6] = .89), but further increases in the number of variables per group 

420 factor did not produce substantial gains in accuracy2. Concerning EGALV, it obtained the best 

421 hit rate in conditions with the maximum number of variables per group factor (HR[VAR.GRF 

422 = 10] = .96). 

423 We further identifed three results of interest. When switching from medium to low loadings 

424 on the group factors, PAPCA, K1, EGALV , and EKC were negatively impacted, with respective 

425 hit rate drops of .17, .16, .13, and .07 points, respectively. Again, EGALV was the best 

426 method across the most unfavorable condition (e.g., HR[LOAD.GRF = low] = .80). Secondly, 

427 concerning the loadings on the general factors, lower loadings were moderately associated with 

428 higher hit rates for PAPCA with an absolute increase of .09 points, but negatively impacted K1 

429 and EKC with drops of .16 and .05 points, respectively. EGALV remained unafected to the 

430 magnitude of the loadings on the general factors, whereas PAPAF was robust to the magnitude 

431 of the general and group factor loadings. Lastly, the sample size was positively related to the 

432 hit rate of all the factor retention methods, with PAPAF being again the exemption. While 

433 PAPAF presented a good average performance across small sample sizes (HR[N = 500] = 

434 .80), it drastically underperformed as the sample size increased (e.g., HR[N = 5000] = .51). 

435 Interestingly, sample size had very little infuence on EGALV, and for conditions with a sample 

436 size of 2000 or greater, PAPCA slightly outperformed EGALV with a hit rate about .90. K1 

2We verifed that this lack of improvement for PAPCA was due to the presence of population error. Removing 
the conditions with population error yielded a clearer increasing monotonic relationship between the hit rate 
and VAR.GRF. 
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437 and EKC benefted from increased sample sizes but only achieved an overall hit rate over .80 

438 across conditions with a sample of size 5000. 

439 The results for the mean bias error (MBE; Table 3) revealed that, following the HR 

440 results, EGALV and PAPCA were the least biased methods. EGALVand PAPCAunderestimated the 

441 number of factors, with overall MBEs of -0.29 and -0.44, respectively. EGALV underextracted 

442 the most in conditions involving few variables per group factor (MBE[VAR.GRF = 4] = 

443 -0.76) and high cross-loadings (MBE[CROSS.GRF = .30] = -0.75). The worst performance 

444 of PAPCA was observed under weakly defned group factors (MBE[VAR.GRF = 4] = -1.46; 

445 MBE[LOAD.GRF = low] = -0.82) and low sample size (MBE[N = 500] = -1.14). Contrary to 

446 the underestimation of the previous methods, K1, PAPAF , and EKC overextracted across all 

447 the variable levels with the exemption of PAPAF and EKC in conditions with no population 

448 error, in which they were unbiased, and EKC in the conditions with the minimum number 

449 of variables per group factor. Their overall MBEs were 2.07, 1.58, and 0.63, respectively, 

450 with K1 being particularly prone to overextraction in situations involving small sample size 

451 (MBE[N = 500] = 4.84), large factor structures (MBE[VAR.GRF = 10] = 4.64; MBE[N.GF 

452 = 3] = 3.45; MBE[N.GRF = 6] = 2.96), and low loadings on both the general and group 

453 factors (MBE[LOAD.GF = low] = 2.95; MBE[LOAD.GRF = low] = 2.95). K1 only showed 

454 an acceptable performance for the conditions involving the maximum sample size and the 

455 minimum number of variables per group factor. The performance of PAPAF was particularly 

456 hindered in large sample size conditions (MBE[N = 5000] = 3.75), population structures with 

457 population error (MBE[MF = close] = 3.17), and correlated general factors (MBE[COR.GF = 

458 .30] = 2.51). Despite PAPAF not being infuenced by the number of variables per group factor 

459 in terms of accuracy, the MBE indicated that it overextracted more factors the more variables 

460 defned a group factor. In the end, PAPAF only showed an acceptable overall performance for 

461 population structures without error and across conditions with the minimum sample size. 

462 Globally, EKC was less biased than K1 and PAPAF , but it overextracted factors with the 

463 maximum number of variables per group factor (MBE[VAR.GRF = 10] = 1.46) and when 

21 

https://MBE[COR.GF
https://MBE[LOAD.GF
https://MBE[N.GF


464 population error was present (MBE[MF = close] = 1.23). 

465 Because the estimation biases may cancel out when computing marginal means, we 

466 further assessed the precision of the factor retention methods with the MAE (Table A2 in 

467 the Appendix). However, the MAE followed a similar pattern to the MBE across all the 

468 manipulated levels and will not be further discussed. 

469 As the overall performances of K1, EKC, and PAPAF were much worse than those of PAPCA 

470 and EGALVin the presence of population error, in Table 4, we only show the Ω2 efect sizes 

471 obtained for PAPCA and EGALV from the analysis of variance3. PAPCA was most sensitive 

472 to VAR.GRF, a variable also involved in all the large two-way and three-way interactions. 

473 These interactions showed that the efect of other variables (LOAD.GF, LOAD.GRF, N, and 

474 N.GF) was smaller as the number of variables per group factor increased. Lower loadings 

475 on the group factors were very detrimental when the group factors were defned by fewer 

476 variables, especially in smaller samples (Figure 3(a); Ω2[VAR.GRF × N × LOAD.GRF] = .22). 

477 Similarly, having more general factors was increasingly deleterious when fewer variables 

478 loaded on the group factors, particularly when the sample size was smaller (Figure 3(b); 

479 Ω2[VAR.GRF×N×N.GF] = .18). Noteworthy, for samples of size 1000 or larger and at least six 

480 indicators per group factor, the negative efect of having lower loadings on the group factors and 

481 more general factors was small. Another three-way interaction indicated that PAPCA tended to 

482 underperform more with lower loadings on the group factors when fewer variables defned them 

483 and when there were more general factors (Figure 4; Ω2[VAR.GRF × N.GF × LOAD.GRF] = 

484 .16). In other words, with an increasing number of general factors, more indicators per group 

485 factor might be needed if their quality is low. Finally, an interaction indicated that higher 

486 loadings on the general factors were more detrimental when the group factors were defned by 

487 only a few items (Figure 5; Ω2[VAR.GRF × LOAD.GF] = .19). That is, better-defned group 

488 factors counterbalanced the efect induced by the presence of stronger general factors (e.g., 

489 higher correlations among the variables that loaded on the same general factor but diferent 

3Readers interested in the most relevant efect sizes found for K1, EKC, and PAPAF can fnd them in the 
Table A3 from the Appendix. 
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490 group factors). 

491 Concerning EGALV, the results of the ANOVA revealed that it was sensitive to the number 

492 of variables per group factor, the number of general factors, and the presence of cross-loadings 

493 among the group factors. All the efects produced by these variables were smaller on EGALV 

494 than on PAPCA , except those involving cross-loadings. When there were no cross-loadings, 

495 EGALV remained robust to weakly defned group factors (i.e., few variables per group factor with 

496 low loadings), and larger factor structures. Small cross-loadings started to become detrimental 

497 only in structures with three general factors or low loadings on the group factors if the number 

498 of variables per group factor was eight or smaller. However, the efect of high cross-loadings 

499 was very detrimental when the group factors had fewer variables in structures with more than 

500 one general factor (Figure 6(a); Ω2[VAR.GRF × CROSS.GRF × N.GF] = .22) or with lower 

501 loadings on the group factors (Figure 6(b); Ω2[VAR.GRF × CROSS.GRF × N.GF] = .13). 

502 Such detrimental efect of cross-loadings, in interaction with the aforementioned variables, 

503 was small whenever eight or more variables defned each group factor. 

504 6.2 Recovery of the number of general factors 

505 Despite the good performance of the lowest-level cluster of EGALV in identifying the number 

506 of group factors, it only identifed a higher layer of clusters in 42% of the simulated datasets. 

507 Even in these cases, it often provided a wrong estimation of the number of general factors, 

508 with an overall hit rate of .24. Therefore, we did not seek to analyze this method in further 

509 analyses. Similarly, K1, EKC, and PAPAF were inaccurate for detecting the number of group 

510 factors in situations of model misft, so they were not further considered, as explained before. 

511 In contrast, the estimation of the number of general factors was extraordinarily accurate 

512 using either PAPCA-FS or EGALV-FS . These methods presented hit rates close to one and mean 

513 absolute errors close to zero across all the variable levels (Tables 2 and 4). The minimum 

514 marginal hit rates and maximum marginal mean absolute errors for PAPCA-FS happened in the 

515 conditions with few variables per group factor (HR = .97, MAE = 0.04, VAR.GRF = 4) and 
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516 small sample size (HR = .97, MAE = 0.03, N = 500). On the other hand, EGALV-FS had an 

517 almost perfect performance across all the variable levels. Interestingly, none of the estimated 

518 Ω2 efect sizes for either method were high (Table 4). For PAPCA-FS, the maximum Ω2 value 

519 associated with a main efect was 0.03, and for EGALV-FS, 0.01. 

520 7 The HEXACO-100 Inventory 

521 The HEXACO-100 Inventory (Lee & Ashton, 2018) is an instrument that was designed to 

522 display a robust hierarchical structure of personality traits. It aims to measure 25 personality 

523 traits (i.e., group factors) and six domains (i.e., general factors) using 100 items, four items 

524 by trait. The domains (G) and traits (S) are listed as follows: Emotionality (G1), Fearful-

525 ness (S1), Anxiety (S2), Dependence (S3), Sentimentality (S4); Extraversion (G2), Social 

526 Self-Esteem (S5), Social Boldness (S6), Sociability (S7), Liveliness (S8); Conscientiousness 

527 (G3), Organization (S9), Diligence (S10), Perfectionism (S11), Prudence (S12); Openness to 

528 Experience (G4), Aesthetic Appreciation (S13), Inquisitiveness (S14), Creativity (S15), Uncon-

529 ventionality (S16); Agreeableness (G5), Forgiveness (S17), Gentleness (S18), Flexibility (S19), 

530 Patience (S20); Honesty-Humility (G6), Sincerity (S21); Fairness (S22), Greed-Avoidance 

531 (S23), Modesty (S24). The 25th factor is interstitial and corresponds to Altruism. This factor 

532 is not embbedded in the hierarchical organization of the HEXACO personality theory, so it 

533 was not considered in the forthcoming analyses. 

534 To investigate this hypothetical structure of 24 group factors and six general factors, we 

535 used a sample of 647 undergraduate students enrolled in an Australian university (Anglim 

536 et al., 2022; Wood et al., 2022). Dimensionality and statistical analyses in this sample 

537 were done in R (R Core Team, 2022) under the 4.2.2 version. The hierarchical exploratory 

538 graph analysis (i.e., EGALV and EGALV-FS) was performed with the hierEGA function from the 

539 EGAnet package (Golino & Christensen, 2022), version 1.2.4, whereas the hierarchical parallel 

540 analysis (i.e., PAPCA and PAPCA-FS) was done with the parallel function from the bifactor 

24 



541 package (Jimenez, Abad, Garcia-Garzon, Garrido, et al., 2022), version 0.1.0. 

542 The data and script to run the analysis are available in the online repository https: 

543 //osf.io/u7qwj/. The specifc commands for executing the hierarchical methods are as follows: 

# Load the Student data from the OSF repository: 

student <- as.matrix(read.csv("article/analysis/student.csv")) 

library(EGAnet) # Load the library to perform hierarchical EGA 

hierega <- hierEGA(student, scores = "factor") 

library(bifactor) # Load the library to perform hierarchical PA 

hierPA <- parallel(student, hierarchical = TRUE, PA = "PCA", mean = TRUE) 

544 Hierarchical exploratory graph analysis yielded 24 group factors and fve general factors, 

545 whereas hierarchical parallel analysis resulted in 13 group factors and fve general factors 

546 using both the mean and the 95th percentile. Such a large discrepancy between EGALV and 

547 PAPCA in the number of group factors may be due to a number of reasons that were not 

548 considered in the current simulation: frst, in our simulation design we considered structures 

549 up to three general factors whereas in this empirical example there could be even six according 

550 to theory. Second, while the simulated data were continuous and normally distributed, the 

551 HEXACO-100 data is ordinal in nature, which may bear a greater impact on PAPCA than 

552 EGALV. Third, considering the size of the factor structure, the sample size and the number 

553 indicators per group factor were low. These conditions were the ones that most impacted the 

554 performance of PAPCA in the simulation, producing underfactoring. As shown in the panel 

555 b of Figure 3, the combination of four indicators per group factor and a sample size of 500, 

556 which are the characteristics that resemble most the HEXACO-100 data, already produced a 

557 mean absolute error around fve in structures with three general factors. Thus, looking at 

558 this pattern, it would not be surprising that PAPCA errs by more than ten group factors in 

559 structures with fve or six general factors. A last reason that may impact the performance of 

560 PAPCA is the presence of causal relations between the group factors (Franco et al., 2022). 
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561 For these reasons, and because the group-factor dimensionality obtained from EGALV 

562 matched the HEXACO-100 theory, we ftted a bi-factor model with 24 group factors and fve 

563 general factors using the GSLiD algorithm (Jimenez et al., 2021). GSLiD is a recent method 

564 for conducting exploratory bi-factor analysis with multiple general factors that consists of 

565 iteratively refning a partially specifed target until no further refnement is required. Moreover, 

566 GSLiD can penalize the correlations between the group factors and estimate a model with 

567 only correlated general factors, so that the item variance explained by the general and group 

568 factors can be properly disentangled, providing more interpretable results than completely 

569 oblique and orthogonal solutions. 

570 Tables A4 and A5 from the Appendix display the estimated loading matrix and factor 

571 correlations between the general factors, respectively. We considered item loadings higher 

572 than .25 and factor correlations higher than .20 to be substantive. As expected by the 

573 HEXACO-100 theory, the items corresponding to Emotionality, Extraversion, Conscientious-

574 ness, and Openness to Experience loaded on distinctive general factors (except item 35 for 

575 Conscientiousness and item 62 for Openness to Experience), whereas the items pertaining to 

576 Agreeableness and Honesty-Humility loaded on a single general factor. On the other hand, 81 

577 items (84%) loaded on their expected group factors. The indicators that did not conform 

578 to the theoretical pattern are listed next: item 2 (Fearfulness), items 17, 18, 19, and 20 

579 (Social Self-Esteem), item 29 (Liveliness), items 38 and 40 (Diligence), items 46, 47, and 48 

580 (Prudence), items 61, 62, and 64 (Unconventionality), and item 69 (Gentleness). Finally, the 

581 absolute values of the correlations between the general factors were low-to-moderate, ranging 

582 from .25 to .34. 

583 In conclusion, the underlying structure of the HEXACO-100 (excluding the Altruism 

584 facet) is compatible with a theoretical model of 24 group factors and 5 general factors (Figure 

585 7), with low-to-moderate loadings and factor correlations. Notwithstanding, we would like 

586 to remark that this empirical example was developed for illustrative purposes and that a 

587 more exhaustive analysis of the HEXACO-100 data is required to ascertain its underlying 
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588 structure. For instance, a complete workfow would include checking for item redundancies 

589 (Christensen et al., 2020b), assessing the stability of the hierarchical solution by means of 

590 techniques such as bootstrapping (Christensen & Golino, 2019), and interpreting the clusters. 

591 This is a complex work that is worth an independent study. 

592 8 Discussion 

593 Dimensionality assessment is one of the most important decisions that researchers face in 

594 test development and validation. It is well known that wrong dimensionality assessments 

595 can severely bias item parameter estimates and undermine the validity of test scores (Fava 

596 & Velicer, 1992, 1996). Moreover, bi-factor analysis applications would be better justifed 

597 when empirical evidence supports the dimensionality of the data at lower and higher levels of 

598 organization, revealing information that can be used for the posterior model specifcation and 

599 statistical analysis. 

600 Unfortunately, theory is not always enough to ascertain the number of factors underlying a 

601 dataset, and factor retention methods become necessary. Today, there is little information on 

602 how to assess the dimensionality of structures with factors subsumed into broader, higher-order 

603 factors, like those encountered in intelligence, personality, and psychopathology. While many 

604 bi-factor methods with either one or multiple general factors have been developed recently to 

605 estimate large and complex structures that account for the presence of general factors (Abad 

606 et al., 2017; Cai, 2010; Garcia-Garzon et al., 2019, 2020; Jennrich & Bentler, 2011; Jimenez 

607 et al., 2021; Nájera et al., 2021), we still lack evidence-based recommendations on how to 

608 assess the dimensionality of this kind of structures. This is a crucial limitation because all of 

609 these methods assume that the number of group and general factors are known. 

610 Hence, in this study we investigated for the frst time the performance of some classical 

611 and recent factor retention methods to uncover the number of group and general factors in 

612 bi-factor structures up to three general factors. Overall, we found that EGALV was the most 
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613 accurate, precise, and robust method for estimating the number of group factors, followed by 

614 PAPCA, which was sensitive to various conditions, namely the number of variables per group 

615 factor, sample size, and loadings on the group and general factors. 

616 These results align with previous research showing that PAPCA underestimates the number 

617 of factors in conditions involving small samples and large factor structures with weakly 

618 defned group factors (Braeken & Assen, 2017; Garrido et al., 2013; Yang & Xia, 2015). 

619 Notwithstanding, the performance of PAPCA was very high whenever the sample size was 

620 above 1000, and the number of variables per group factor was six or higher. Our fndings also 

621 agree with previous results in which EGA was highly robust to unfavorable conditions, albeit 

622 using the Walktrap clustering algorithm instead of Louvain (Cosemans et al., 2021; Golino & 

623 Epskamp, 2017; Golino, Shi, et al., 2020). The other tested factor retention methods, K1, 

624 EKC, and PAPAF, did not perform well in estimating the number of group factors when the 

625 population structures contained misft and were not further examined. 

626 Interestingly, sample size and model misft had little infuence on EGALV. A possible 

627 explanation for the latter fnding is that the GLASSO penalization shrinks towards zero small 

628 partial correlations that appear due to trivial common variance attributable to population 

629 error. However, the performance of EGALV was not perfect. It was sensitive to high cross-

630 loadings, particularly in factor structures with more than one general factor and weakly 

631 defned group factors. This sensitivity of EGALV to high cross-loadings could be due to the 

632 fact that the Louvain algorithm does not allow overlapping clusters (Blanken et al., 2018; 

633 Christensen et al., 2020a). In other words, items cannot be simultaneously classifed in more 

634 than one cluster, which increases the probability of incorrect placements if high cross-loadings 

635 exist. 

636 Within the parallel analysis methods, many researchers have suggested that PAPAF is 

637 more suitable than PAPCA for correlated psychological data, both theoretically and empirically 

638 (Crawford et al., 2010; Green et al., 2012; Keith et al., 2016). Particularly, Crawford et 

639 al. (2010) found that PAPAF performed better than PAPCA under multiple correlated factors, 
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640 second-order general factors, and bi-factor models. However, they did not consider the role of 

641 population error in their simulations. As revealed in our results and in other studies such 

642 as Lim and Janhg (2019) and Xia (2021), the accuracy of PAPAF greatly diminishes in the 

643 presence of trivial population misft and only outperforms other methods if, and only if, no 

644 population error exists. Unfortunately, some sort of population misft is always expected to 

645 exist in applied settings. Moreover, PAPAF tended to overextract factors with higher sample 

646 sizes and an increasing number of variables per group factor. Therefore, we consider that 

647 PAPAF is inappropriate for evaluating the dimensionality of bi-factor structures with one or 

648 multiple general factors. Contrary, PAPCA was only moderately afected by the presence of 

649 close misft, a result that is also consistent with previous research (Lim & Jahng, 2019; Xia, 

650 2021). On the other hand, using either the mean value or the 95th percentile as the cut-of 

651 for computing the reference eigenvalues did not result in a practical diference for PAPCA . 

652 Overall, although EKC was better than K1, it showed a worse performance than EGALV 

653 and PAPCA to most of the experimental conditions (Table A3, Appendix). This result was 

654 explained by its high sensibility to population error and a tendency to overextract factors the 

655 more variables defned the group factors. This pattern was also observed for K1, resulting in 

656 even lower hit rates and biased estimates. Thus, these results agree with several decades of 

657 simulation research in that K1 should never be used for dimensionality assessment, especially 

658 in large factor structures like the ones often encountered in bi-factor applications. 

659 Regarding the estimation of the general factors, we found that when EGALV estimated 

660 more than one layer of clusters, the number of factors suggested by the highest-level cluster 

661 was mostly inaccurate. On the contrary, EGALV-FS and PAPCA-FS had an almost perfect accuracy 

662 across all the conditions, especially the former. More concretely, EGALV-FS produced an equal 

663 or higher performance than PAPCA-FS and was highly robust to all the experimental conditions. 

664 Globally, these results suggest that the number of general factors could be estimated 

665 accurately even when EGALV and PAPCA failed to determine the correct number of group 

666 factors. Notwithstanding, despite these encouraging results, a note of caution should be 
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667 raised: we do not recommend applying these hierarchical methods blindly. These methods 

668 should only be considered when the correlations between the factor scores are not trivially 

669 small. In other words, we recommend inspecting the frst-order factor correlation matrix 

670 before interpreting the estimates provided by EGALV-FS and PAPCA-FS. Otherwise, we would be 

671 at risk of inferring the presence of general factors when there is no more variance to explain 

672 beyond the one accounted for the frst-order factors. 

673 To illustrate how the proposed hierarchical dimensionality analyses can be done in R 

674 software, we analyzed a real dataset concerning the personality traits of the HEXACO-100 

675 Inventory, which is intended to measure 24 hypothetical facets (measured by four items each) 

676 embedded within six general domains. Whereas PAPCA yielded a too conservative estimation 

677 of the number of group factors (13), EGALV estimated 24, as expected by the theory. The 

678 defective performance of PAPCA can be explained by the low sample size (N = 647) and few 

679 indicators per group factor of the HEXACO-100, conditions in which PAPCA was more prone 

680 to underfactor in the simulation. Contrary, both PAPCA-FS and EGALV-FS suggested fve general 

681 factors. To investigate the factor structure of the HEXACO-100, we conducted an exploratory 

682 bi-factor analysis with 24 group factors and fve general factors using the GSLiD algorithm 

683 (Jimenez et al., 2021). As a result, the estimated loadings resembled most of the HEXACO-100 

684 theory. Interestingly, the items pertaining to the Agreeableness and Honesty-Humility scales 

685 merged in a single general domain, whereas most of the group factors where recovered (e.g., 

686 21 of the 24 group factors were defned by at least two of their theoretical indicators). 

687 An advantage of our hierarchical proposals over Goldberg’s Bass-Ackwards method is 

688 that they are based on a bottom-up approach. We frst focus on estimating the number of 

689 lower-order factors and then proceed with the higher-order ones. This way, we are able to 

690 identify the nuances that make up the more general traits, encouraging the analysis of item 

691 content and domain’s breadth (Condon et al., 2020; Mõttus et al., 2020). We also remark that 

692 EGALV-FS is somewhat similar to the second-order method proposed by Golino, Jotheeswaran, 

693 et al. (2020). The main diferences between our and their approach are that we used the 
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694 lowest-level cluster provided by the Louvain algorithm instead of Walktrap and analyzed the 

695 correlation matrix between the factor scores instead of the correlation matrix between the 

696 rotated factors, which does not require computing the factor scores. Future simulation studies 

697 may consider including the method of Golino, Jotheeswaran, et al. (2020) to check whether it 

698 performs as well as EGALV-FS . 

699 This simulation study tried to emulate real data with conditions involving population 

700 misft and cross-loadings, but it has some limitations: frst, we only generated continuous 

701 data from multivariate normal distributions. With categorical data, polychoric correlation 

702 matrices, and skewed distributions, the performance of all the methods should deteriorate, 

703 and the extent to which this would happen is unknown. If this is the case, it would also be 

704 interesting to compare alternative factor or network scoring methods to establish which are 

705 optimal for the recovery of the number of general factors. Second, we only generated factor 

706 structures up to three general factors, whereas some cases of psychological data may contain 

707 more. This limitation was due to the fact that controlling population misft in conditions 

708 involving more than three general factors is a difcult task, as larger factor structures produce 

709 correlation matrices closer to nonpositiveness. Forthcoming work will be needed to solve these 

710 technical issues inherent to bi-factor structures with multiple general factors. Notwithstanding, 

711 the current simulation is the frst one that systematically investigates the dimensionality 

712 assessment of factor structures with a varying number of general factors, and it is a good frst 

713 step toward developing tools for factor retention in felds like intelligence, personality, and 

714 psychopathology, where the statistical models usually display a hierarchical confguration. 

715 Although the specifc factor structures simulated in this study are bi-factor, it is important 

716 to note that second-order structures can be interpreted as bi-factor structures with propor-

717 tionality constraints between the general and group factors (Jimenez et al., 2021). In other 

718 words, second and higher-order structures are constrained versions of bi-factor structures 

719 and, as such, our simulation setup provides results that are generalizable to a larger range 

720 of hierarchical structures. Hence, we think that the hierarchical factor retention methods 
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721 developed here will help to disentangle the diferent levels of organization of complex data in 

722 the broad feld of individual diferences regardless of the specifc factor model (i.e., bi-factor 

723 or higher-order). These factor analytic models require a decision regarding the number of 

724 factors to extract, we also believe that these hierarchical methods can help to justify or guide 

725 model specifcation in applied research. 

726 In conclusion, we aimed to provide applied researchers with accurate methods that can 

727 help them to uncover hierarchical structures in their data, and our results suggest that parallel 

728 analysis with principal component analysis and exploratory graph analysis with the Louvain 

729 algorithm, when applied to items and then to the frst-order factor scores, ofer a good 

730 recovery of the dimensionality of the hierarchical structure. As diferent variables impact these 

731 two methods, researchers may use them in tandem or according to the known or plausible 

732 characteristics of their data. Noteworthy, EGALV not only was the best method in terms 

733 of accuracy, precision, and robustness for the conditions most likely to be encountered in 

734 practice, but also provides a classifcation of items into factors, ofering a richer dimensionality 

735 assessment that can be easily compared with the theoretical expectations of the factor 

736 structure. Furthermore, the stability of the EGALV and EGALV-FS latent solutions can be 

737 readily ascertained using bootstrap procedures currently available (Christensen & Golino, 

738 2021). Thus, we highlight the particular usefulness of EGALV and EGALV-FS for assessing 

739 bi-factor structures with one or multiple general factors. Finally, much more attention should 

740 be considered to the number of group factors, as the second-order methods depend on this 

741 quantity, and they are harder to estimate than the number of general factors. 
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976 Appendix 

Table A1. Marginal ft indices for each variable level. The mean value is displayed in bold, and 
the single worst ft value is displayed in parentheses. 

Variable SRMR RMSEA CFI Absolute residuals 

N.GF 
1 .0209 (.0263) .0266 (.0298) .9933 (.9902) .0711 (.0998) 
2 
3 

.0209 (.0266) 

.0209 (.0263) 
.0217 (.0288) 
.0214 (.0274) 

.9869 (.9801) 

.9808 (.9702) 
.0803 (.0997) 
.0789 (.0999) 

COR.GF 
0 

.30 
.0209 (.0266) 
.0209 (.0264) 

.0219 (.0298) 

.0216 (.0281) 
.9865 (.9702) 
.9846 (.9732) 

.0777 (.0999) 

.0782 (.0995) 
VAR.GRF 

4 
6 

.0209 (.0266) 

.0209 (.0264) 
.0224 (.0298) 
.0218 (.0288) 

.9851 (.9702) 

.9857 (.9716) 
.0739 (.0988) 
.0774 (.0999) 

8 
10 

.0209 (.0261) 

.0209 (.0259) 
.0215 (.0273) 
.0214 (.0270) 

.9860 (.9730) 

.9862 (.9727) 
.0793 (.0993) 
.0809 (.0998) 

N.GRF 
4 
5 

.0209 (.0266) 

.0209 (.0263) 
.0220 (.0298) 
.0217 (.0291) 

.9868 (.9754) 

.9857 (.9729) 
.0758 (.0997) 
.0783 (.0994) 

6 .0209 (.0263) .0216 (.0293) .9847 (.9702) .0795 (.0999) 
CROSS.GRF 

0 .0209 (.0262) .0217 (.0298) .9857 (.9702) .0771 (.0999) 
.15 
.30 

.0209 (.0264) 

.0209 (.0266) 
.0218 (.0294) 
.0218 (.0295) 

.9859 (.9717) 

.9856 (.9713) 
.0778 (.0995) 
.0787 (.0998) 

LOAD.GRF 
low 

medium 
.0187 (.0224) 
.0231 (.0266) 

.0194 (.0248) 

.0241 (.0298) 
.9874 (.9770) 
.9841 (.9702) 

.0707 (.0988) 

.0851 (.0999) 
LOAD.GF 

low 
medium 

.0186 (.0220) 

.0231 (.0266) 
.0194 (.0252) 
.0241 (.0298) 

.9840 (.9702) 

.9875 (.9780) 
.0704 (.0992) 
.0854 (.0999) 

Total .0209 (.0266) .0218 (.0298) .9857 (.9702) .0779 (.0999) 

Note. N.GF = number of general factors; COR.GF = correlation between general factors; VAR.GRF 
= number of indicators per group factor; N.GRF = number of group factors per general factor; 
CROSS.GRF = cross-loadings in the group factors; LOAD.GRF = loadings on the group factors; 
LOAD.GF = loadings on the general factors. 
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Table A2. Mean absolute error (MAE) across each variable level for each factor retention method. 

Group factors General factors 

Variable Kaiser PAPAF PAPCA EGALV PAPCA-FS EGALV EGALV-FS 

K1 EKC mean 95th mean 95th mean 95th 

MF 
zero 
close 

1.57 
2.59 

0.09 
1.28 

0.02 
3.84 

0.02 
3.19 

0.48 
0.50 

0.57 
0.59 

0.31 
0.31 

0.01 
0.01 

0.02 
0.02 

2.83 
2.89 

0.00 
0.00 

N 
500 
1000 
2000 
5000 

4.87 
2.27 
0.86 
0.33 

0.83 
0.90 
0.68 
0.33 

0.44 
1.00 
2.12 
4.17 

0.27 
0.68 
1.72 
3.76 

1.14 
0.47 
0.23 
0.12 

1.37 
0.56 
0.26 
0.13 

0.31 
0.32 
0.31 
0.30 

0.04 
0.01 
0.00 
0.00 

0.07 
0.01 
0.00 
0.00 

3.42 
2.94 
2.64 
2.42 

0.00 
0.00 
0.00 
0.01 

N.GF 
1 
2 
3 

0.42 
1.52 
3.48 

0.31 
0.59 
0.96 

2.43 
1.73 
1.88 

1.99 
1.42 
1.60 

0.07 
0.34 
0.85 

0.10 
0.41 
0.99 

0.02 
0.15 
0.61 

0.00 
0.01 
0.02 

0.00 
0.01 
0.04 

1.07 
2.78 
3.82 

0.00 
0.00 
0.01 

COR.GF 
0 

.30 
1.62 
2.77 

0.40 
1.12 

1.24 
2.97 

0.99 
2.54 

0.40 
0.62 

0.48 
0.73 

0.28 
0.35 

0.01 
0.02 

0.02 
0.03 

2.49 
3.40 

0.00 
0.00 

VAR.GRF 
4 
6 
8 
10 

0.15 
0.99 
2.55 
4.64 

0.14 
0.32 
0.83 
1.46 

0.91 
1.66 
2.31 
2.85 

0.67 
1.34 
1.94 
2.47 

1.46 
0.30 
0.11 
0.09 

1.73 
0.37 
0.13 
0.09 

0.77 
0.29 
0.11 
0.05 

0.04 
0.00 
0.00 
0.00 

0.08 
0.00 
0.00 
0.00 

2.17 
3.04 
3.15 
3.07 

0.01 
0.00 
0.00 
0.00 

N.GRF 
4 
5 
6 

1.24 
2.03 
2.98 

0.46 
0.68 
0.92 

1.60 
1.93 
2.27 

1.29 
1.60 
1.93 

0.26 
0.47 
0.73 

0.33 
0.56 
0.86 

0.18 
0.31 
0.44 

0.01 
0.01 
0.01 

0.02 
0.02 
0.02 

2.27 
2.79 
3.51 

0.01 
0.00 
0.00 

CROSS.GRF 
0 

.15 

.30 

2.06 
2.06 
2.12 

0.69 
0.69 
0.68 

2.00 
1.96 
1.83 

1.67 
1.64 
1.51 

0.38 
0.49 
0.60 

0.47 
0.59 
0.69 

0.01 
0.15 
0.76 

0.01 
0.01 
0.01 

0.02 
0.03 
0.02 

2.88 
2.93 
2.76 

0.00 
0.00 
0.01 

LOAD.GRF 
low 

medium 
2.98 
1.19 

0.83 
0.54 

1.93 
1.94 

1.57 
1.64 

0.85 
0.13 

1.01 
0.15 

0.50 
0.11 

0.02 
0.00 

0.04 
0.00 

2.70 
3.01 

0.01 
0.00 

LOAD.GF 
low 

medium 
2.97 
1.20 

0.78 
0.59 

1.69 
2.18 

1.35 
1.86 

0.28 
0.70 

0.35 
0.81 

0.29 
0.32 

0.00 
0.02 

0.00 
0.04 

3.07 
2.64 

0.00 
0.01 

Total 2.08 0.69 1.93 1.61 0.49 0.58 0.31 0.01 0.02 2.86 0.00 

Note. K1 = Kaiser eigenvalue greater-than-one criterion; EKC = Empirical Kaiser Criterion; PAPAF 

= Parallel analysis with principal axis factoring; PAPCA = Parallel analysis with principal components; 
PAPCA-FS = Parallel analysis with principal components on the frst-order factor scores; EGA = Exploratory 
Graph Analysis; EGALV = EGA with Louvain; EGALV-FS = EGA with Louvain on the frst-order factor 
scores; MF = population misft; N = sample size; N.GF = number of general factors; COR.GF = 
correlation between general factors; VAR.GRF = number of indicators per group factor; N.GRF = number 
of group factors per general factor; CROSS.GRF = cross-loadings in the group factors; LOAD.GRF = 
loadings on the group factors; LOAD.GF = loadings on the general factors. 
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Table A3. Partial omega squared coefcients (Ω2) from the ANOVAs on the absolute error for the recovery 
of the group factors for all the nine main efects, and for the remaining coefcients whose Ω2 ≥ .14 in at 
least one factor retention method. 

Variable Kaiser PAPAF PAPCA EGALV 

K1 EKC mean 95th mean 95th 

Main efects 

VAR.GRF 0.84 0.36 0.30 0.30 0.57 0.62 0.22 
N 0.84 0.09 0.62 0.64 0.39 0.46 0.00 

N.GF 0.72 0.12 0.05 0.04 0.29 0.31 0.18 
LOAD.GF 0.58 0.02 0.05 0.06 0.15 0.16 0.00 

LOAD.GRF 0.58 0.04 0.00 0.00 0.35 0.40 0.12 
N.GRF 0.47 0.07 0.06 0.06 0.13 0.15 0.04 

MF 0.31 0.44 0.75 0.71 0.00 0.00 0.00 
COR.GF 0.09 0.17 0.47 0.45 0.00 0.00 0.00 

CROSS.GRF 0.00 0.00 0.00 0.00 0.03 0.03 0.28 

Two-way interactions 

VAR.GRF × N 0.75 0.05 0.36 0.36 0.44 0.48 0.01 
N × N.GF 0.63 0.01 0.07 0.05 0.20 0.23 0.00 

VAR.GRF × N.GF 0.60 0.03 0.06 0.05 0.28 0.30 0.14 
N × LOAD.GF 0.44 0.04 0.03 0.03 0.06 0.07 0.00 

VAR.GRF × LOAD.GRF 0.42 0.01 0.00 0.00 0.45 0.48 0.09 
VAR.GRF × LOAD.GF 0.42 0.00 0.00 0.00 0.19 0.19 0.00 

N × LOAD.GRF 0.41 0.03 0.00 0.00 0.26 0.30 0.00 
VAR.GRF × N.GRF 0.34 0.02 0.00 0.00 0.11 0.12 0.02 

N × N.GRF 0.32 0.00 0.03 0.04 0.9 0.11 0.00 
N.GF × LOAD.GRF 0.30 0.01 0.04 0.03 0.16 0.17 0.08 
N.GF × LOAD.GF 0.30 0.00 0.02 0.01 0.05 0.05 0.00 
VAR.GRF × MF 0.20 0.35 0.31 0.32 0.01 0.01 0.00 
N.GF × N.GRF 0.18 0.00 0.02 0.01 0.06 0.06 0.02 

LOAD.GF × LOAD.GRF 0.14 0.00 0.00 0.00 0.09 0.09 0.00 
N × MF 0.02 0.06 0.62 0.64 0.00 0.00 0.00 

MF × COR.GF 0.10 0.17 0.47 0.45 0.00 0.00 0.00 
N × COR.GF 0.00 0.01 0.36 0.39 0.00 0.00 0.00 

VAR.GRF × COR.GF 0.04 0.10 0.13 0.13 0.00 0.00 0.00 
VAR.GRF × CROSS.GRF 0.00 0.00 0.00 0.00 0.05 0.05 0.33 

N.GF × CROSS.GRF 0.00 0.00 0.00 0.00 0.01 0.00 0.20 

Three-way interactions 

VAR.GRF × N × N.GF 0.47 0.04 0.03 0.02 0.18 0.19 0.01 
VAR.GRF × N × LOAD.GF 0.22 0.05 0.00 0.00 0.04 0.04 0.00 

VAR.GRF × N × LOAD.GRF 0.20 0.07 0.00 0.00 0.21 0.23 0.00 
VAR.GRF × N × N.GRF 0.18 0.01 0.01 0.01 0.07 0.07 0.00 

VAR.GRF × N.GF × LOAD.GRF 0.16 0.00 0.01 0.01 0.17 0.16 0.05 
N × N.GF × LOAD.GF 0.16 0.02 0.00 0.00 0.02 0.02 0.00 

VAR.GRF × N.GF × LOAD.GF 0.15 0.00 0.00 0.00 0.04 0.04 0.00 
N × N.GF × LOAD.GRF 0.13 0.01 0.00 0.00 0.11 0.11 0.00 

N × MF × COR.GF 0.00 0.01 0.36 0.39 0.00 0.00 0.00 
VAR.GRF × N × MF 0.02 0.03 0.34 0.34 0.00 0.00 0.00 

VAR.GRF × N × COR.GF 0.00 0.00 0.19 0.20 0.00 0.00 0.00 
VAR.GRF × MF × COR.GF 0.04 0.10 0.13 0.13 0.00 0.00 0.00 

VAR.GRF × CROSS.GRF × N.GF 0.00 0.00 0.00 0.00 0.01 0.01 0.22 
VAR.GRF × CROSS.GRF × LOAD.GRF 0.00 0.00 0.00 0.00 0.01 0.01 0.13 

Note. K1 = Kaiser eigenvalue greater-than-one criterion; EKC = Empirical Kaiser Criterion; PAPAF 

= Parallel analysis with principal axis factoring; PAPCA = Parallel analysis with principal components; 
EGALV = Exploratory graph analysis with Louvain; MF = population misft; N.GF = number of general 
factors; COR.GF = Correlation between general factors; N = sample size; VAR.GRF = Number of 
indicators per group factor; N.GRF = number of group factors per general factor; CROSS.GRF = 
cross-loadings in the group factors; LOAD.GF = loadings on the general factors; LOAD.GRF = loadings 
on the group factors. 

43 
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Table A4. Estimated loadings for the HEXACO-100 with 24 group factors (excluding the Altruism facet). Loadings with absolute values greater than .25 
are shown in bold and underlined. Each facet encompasses 4 items delineated between horizontal bars. 

Item General factors Group factors 

G1 G2 G3 G4 G5 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 

1 0.56 -0.03 0.01 -0.01 0.03 0.48 -0.01 -0.01 -0.06 0.01 -0.04 0.03 0.07 -0.03 0.04 0.02 0.09 0.01 0.03 -0.07 0.07 0.00 0.01 0.05 0.02 0.04 -0.07 0.07 0.07 

2 -0.66 0.00 -0.05 -0.10 0.03 -0.10 0.07 0.05 0.04 -0.03 0.24 -0.07 -0.05 0.04 -0.02 -0.07 0.02 0.01 0.08 0.05 0.24 -0.03 -0.01 0.09 0.01 0.00 -0.06 0.04 0.03 

3 -0.32 -0.03 0.18 -0.06 -0.04 -0.65 0.06 -0.02 0.03 -0.01 0.08 0.09 0.02 0.02 0.14 0.07 0.02 0.05 0.13 -0.03 0.08 0.01 0.03 0.03 -0.04 0.08 0.06 0.00 -0.02 

4 0.51 0.04 0.02 0.04 0.02 0.30 0.04 -0.09 -0.04 -0.06 -0.06 -0.02 0.04 0.10 0.00 0.00 -0.09 0.00 -0.03 -0.05 0.03 -0.03 0.04 0.00 -0.08 0.01 -0.07 0.04 0.25 

5 -0.31 0.26 -0.01 0.05 0.01 0.00 -0.49 0.01 -0.02 -0.05 0.00 -0.02 0.13 0.06 -0.01 -0.01 0.12 -0.15 -0.01 -0.05 0.02 0.10 -0.05 -0.05 0.14 -0.08 -0.08 -0.02 -0.05 

6 0.64 -0.17 -0.03 -0.01 0.11 -0.07 0.41 -0.07 -0.04 0.05 -0.03 0.05 -0.06 0.00 0.05 0.05 0.09 -0.10 0.01 0.07 0.03 0.04 -0.05 0.02 0.07 0.05 0.00 0.01 -0.02 

7 -0.61 0.15 0.13 0.00 -0.10 0.16 -0.27 0.00 -0.05 -0.01 0.01 -0.01 0.08 0.03 -0.02 0.01 0.01 0.03 0.04 -0.06 0.05 0.02 -0.02 0.04 0.04 0.00 -0.03 0.03 0.04 

8 0.63 -0.09 -0.06 0.02 0.09 0.04 0.39 0.04 0.04 -0.07 -0.06 0.01 0.02 0.01 0.01 0.03 0.11 0.00 0.03 0.02 0.03 -0.03 0.06 0.02 0.01 -0.03 -0.03 0.00 -0.03 

9 0.46 0.10 0.02 0.10 0.09 -0.01 0.00 0.49 0.14 0.07 0.01 0.14 -0.03 0.00 0.05 0.00 0.05 0.07 0.05 0.02 -0.07 0.00 0.00 0.00 0.08 0.12 -0.08 0.00 0.15 

10

44 -0.30 -0.39 -0.02 0.12 -0.08 -0.01 -0.03 -0.61 -0.05 0.04 -0.05 -0.04 -0.02 0.03 0.01 0.03 0.08 0.12 0.07 0.02 0.09 -0.02 0.10 -0.01 0.05 -0.01 -0.04 0.03 -0.04 

11 -0.47 -0.03 -0.02 -0.04 -0.09 0.04 0.02 -0.35 0.02 -0.11 0.07 -0.07 0.12 0.05 -0.04 0.09 0.00 -0.06 0.05 -0.05 0.23 -0.10 0.02 -0.10 0.04 -0.11 0.06 0.05 -0.05 

12 0.44 0.26 0.04 -0.01 0.03 0.01 -0.04 0.70 0.04 -0.06 0.03 0.09 0.05 0.01 -0.02 0.09 -0.02 0.03 -0.04 0.08 -0.03 0.01 0.01 -0.02 -0.06 -0.01 0.04 0.01 -0.03 

13 0.46 0.07 -0.02 -0.07 -0.24 -0.09 0.06 0.02 0.50 -0.01 0.10 -0.09 -0.04 0.01 -0.01 0.10 -0.08 0.06 0.02 0.10 0.08 0.01 0.05 0.05 0.08 0.01 0.01 -0.05 -0.04 

14 -0.56 -0.17 0.04 0.03 0.15 0.05 0.03 -0.13 -0.37 0.02 0.04 -0.08 -0.08 -0.02 -0.01 0.09 0.03 0.01 0.06 0.00 0.42 0.00 -0.04 -0.01 0.08 0.03 0.05 -0.05 0.03 

15 0.50 0.07 0.03 0.01 -0.15 -0.01 -0.01 0.13 0.50 0.06 -0.03 0.02 0.04 0.05 0.07 0.01 0.02 0.07 0.00 0.02 -0.10 0.06 0.07 0.05 -0.03 0.01 0.02 0.01 -0.01 

16 0.50 0.08 -0.07 0.01 -0.02 0.03 0.02 0.22 0.32 -0.03 -0.01 0.09 0.04 -0.01 0.07 0.03 0.00 0.07 -0.01 0.09 -0.01 -0.05 0.08 -0.02 0.08 -0.09 -0.07 0.03 -0.07 

Note. G1 = Emotionality; G2 = Extraversion; G3 = Conscientiousness; G4 = Openness to Experience; G5 = Agreeableness / Honesty-Humility; S1 = Fearfulness; S2 = 

Anxiety; S3 = Dependence; S4 = Sentimentality; S5 = Social Self-Esteem; S6 = Social Boldness; S7 = Sociability; S8 = Liveliness; S9 = Organization; S10 = Diligence; S11 = 

Perfectionism; S12 = Prudence; S13 = Aesthetic Appreciation; S14 = Inquisitiveness; S15 = Creativity; S16 = Unconventionality; S17 = Forgiveness; S18 = Gentleness; S19 = 

Flexibility; S20 = Patience; S21 = Sincerity; S22 = Fairness; S23 = Greed-Avoidance; S24 = Modesty. 
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Table A4 (Continuation). 

Item General factors Group factors 

G1 G2 G3 G4 G5 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 

17 -0.13 0.60 -0.22 -0.05 -0.02 0.04 -0.06 0.00 0.17 0.03 -0.11 -0.06 0.16 -0.01 0.03 -0.02 0.01 -0.02 -0.10 -0.03 0.25 0.03 -0.03 -0.06 0.01 0.03 0.00 -0.02 0.03 

18 0.05 -0.68 0.03 0.00 0.02 0.12 0.01 0.00 0.05 0.02 -0.05 0.05 0.05 -0.04 0.10 0.00 -0.04 0.02 -0.03 -0.01 0.02 -0.03 -0.04 0.03 -0.04 -0.03 -0.07 0.08 -0.14 

19 0.15 0.57 -0.04 -0.08 0.03 -0.11 -0.02 -0.04 0.07 0.09 -0.01 0.02 -0.12 0.05 -0.05 -0.09 0.12 0.08 -0.14 0.03 0.12 -0.03 0.29 0.01 0.25 0.01 0.00 -0.05 0.14 

20 0.14 -0.57 0.20 -0.01 0.14 -0.09 0.22 0.02 -0.05 0.11 0.10 0.23 -0.06 0.07 -0.01 0.01 0.03 0.05 0.05 0.09 -0.02 0.00 0.06 0.01 -0.03 0.00 0.11 -0.06 0.01 

21 0.04 -0.48 0.04 0.20 -0.13 0.00 0.00 0.00 0.02 -0.02 -0.52 -0.06 0.05 0.07 -0.08 0.02 0.04 0.02 0.04 0.01 0.14 0.02 -0.02 -0.03 0.09 0.09 0.08 0.06 0.07 

22 0.01 0.57 0.08 0.00 0.05 -0.08 -0.07 -0.04 0.01 -0.01 0.48 0.29 -0.03 0.04 0.01 0.06 -0.04 0.06 0.02 0.10 0.06 0.00 -0.09 -0.03 -0.03 0.03 0.04 0.02 0.08 

23 0.31 -0.36 0.04 0.13 -0.10 0.05 0.10 -0.07 0.05 0.02 -0.45 -0.13 -0.04 0.06 -0.04 0.12 0.02 -0.07 0.04 -0.03 0.10 -0.06 0.03 0.00 0.02 -0.02 -0.06 0.03 -0.02 

24 -0.11 0.43 -0.01 -0.08 0.13 -0.04 0.05 0.00 0.01 0.01 0.67 0.10 -0.02 -0.06 0.07 -0.01 0.05 -0.06 0.06 0.13 0.02 0.04 -0.03 0.09 -0.01 0.01 0.03 0.03 -0.01 

25 0.11 0.51 0.08 0.09 -0.01 -0.11 -0.05 0.10 0.02 0.00 0.09 0.58 0.03 -0.05 0.02 -0.03 -0.07 -0.05 -0.01 -0.03 -0.03 -0.01 0.07 -0.02 0.06 -0.04 0.00 0.02 -0.02 

26 45 

0.10 0.54 0.04 0.05 -0.01 0.11 -0.01 0.08 -0.03 0.03 0.15 0.49 -0.04 -0.02 0.05 0.01 -0.02 0.08 0.06 0.10 0.02 0.03 0.03 -0.04 -0.04 0.05 0.02 0.00 0.05 

27 0.14 0.55 0.11 0.07 0.08 -0.02 0.10 0.15 0.02 -0.05 0.01 0.61 0.03 0.00 0.00 0.05 -0.01 -0.12 -0.05 -0.02 -0.04 0.04 0.09 -0.03 0.05 0.01 0.04 0.10 -0.06 

28 -0.19 -0.39 -0.03 0.04 0.10 -0.01 -0.08 -0.04 -0.05 0.04 -0.24 -0.31 0.00 -0.01 0.03 0.00 0.02 0.04 0.08 0.06 0.07 0.02 -0.05 0.05 0.03 -0.11 -0.05 -0.03 -0.04 

29 0.02 -0.69 -0.03 -0.07 0.06 0.00 -0.07 0.05 -0.01 0.03 -0.11 0.04 -0.16 0.01 -0.05 0.02 0.03 0.03 -0.07 -0.18 0.19 -0.05 -0.18 -0.06 0.02 0.02 -0.06 -0.03 -0.01 

30 0.06 -0.50 0.04 0.04 0.27 -0.04 0.10 0.01 -0.04 -0.05 -0.01 0.20 -0.31 -0.10 -0.01 -0.01 0.03 0.02 0.06 0.04 0.10 0.06 -0.20 0.03 -0.07 0.01 0.03 0.03 0.03 

31 -0.01 0.63 -0.07 -0.02 -0.16 0.12 -0.18 0.03 0.12 0.05 -0.16 -0.05 0.37 0.02 0.04 -0.03 -0.01 0.08 0.07 -0.01 0.08 0.07 0.03 0.09 0.01 0.15 -0.15 0.06 -0.02 

32 0.00 0.58 -0.06 0.06 0.01 -0.04 0.01 0.01 -0.08 -0.10 0.00 0.09 0.32 0.04 0.33 0.01 0.07 0.05 0.10 0.10 0.00 0.14 -0.02 0.02 -0.09 -0.05 -0.07 0.00 0.06 

Note. G1 = Emotionality; G2 = Extraversion; G3 = Conscientiousness; G4 = Openness to Experience; G5 = Agreeableness / Honesty-Humility; S1 = Fearfulness; S2 = 

Anxiety; S3 = Dependence; S4 = Sentimentality; S5 = Social Self-Esteem; S6 = Social Boldness; S7 = Sociability; S8 = Liveliness; S9 = Organization; S10 = Diligence; S11 = 

Perfectionism; S12 = Prudence; S13 = Aesthetic Appreciation; S14 = Inquisitiveness; S15 = Creativity; S16 = Unconventionality; S17 = Forgiveness; S18 = Gentleness; S19 = 

Flexibility; S20 = Patience; S21 = Sincerity; S22 = Fairness; S23 = Greed-Avoidance; S24 = Modesty. 
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Table A4 (Continuation). 

Item General factors Group factors 

G1 G2 G3 G4 G5 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 

33 0.07 -0.03 0.26 -0.04 0.06 -0.04 0.00 0.02 -0.02 0.00 0.06 0.04 0.02 -0.78 0.01 0.03 0.01 -0.02 0.06 0.12 0.09 0.03 -0.02 0.07 -0.04 0.01 0.03 -0.05 -0.04 

34 0.05 -0.04 0.60 -0.06 0.04 0.08 0.08 0.01 0.00 0.13 -0.02 0.00 -0.14 -0.43 0.05 0.06 -0.13 0.03 0.06 0.04 -0.02 0.10 -0.07 0.05 0.03 -0.07 0.08 0.00 -0.04 

35 -0.01 0.22 -0.24 0.06 0.15 0.04 0.01 0.01 0.04 0.02 -0.07 0.01 -0.01 0.77 0.08 0.01 0.00 0.01 0.06 0.05 0.05 0.06 -0.05 -0.02 0.06 -0.02 -0.02 0.06 -0.01 

36 0.13 0.02 -0.56 0.09 -0.02 -0.07 -0.04 -0.07 -0.06 0.03 0.01 0.02 0.04 0.30 0.04 -0.02 0.44 -0.02 -0.01 -0.05 0.05 -0.04 0.02 0.03 0.00 0.03 0.05 0.00 0.10 

37 0.11 0.11 -0.63 -0.06 0.02 -0.03 0.07 0.03 0.06 0.06 0.09 0.06 0.05 0.00 0.56 0.08 -0.08 0.06 0.00 -0.02 0.13 -0.06 -0.04 0.06 -0.02 0.06 0.06 -0.05 0.03 

38 0.15 -0.21 0.56 -0.08 0.11 0.02 0.02 -0.01 -0.06 0.36 -0.08 0.05 0.01 -0.08 -0.24 0.05 -0.05 -0.02 -0.02 -0.02 -0.02 0.03 0.00 0.01 -0.01 0.00 -0.04 0.06 0.09 

39 0.07 0.22 -0.38 -0.09 0.12 -0.03 0.07 -0.02 -0.01 0.26 0.07 -0.08 -0.01 -0.03 0.46 0.10 -0.01 -0.03 -0.04 0.11 0.01 0.06 0.10 0.01 0.04 -0.05 0.04 0.04 0.03 

40 0.07 -0.14 0.66 0.07 0.03 0.08 0.03 -0.01 -0.01 0.04 0.01 0.04 0.04 -0.01 -0.22 -0.14 -0.02 0.03 0.08 -0.04 0.09 0.08 0.00 0.01 0.01 0.04 0.01 0.07 -0.02 

41 0.18 -0.07 -0.50 -0.07 0.07 0.12 0.01 -0.05 0.10 0.00 -0.11 0.11 -0.04 -0.01 0.06 0.40 0.06 -0.01 0.07 0.03 -0.02 -0.05 -0.07 0.02 -0.06 0.04 0.02 0.00 0.02 

42 46 

-0.03 0.11 0.55 0.11 0.00 0.07 -0.03 0.02 -0.06 0.08 -0.07 0.04 -0.01 -0.01 0.07 -0.41 0.11 -0.24 -0.07 -0.06 0.04 0.05 -0.07 0.01 0.00 0.06 0.10 0.03 0.08 

43 -0.06 -0.07 -0.34 -0.02 0.05 -0.06 0.00 0.08 -0.06 0.11 -0.13 0.02 -0.06 -0.08 0.09 0.57 0.05 0.00 0.02 -0.02 0.09 0.00 0.01 0.05 0.07 0.05 -0.04 0.08 0.01 

44 0.19 -0.03 -0.46 -0.01 0.25 -0.03 0.08 0.02 0.03 0.06 0.07 -0.04 0.12 0.17 0.07 0.36 0.02 0.04 -0.06 0.11 0.13 0.10 -0.01 0.00 0.03 0.07 -0.02 0.02 0.05 

45 -0.04 0.06 0.60 -0.08 -0.11 -0.10 0.00 0.01 0.08 -0.02 -0.05 0.12 0.04 -0.02 0.00 0.00 -0.38 0.02 -0.12 0.14 0.13 -0.05 0.00 0.00 -0.05 0.02 -0.03 0.02 0.17 

46 -0.09 0.00 -0.39 0.04 -0.27 0.08 -0.03 -0.08 -0.09 -0.10 -0.11 0.00 0.06 -0.01 -0.23 -0.02 0.03 0.04 0.01 -0.06 0.21 0.02 -0.07 0.06 0.10 0.01 -0.05 0.09 -0.05 

47 0.13 0.05 0.61 -0.02 0.01 -0.07 -0.12 0.00 0.06 -0.06 0.03 0.08 0.05 0.12 0.23 0.00 0.00 0.03 -0.11 0.10 -0.09 -0.07 0.03 -0.02 -0.11 0.02 -0.08 -0.01 0.20 

48 0.05 -0.11 0.57 -0.01 0.17 0.10 -0.02 -0.01 0.00 0.00 -0.06 0.21 0.07 0.01 0.35 -0.06 0.04 -0.08 0.01 0.04 -0.02 0.10 -0.04 0.01 -0.09 0.05 -0.09 -0.02 -0.06 

Note. G1 = Emotionality; G2 = Extraversion; G3 = Conscientiousness; G4 = Openness to Experience; G5 = Agreeableness / Honesty-Humility; S1 = Fearfulness; S2 = 

Anxiety; S3 = Dependence; S4 = Sentimentality; S5 = Social Self-Esteem; S6 = Social Boldness; S7 = Sociability; S8 = Liveliness; S9 = Organization; S10 = Diligence; S11 = 

Perfectionism; S12 = Prudence; S13 = Aesthetic Appreciation; S14 = Inquisitiveness; S15 = Creativity; S16 = Unconventionality; S17 = Forgiveness; S18 = Gentleness; S19 = 

Flexibility; S20 = Patience; S21 = Sincerity; S22 = Fairness; S23 = Greed-Avoidance; S24 = Modesty. 
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Table A4 (Continuation). 

Item General factors Group factors 

G1 G2 G3 G4 G5 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 

49 0.02 -0.01 0.02 0.69 -0.03 -0.07 -0.07 -0.01 -0.04 0.05 0.05 -0.04 0.03 -0.05 0.02 0.05 -0.01 -0.30 0.02 -0.28 0.01 0.03 -0.05 0.04 -0.01 -0.02 0.06 0.01 0.00 

50 -0.07 0.05 -0.01 0.45 0.04 0.03 -0.06 0.00 -0.06 0.01 0.07 0.01 0.05 0.00 -0.01 -0.04 -0.05 -0.44 0.00 -0.29 0.04 -0.04 0.01 -0.10 0.10 0.02 -0.08 0.04 -0.02 

51 -0.05 -0.02 0.01 -0.60 0.06 0.04 -0.09 0.02 -0.04 0.05 0.08 -0.07 0.06 -0.05 0.05 -0.06 -0.03 0.47 0.04 -0.01 0.02 0.04 -0.09 -0.08 0.08 0.05 0.03 0.08 0.08 

52 0.02 -0.08 0.03 -0.34 -0.18 -0.06 0.07 0.04 0.14 0.24 -0.01 -0.08 0.05 0.04 0.02 0.03 0.06 0.27 0.13 0.22 0.07 0.00 0.05 -0.03 0.04 0.04 0.00 0.00 -0.15 

53 -0.06 -0.02 0.04 -0.28 -0.06 -0.08 -0.08 -0.10 -0.01 0.09 0.02 0.03 0.06 0.02 -0.03 -0.02 0.03 0.06 0.57 0.05 0.01 -0.01 -0.02 -0.01 0.03 -0.03 -0.02 0.00 0.08 

54 0.11 0.11 0.07 0.58 -0.04 -0.01 0.03 -0.04 -0.03 -0.05 -0.08 0.01 -0.06 0.03 0.03 -0.08 0.01 -0.02 -0.39 0.02 0.06 -0.02 0.00 -0.04 -0.03 -0.02 0.00 0.09 -0.04 

55 0.09 0.04 0.05 0.52 0.05 0.01 -0.10 0.03 0.06 0.08 0.01 0.08 0.09 0.04 -0.04 -0.08 -0.02 -0.01 -0.34 0.06 -0.07 -0.02 0.01 0.00 0.06 -0.08 -0.04 -0.06 0.05 

56 -0.05 0.06 0.00 -0.45 0.02 -0.03 0.08 -0.03 -0.04 -0.06 -0.06 0.03 -0.27 -0.04 -0.01 -0.04 0.07 0.04 0.49 0.00 0.05 -0.04 -0.08 0.01 -0.08 0.06 -0.05 -0.06 -0.01 

57 0.02 0.16 0.08 -0.33 0.05 -0.05 0.08 0.07 0.02 0.02 0.07 0.02 0.10 -0.03 0.06 0.03 -0.05 0.03 0.12 0.65 0.07 -0.04 0.00 -0.12 0.03 -0.02 -0.02 0.01 0.09 

58 47 

0.04 -0.02 -0.01 -0.62 -0.05 0.01 0.05 0.04 0.04 0.12 0.00 0.04 0.05 -0.05 -0.01 0.01 0.09 0.02 -0.14 0.51 -0.10 -0.01 0.00 0.07 0.03 -0.01 0.00 -0.02 0.03 

59 0.01 -0.07 0.02 0.43 0.00 -0.05 -0.05 -0.07 -0.01 0.02 0.00 -0.02 0.02 -0.04 0.00 0.00 0.08 0.04 0.15 -0.72 0.03 0.05 0.01 0.09 -0.01 -0.04 0.09 -0.03 -0.13 

60 0.01 -0.11 -0.08 0.34 0.08 0.02 0.11 -0.01 0.04 -0.07 -0.10 -0.03 0.00 0.11 -0.06 0.04 0.41 0.03 0.02 -0.41 0.06 0.01 0.04 0.04 0.03 0.08 -0.06 0.08 -0.03 

61 -0.11 -0.08 -0.07 0.52 0.06 0.23 0.02 0.06 0.03 -0.03 -0.05 -0.02 0.04 0.02 0.04 -0.19 0.06 0.08 0.05 -0.07 -0.04 -0.04 -0.03 -0.17 0.03 0.06 -0.17 0.05 0.07 

62 -0.02 0.11 0.21 -0.25 0.16 -0.03 0.01 -0.03 -0.04 -0.13 0.13 0.10 -0.04 -0.04 0.11 0.08 0.00 0.05 0.08 0.41 0.10 0.04 0.01 0.11 0.05 0.01 0.07 -0.06 -0.02 

63 0.01 0.08 0.18 -0.35 -0.05 -0.13 -0.16 -0.10 0.00 0.03 0.03 0.04 -0.14 -0.03 0.10 0.09 -0.15 0.01 0.08 0.26 0.26 0.07 0.08 0.17 0.04 -0.06 0.04 -0.10 -0.06 

64 -0.01 -0.01 0.00 0.62 0.08 0.00 -0.01 -0.03 0.00 -0.04 -0.04 0.10 0.20 0.03 0.00 -0.08 0.06 -0.02 -0.06 -0.19 -0.02 -0.05 -0.07 -0.14 -0.03 -0.02 0.03 0.04 0.03 

Note. G1 = Emotionality; G2 = Extraversion; G3 = Conscientiousness; G4 = Openness to Experience; G5 = Agreeableness / Honesty-Humility; S1 = Fearfulness; S2 = 

Anxiety; S3 = Dependence; S4 = Sentimentality; S5 = Social Self-Esteem; S6 = Social Boldness; S7 = Sociability; S8 = Liveliness; S9 = Organization; S10 = Diligence; S11 = 

Perfectionism; S12 = Prudence; S13 = Aesthetic Appreciation; S14 = Inquisitiveness; S15 = Creativity; S16 = Unconventionality; S17 = Forgiveness; S18 = Gentleness; S19 = 

Flexibility; S20 = Patience; S21 = Sincerity; S22 = Fairness; S23 = Greed-Avoidance; S24 = Modesty. 
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Table A4 (Continuation). 

Item General factors Group factors 

G1 G2 G3 G4 G5 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 

65 0.07 -0.05 -0.08 0.07 0.38 0.03 -0.04 -0.13 0.13 0.05 0.08 -0.01 -0.06 -0.03 0.02 0.09 0.13 0.04 0.03 0.01 0.06 -0.44 0.02 0.06 -0.04 -0.06 0.07 0.00 0.00 

66 0.06 -0.14 -0.05 0.02 0.53 0.03 0.09 -0.01 0.05 0.01 -0.06 0.05 0.07 0.02 -0.03 -0.04 0.01 -0.01 -0.01 -0.07 0.07 -0.61 0.02 0.00 -0.01 -0.02 0.00 -0.03 -0.02 

67 -0.01 0.10 0.09 -0.02 -0.57 0.03 0.05 -0.02 0.09 -0.01 0.06 -0.01 -0.01 -0.01 -0.03 0.00 0.05 -0.02 -0.01 0.00 0.01 0.58 0.01 -0.02 0.01 0.04 0.00 0.08 0.07 

68 0.04 0.17 0.00 0.00 -0.42 -0.02 -0.07 0.01 0.07 0.07 0.00 0.10 0.07 -0.02 0.04 0.01 0.06 0.05 0.00 -0.06 0.09 0.61 0.07 -0.05 0.03 -0.08 0.02 0.05 0.06 

69 0.13 -0.06 0.02 0.08 -0.52 0.00 -0.02 -0.05 0.02 0.00 -0.09 0.03 0.03 -0.02 0.08 -0.09 0.05 0.00 0.06 0.02 0.24 0.01 0.20 -0.02 0.07 0.09 0.09 0.08 0.06 

70 -0.01 -0.04 0.00 0.07 -0.56 0.01 0.11 -0.07 -0.05 0.05 -0.06 0.10 0.06 -0.01 0.01 0.04 -0.02 0.07 0.00 0.05 0.26 0.12 0.38 -0.02 -0.03 0.04 0.03 0.01 -0.02 

71 0.07 -0.03 0.07 -0.11 -0.42 -0.05 0.03 -0.03 0.14 0.08 0.02 0.12 0.07 0.00 0.05 0.08 -0.04 -0.07 -0.01 -0.01 0.11 0.27 0.54 -0.02 0.02 0.01 0.09 -0.09 -0.06 

72 -0.10 0.02 -0.04 -0.02 0.65 -0.05 -0.04 -0.07 -0.07 0.13 0.11 -0.01 0.02 0.01 0.05 -0.01 -0.06 0.03 0.03 -0.06 0.13 0.04 -0.42 0.08 -0.08 -0.11 -0.05 -0.12 -0.03 

73 -0.05 0.09 0.10 -0.04 -0.34 -0.03 0.04 -0.04 -0.01 0.07 -0.07 0.03 -0.01 0.06 0.06 0.06 0.00 -0.09 -0.09 -0.05 0.28 0.07 0.10 -0.46 0.01 0.08 0.00 0.05 0.00 

74 48 

0.05 -0.09 -0.09 0.00 0.44 -0.08 0.08 -0.07 0.06 -0.01 0.00 0.01 0.01 -0.09 0.05 -0.05 0.03 -0.04 0.02 0.01 0.10 -0.02 -0.06 0.36 -0.24 -0.02 -0.03 -0.12 -0.05 

75 0.03 0.00 0.02 -0.11 0.57 0.05 -0.01 0.04 -0.09 0.05 0.03 -0.11 0.07 -0.03 0.02 0.04 -0.04 0.01 -0.06 -0.02 0.04 -0.03 -0.01 0.41 0.06 -0.01 -0.10 -0.07 -0.02 

76 0.00 0.02 0.11 0.00 0.48 0.03 0.06 0.05 0.12 0.00 0.03 0.01 0.00 -0.01 0.08 0.10 0.13 -0.08 -0.01 -0.09 -0.11 -0.03 -0.05 0.43 -0.11 0.01 0.03 0.05 -0.02 

77 -0.01 -0.03 0.09 0.03 0.54 0.01 -0.01 0.01 0.00 0.02 0.07 0.08 -0.07 -0.03 0.07 -0.05 0.00 0.03 0.07 0.03 0.04 0.03 -0.08 0.04 -0.66 -0.03 -0.03 0.04 0.00 

78 0.08 0.08 0.16 -0.04 0.55 0.08 -0.01 0.09 0.02 -0.09 0.02 -0.04 0.06 -0.07 0.08 0.06 0.06 0.02 -0.02 -0.06 -0.04 -0.10 0.00 0.02 -0.41 -0.10 -0.03 0.04 0.11 

79 -0.06 0.08 -0.05 -0.03 -0.40 0.11 -0.06 0.04 0.08 -0.05 -0.02 0.05 -0.01 -0.02 0.00 0.09 0.01 -0.05 0.05 0.07 0.11 0.06 0.04 -0.03 0.59 -0.08 0.03 0.13 0.05 

80 -0.16 0.01 0.05 0.02 -0.51 0.02 0.01 -0.03 -0.05 -0.02 -0.04 0.00 0.08 0.00 0.01 -0.10 0.07 0.09 0.05 -0.03 0.09 0.23 -0.03 0.08 0.35 0.12 0.02 0.06 0.14 

Note. G1 = Emotionality; G2 = Extraversion; G3 = Conscientiousness; G4 = Openness to Experience; G5 = Agreeableness / Honesty-Humility; S1 = Fearfulness; S2 = 

Anxiety; S3 = Dependence; S4 = Sentimentality; S5 = Social Self-Esteem; S6 = Social Boldness; S7 = Sociability; S8 = Liveliness; S9 = Organization; S10 = Diligence; S11 = 

Perfectionism; S12 = Prudence; S13 = Aesthetic Appreciation; S14 = Inquisitiveness; S15 = Creativity; S16 = Unconventionality; S17 = Forgiveness; S18 = Gentleness; S19 = 

Flexibility; S20 = Patience; S21 = Sincerity; S22 = Fairness; S23 = Greed-Avoidance; S24 = Modesty. 
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Table A4 (Continuation). 

Item General factors Group factors 

G1 G2 G3 G4 G5 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 

81 0.03 0.09 0.17 -0.05 0.35 -0.02 0.08 0.01 0.04 -0.14 0.03 0.02 0.06 -0.06 -0.06 0.06 0.10 -0.01 -0.02 -0.03 0.10 0.09 0.09 -0.04 0.08 0.62 0.01 0.06 0.12 

82 0.05 -0.08 -0.19 -0.08 -0.31 0.06 0.02 -0.04 0.06 -0.07 -0.02 0.01 0.08 -0.06 -0.03 0.05 0.02 -0.01 -0.06 0.06 0.03 -0.06 0.02 0.01 -0.02 -0.58 -0.08 0.01 -0.03 

83 -0.05 -0.21 -0.13 0.09 -0.31 -0.01 0.07 0.04 0.02 -0.05 -0.03 -0.05 0.06 -0.06 -0.06 0.04 0.06 0.01 -0.02 -0.03 0.05 0.02 -0.04 0.04 0.08 -0.51 -0.18 -0.14 0.00 

84 0.05 0.01 0.23 0.05 0.29 0.04 0.07 0.12 -0.01 0.03 -0.07 0.06 0.10 0.01 -0.01 0.07 0.03 0.04 0.02 0.03 0.04 -0.06 0.01 -0.01 0.09 0.57 0.11 0.10 0.09 

85 -0.01 -0.06 -0.20 -0.16 -0.32 0.02 -0.06 0.03 0.03 -0.01 0.06 -0.14 0.02 0.07 0.00 0.09 0.08 0.05 -0.06 -0.03 0.12 -0.04 -0.02 -0.02 -0.06 -0.19 -0.42 -0.10 -0.02 

86 -0.12 0.02 0.30 0.03 0.43 -0.11 0.05 0.01 -0.03 -0.07 0.00 0.01 0.02 0.06 0.04 -0.01 0.00 0.01 0.00 -0.06 0.07 -0.04 0.14 -0.01 0.04 0.06 0.63 0.10 -0.04 

87 -0.25 0.00 0.29 0.04 0.39 -0.04 0.02 0.01 0.02 0.02 -0.01 -0.02 -0.04 -0.04 -0.04 -0.01 0.07 0.07 -0.08 0.03 0.00 -0.03 0.04 -0.02 0.06 0.07 0.67 0.01 0.00 

88 -0.12 -0.03 0.29 -0.05 0.26 -0.01 -0.01 -0.02 -0.01 0.02 0.05 0.03 -0.06 -0.07 0.00 -0.03 0.01 -0.02 0.02 -0.01 0.05 0.04 -0.06 -0.04 -0.03 0.08 0.66 0.01 0.07 

89 -0.09 0.20 0.09 0.19 0.33 -0.02 0.08 0.02 0.02 0.03 -0.04 0.00 0.01 0.04 -0.04 -0.01 0.05 0.05 0.03 -0.09 0.00 0.01 -0.06 -0.03 -0.01 0.04 0.03 0.65 0.13 

90 49 

-0.02 0.20 -0.04 0.07 0.44 0.07 -0.02 -0.08 0.02 -0.04 -0.01 0.04 0.09 0.07 -0.04 -0.01 -0.03 -0.05 -0.06 0.01 0.02 0.08 0.02 0.04 0.08 0.11 0.02 0.67 0.07 

91 0.04 -0.09 0.07 -0.11 -0.60 -0.02 0.04 0.00 0.09 0.01 0.02 0.00 0.06 0.02 0.02 0.02 0.01 -0.04 0.05 0.08 0.02 -0.02 -0.25 0.13 -0.09 0.04 0.04 -0.42 0.07 

92 0.09 0.19 0.08 0.08 0.41 0.04 -0.02 0.00 0.04 0.00 0.05 0.06 0.00 0.01 0.01 0.04 0.02 0.02 -0.02 -0.02 0.00 0.00 0.03 -0.08 -0.03 0.04 0.12 0.70 0.06 

93 0.32 -0.26 0.00 0.03 -0.42 -0.04 -0.10 -0.03 0.02 -0.02 0.02 0.10 0.11 -0.01 0.05 -0.02 0.08 0.03 -0.08 -0.11 0.05 -0.09 0.04 0.04 -0.10 0.01 -0.09 -0.06 -0.40 

94 -0.31 -0.02 0.08 0.00 0.41 0.08 -0.08 0.09 -0.11 -0.06 0.01 0.08 0.10 -0.04 0.07 -0.10 0.03 0.03 0.11 0.08 0.10 0.02 -0.03 -0.08 0.07 0.01 -0.02 0.12 0.39 

95 -0.08 0.16 -0.04 -0.01 0.50 0.01 -0.05 0.08 -0.03 0.16 0.05 0.02 0.00 0.05 0.02 0.06 0.01 -0.06 0.05 0.06 0.06 0.06 0.03 0.06 0.03 0.16 0.04 0.29 0.47 

96 0.28 -0.13 -0.01 0.00 -0.48 -0.06 -0.06 -0.04 -0.03 0.06 0.00 0.00 -0.02 -0.03 -0.02 0.01 0.00 -0.03 0.08 -0.01 0.09 -0.12 0.01 0.05 -0.07 -0.13 0.03 -0.17 -0.45 

Note. G1 = Emotionality; G2 = Extraversion; G3 = Conscientiousness; G4 = Openness to Experience; G5 = Agreeableness / Honesty-Humility; S1 = Fearfulness; S2 = 

Anxiety; S3 = Dependence; S4 = Sentimentality; S5 = Social Self-Esteem; S6 = Social Boldness; S7 = Sociability; S8 = Liveliness; S9 = Organization; S10 = Diligence; S11 = 

Perfectionism; S12 = Prudence; S13 = Aesthetic Appreciation; S14 = Inquisitiveness; S15 = Creativity; S16 = Unconventionality; S17 = Forgiveness; S18 = Gentleness; S19 = 

Flexibility; S20 = Patience; S21 = Sincerity; S22 = Fairness; S23 = Greed-Avoidance; S24 = Modesty. 



983 

Table A5. Estimated factor correlations between the 
general factors for the HEXACO-100. Correlations
with absolute values greater than .20 are shown in 
bold and underlined. 

G1 G2 G3 G4 G5 

G1 

G2 

G3 

G4 

G5 

-

-0.17 

0.03 

0.21 

0.34 

-

-0.15 

-0.06 

-0.25 

-

0.01 

0.13 

-

0.15 -

Note. G1 = Emotionality; G2 = Extraversion; G3 = Conscien-
tiousness; G4 = Openness to Experience; G5 = Agreeableness 

/ Honesty-Humility. 
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Table 1. Simulated loadings for a condition with one general factor, 
four group factors and medium loadings on both the general and 
group factors. When cross-loadings (underlined) were included, small 
values were subtracted from the loadings on the general and group 
factors to maintain the original communality (h2). 

Item Simple structure Cross-loadings 

G S1 S2 S3 S4 h2 G S1 S2 S3 S4 h2 

1 .45 .60 .57 .40 .56 .30 .57 

2 .47 .53 .51 .47 .53 .51 

3 .51 .47 .48 .51 .47 .48 

4 .58 .40 .50 .58 .40 .50 

5 .44 .60 .55 .39 .30 .56 .55 

6 .58 .53 .62 .58 .53 .62 

7 .59 .47 .56 .59 .47 .56 

8 .53 .40 .44 .53 .40 .44 

9 .53 .60 .64 .48 .30 .56 .64 

10 .41 .53 .45 .41 .53 .45 

11 .44 .47 .41 .44 .47 .41 

12 .44 .40 .35 .44 .40 .35 

13 .54 .60 .65 .49 .30 .56 .65 

14 .48 .53 .51 .48 .53 .51 

15 .55 .47 .52 .55 .47 .52 

16 .50 .40 .41 .50 .40 .41 

Avg. .51 .51 
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Table 2. Marginal hit rates across each variable level for each factor retention method. 

Group factors General factors 

Variable Kaiser PAPAF PAPCA EGALV PAPCA-FS EGALV EGALV-FS 

K1 EKC mean 95th mean 95th mean 95th 

MF 
zero 
close 

.76 

.44 
.93 
.48 

.98 

.21 
.98 
.29 

.86 

.81 
.84 
.80 

.87 

.86 
.99 
.99 

.98 

.99 
.10 
.09 

1.00 
1.00 

N 
500 
1000 
2000 
5000 

.33 

.55 

.72 

.81 

.62 

.66 

.73 

.81 

.72 

.63 

.53 

.50 

.79 

.69 

.57 

.51 

.68 

.85 

.90 

.91 

.64 

.83 

.89 

.91 

.84 

.86 

.87 

.89 

.97 

.99 
1.00 
1.00 

.95 

.99 
1.00 
1.00 

.06 

.09 

.11 

.13 

1.00 
1.00 
1.00 
1.00 

N.GF 
1 
2 
3 

.78 

.61 

.49 

.81 

.71 

.65 

.52 

.60 

.62 

.58 

.66 

.65 

.95 

.87 

.74 

.94 

.85 

.73 

.98 

.91 

.76 

1.00 
.99 
.98 

1.00 
.99 
.98 

.00 

.02 

.22 

1.00 
1.00 
.99 

COR.GF 
0 

.30 
.67 
.50 

.67 

.61 
.64 
.52 

.69 

.56 
.87 
.77 

.86 

.76 
.88 
.84 

.99 

.99 
.99 
.98 

.09 

.10 
1.00 
1.00 

VAR.GRF 
4 
6 
8 
10 

.90 

.68 

.48 

.34 

.91 

.79 

.62 

.49 

.59 

.59 

.59 

.60 

.67 

.64 

.63 

.62 

.60 

.89 

.93 

.92 

.56 

.87 

.92 

.92 

.75 

.83 

.92 

.95 

.97 
1.00 
1.00 
1.00 

.94 
1.00 
1.00 
1.00 

.25 

.13 

.01 

.00 

.99 
1.00 
1.00 
1.00 

N.GRF 
4 
5 
6 

.68 

.60 

.52 

.77 

.70 

.65 

.61 

.59 

.57 

.67 

.64 

.61 

.88 

.84 

.78 

.87 

.82 

.76 

.90 

.86 

.83 

.99 

.99 

.99 

.98 

.99 

.99 

.10 

.10 

.10 

1.00 
1.00 
1.00 

CROSS.GRF 
0 

.15 

.30 

.61 

.60 

.59 

.72 

.71 

.69 

.60 

.60 

.58 

.65 

.64 

.63 

.87 

.84 

.79 

.86 

.82 

.78 

.99 

.89 

.70 

.99 

.99 

.99 

.98 

.98 

.99 

.07 

.08 

.14 

1.00 
1.00 
.99 

LOAD.GRF 
low 

medium 
.52 
.68 

.67 

.74 
.59 
.60 

.64 

.63 
.75 
.92 

.72 

.91 
.80 
.93 

.98 
1.00 

.97 
1.00 

.18 

.02 
.99 
1.00 

LOAD.GF 
low 

medium 
.52 
.68 

.68 

.73 
.60 
.59 

.66 

.62 
.88 
.79 

.87 

.77 
.86 
.87 

1.00 
.98 

1.00 
.97 

.07 

.13 
1.00 
1.00 

Total .60 .70 .59 .64 .83 .82 .86 .99 .99 .10 1.00 

Note. K1 = Kaiser eigenvalue greater-than-one criterion; EKC = Empirical Kaiser Criterion; PAPAF 

= Parallel analysis with principal axis factoring; PAPCA = Parallel analysis with principal components; 
PAPCA-FS = Parallel analysis with principal components on the frst-order factor scores; EGA = Exploratory 
Graph Analysis; EGALV = EGA with Louvain; EGALV-FS = EGA with Louvain on the frst-order factor 
scores; MF = population misft; N = sample size; N.GF = number of general factors; COR.GF = 
correlation between general factors; VAR.GRF = number of indicators per group factor; N.GRF = number 
of group factors per general factor; CROSS.GRF = cross-loadings in the group factors; LOAD.GRF = 
loadings on the group factors; LOAD.GF = loadings on the general factors. 
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Table 3. Mean bias error (MBE) across each variable level for each factor retention method. 

Group factors General factors 

Variable Kaiser PAPAF PAPCA EGALV PAPCA-FS EGALV EGALV-FS 

K1 EKC mean 95th mean 95th mean 95th 

MF 
zero 
close 

1.56 
2.58 

0.02 
1.23 

0.01 
3.83 

-0.01 
3.17 

-0.48 
-0.40 

-0.57 
-0.49 

-0.30 
-0.29 

-0.01 
-0.01 

-0.02 
-0.02 

0.64 
0.70 

0.00 
0.00 

N 
500 
1000 
2000 
5000 

4.84 
2.25 
0.85 
0.33 

0.62 
0.88 
0.67 
0.33 

0.40 
1.00 
2.12 
4.17 

0.16 
0.68 
1.72 
3.76 

-1.13 
-0.44 
-0.16 
-0.01 

-1.37 
-0.54 
-0.20 
-0.02 

-0.26 
-0.31 
-0.31 
-0.30 

-0.03 
0.00 
0.00 
0.00 

-0.07 
-0.01 
0.00 
0.00 

1.48 
0.86 
0.39 
-0.05 

0.00 
0.00 
0.00 
-0.01 

N.GF 
1 
2 
3 

0.41 
1.51 
3.46 

0.31 
0.56 
0.84 

2.43 
1.73 
1.86 

1.99 
1.41 
1.54 

-0.07 
-0.31 
-0.75 

-0.10 
-0.39 
-0.89 

0.02 
-0.14 
-0.61 

0.00 
0.00 
-0.02 

0.00 
-0.01 
-0.04 

-0.88 
0.12 
2.00 

0.00 
0.00 
-0.01 

COR.GF 
0 

.30 
1.61 
2.76 

0.34 
1.05 

1.23 
2.96 

0.96 
2.51 

-0.40 
-0.49 

-0.48 
-0.61 

-0.26 
-0.35 

-0.01 
-0.01 

-0.02 
-0.02 

0.40 
1.08 

0.00 
0.00 

VAR.GRF 
4 
6 
8 
10 

0.09 
0.99 
2.55 
4.64 

-0.10 
0.31 
0.83 
1.46 

0.88 
1.65 
2.31 
2.85 

0.59 
1.32 
1.94 
2.47 

-1.46 
-0.29 
-0.04 
0.05 

-1.73 
-0.36 
-0.07 
0.03 

-0.76 
-0.28 
-0.10 
-0.04 

-0.04 
0.00 
0.00 
0.00 

-0.08 
0.00 
0.00 
0.00 

1.41 
1.20 
0.40 
-0.33 

-0.01 
0.00 
0.00 
0.00 

N.GRF 
4 
5 
6 

1.23 
2.02 
2.96 

0.44 
0.63 
0.81 

1.60 
1.92 
2.25 

1.28 
1.58 
1.88 

-0.24 
-0.42 
-0.65 

-0.31 
-0.51 
-0.77 

-0.17 
-0.29 
-0.42 

-0.01 
-0.01 
-0.01 

-0.02 
-0.02 
-0.02 

-0.26 
0.61 
1.67 

-0.01 
0.00 
0.00 

CROSS.GRF 
0 

.15 

.30 

2.06 
2.06 
2.09 

0.66 
0.64 
0.58 

2.00 
1.95 
1.81 

1.66 
1.62 
1.47 

-0.33 
-0.43 
-0.55 

-0.42 
-0.53 
-0.65 

0.00 
-0.14 
-0.75 

-0.01 
-0.01 
0.00 

-0.02 
-0.03 
-0.01 

0.20 
0.62 
1.19 

0.00 
0.00 
-0.01 

LOAD.GRF 
low 

medium 
2.95 
1.19 

0.71 
0.54 

1.90 
1.94 

1.52 
1.64 

-0.82 
-0.05 

-0.98 
-0.08 

-0.48 
-0.11 

-0.02 
0.00 

-0.04 
0.00 

1.32 
0.03 

-0.01 
0.00 

LOAD.GF 
low 

medium 
2.97 
1.17 

0.71 
0.54 

1.68 
2.16 

1.34 
1.82 

-0.24 
-0.63 

-0.31 
-0.75 

-0.28 
-0.31 

0.00 
-0.02 

0.00 
-0.04 

0.80 
0.55 

0.00 
-0.01 

Total 2.07 0.63 1.92 1.58 -0.44 -0.53 -0.29 -0.01 -0.02 0.67 0.00 

Note. K1 = Kaiser eigenvalue greater-than-one criterion; EKC = Empirical Kaiser Criterion; PAPAF 

= Parallel analysis with principal axis factoring; PAPCA = Parallel analysis with principal components; 
PAPCA-FS = Parallel analysis with principal components on the frst-order factor scores; EGA = Exploratory 
Graph Analysis; EGALV = EGA with Louvain; EGALV-FS = EGA with Louvain on the frst-order factor 
scores; MF = population misft; N = sample size; N.GF = number of general factors; COR.GF = 
correlation between general factors; VAR.GRF = number of indicators per group factor; N.GRF = number 
of group factors per general factor; CROSS.GRF = cross-loadings in the group factors; LOAD.GRF = 
loadings on the group factors; LOAD.GF = loadings on the general factors. 
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Table 4. Partial omega squared coefcients (Ω2) from the ANOVAs on the absolute error for 
all the nine main efects, and for the remaining coefcients whose Ω2 ≥ .14 or close in at least 
one factor retention method. 

Coefcients Group factors General factors 

PAPCA EGALV PAPCA-FS EGALV-FS 

Main efects 

VAR.GRF 
N 

N.GF 
LOAD.GF 

LOAD.GRF 
N.GRF 

MF 
COR.GF 

CROSS.GRF 

0.57 
0.39 
0.29 
0.15 
0.35 
0.13 
0.00 
0.00 
0.03 

0.22 
0.00 
0.18 
0.00 
0.12 
0.04 
0.00 
0.00 
0.28 

0.03 
0.02 
0.01 
0.01 
0.01 
0.00 
0.00 
0.00 
0.00 

0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 

Two-way interactions 

VAR.GRF × LOAD.GRF 
VAR.GRF × N 

VAR.GRF × N.GF 
N × LOAD.GRF 

N × N.GF 
VAR.GRF × LOAD.GF 

N.GF × LOAD.GRF 
VAR.GRF × CROSS.GRF 

N.GF × CROSS.GRF 

0.45 
0.44 
0.28 
0.26 
0.20 
0.19 
0.16 
0.05 
0.01 

0.09 
0.01 
0.14 
0.00 
0.00 
0.00 
0.08 
0.33 
0.20 

0.03 
0.06 
0.02 
0.02 
0.01 
0.02 
0.01 
0.00 
0.00 

0.01 
0.00 
0.01 
0.00 
0.00 
0.00 
0.00 
0.02 
0.01 

Three-way interactions 

VAR.GRF × N × LOAD.GRF 
VAR.GRF × N × N.GF 

VAR.GRF × N.GF × LOAD.GRF 
VAR.GRF × N.GF × CROSS.GRF 

VAR.GRF × LOAD.GRF × CROSS.GRF 

0.21 
0.18 
0.17 
0.01 
0.01 

0.00 
0.01 
0.05 
0.22 
0.13 

0.06 
0.04 
0.02 
0.00 
0.00 

0.00 
0.00 
0.01 
0.02 
0.01 

Note. PAPCA = Parallel analysis with principal components; PAPCA-FS = Parallel analysis 
with principal components on the frst-order factor scores; EGA = Exploratory graph 
analysis; EGALV = EGA with Louvain; EGALV-FS = EGA with Louvain on the frst-order 
factor scores. MF = population misft; N.GF = number of general factors; COR.GF = 
Correlation between general factors; N = sample size; VAR.GRF = Number of indicators 
per group factor; N.GRF = number of group factors per general factor; CROSS.GRF 
= cross-loadings in the group factors; LOAD.GF = loadings on the general factors; 
LOAD.GRF = loadings on the group factors; 
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985 Figures 
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Figure 1. Illustration of a bi-factor model with two general factors (G) and four group factors 
(S) for twelve indicators (X). The grey arrows represent cross-loadings among the group 
factors, with each group factor having an indicator that cross-load on another group factor. 
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Figure 2. Graph of a network estimated with a Gaussian Graphical Model and GLASSO. 
Each color represents a factor and the items were clustered with the Louvain algorithm. 
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Figure 3. Mean Absolute Error (MAE) for the number of group factors for the PAPCA method, 
as function of the number of variables per group factor, sample size (N), and the loadings on 
the group factors (LOAD.GRF; panel a) or the number of general factors (N.GF; panel b). 
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Figure 4. Mean Absolute Error (MAE) for the number of group factors for the PAPCA method, 
as function of the number of variables per group factor, the number of general factors 
(N.GF), and the loadings on the group factors (LOAD.GRF). 
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Figure 5. Mean Absolute Error (MAE) for the number of group factors for the PAPCA method, 
as function of the number of variables per group factor and the loadings on the general 
factors (LOAD.GF). 
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Figure 6. Mean Absolute Error (MAE) for the number of group factors for the EGALV 

method, as function of the number of variables per group factor, cross-loadings on the group 
factors (CROSS.GRF), and the number of general factors (N.GF; panel a) or the loadings on 
the group factors (LOAD.GRF; panel b). 
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Figure 7. Factor loadings for the HEXACO-100 data (excluding the Altruism scale) from an 
exploratory bi-factor analysis with fve general factors and 24 group factors estimated with 
GSLiD. For simplicity, the absolute value of the factor loadings is shown. 
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986 Figure captions 

Figure 1. Illustration of a bi-factor model with two general factors (G) and four group factors 
(S) for twelve indicators (X). The grey arrows represent cross-loadings among the group 
factors, with each group factor having an indicator that cross-load on another group factor. 

Figure 2. Graph of a network estimated with a Gaussian Graphical Model and GLASSO. 
Each color represents a factor and the items were clustered with the Louvain algorithm. 

Figure 3. Mean Absolute Error (MAE) for the number of group factors for the PAPCA method, 
as function of the number of variables per group factor, sample size (N), and the loadings on 
the group factors (LOAD.GRF; panel a) or the number of general factors (N.GF; panel b). 

Figure 4. Mean Absolute Error (MAE) for the number of group factors for the PAPCA method, 
as function of the number of variables per group factor, the number of general factors 
(N.GF), and the loadings on the group factors (LOAD.GRF). 

Figure 5. Mean Absolute Error (MAE) for the number of group factors for the PAPCA method, 
as function of the number of variables per group factor and the loadings on the general 
factors (LOAD.GF). 

Figure 6. Mean Absolute Error (MAE) for the number of group factors for the EGALV 

method, as function of the number of variables per group factor, cross-loadings on the group 
factors (CROSS.GRF), and the number of general factors (N.GF; panel a) or the loadings on 
the group factors (LOAD.GRF; panel b). 

Figure 7. Factor loadings for the HEXACO-100 data (excluding the Altruism scale) from an 
exploratory bi-factor analysis with fve general factors and 24 group factors estimated with 
GSLiD. For simplicity, the absolute value of the factor loadings is shown. 
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