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Abstract 

Exploratory bi-factor analysis (EBFA) is a very popular approach to estimate 

models where specifc factors are concomitant to a single, general dimension. 
However, the models typically encountered in felds like personality, intelligence, 
and psychopathology involve more than one general factor. To address this circum-
stance, we developed an algorithm (GSLiD) based on partially specifed targets to 

perform exploratory bi-factor analysis with multiple general factors (EBFA-MGF). 
In EBFA-MGF, researchers do not need to conduct independent bi-factor analyses 

anymore because several bi-factor models are estimated simultaneously in an 

exploratory manner, guarding against biased estimates and model misspecifcation 

errors due to unexpected cross-loadings and factor correlations. The results from 

an exhaustive Monte Carlo simulation manipulating nine variables of interest sug-
gested that GSLiD outperforms the Schmid-Leiman approximation and is robust 
to challenging conditions involving cross-loadings and pure items of the general 
factors. Thereby, we supply an R package (bifactor) to make EBFA-MGF readily 

available for substantive research. Finally, we use GSLiD to assess the hierarchical 
structure of a reduced version of the Personality Inventory for DSM-5 Short Form 

(PID-5-SF). 

Keywords: Bi-factor analysis, Exploratory factor analysis, Hierarchical struc-
tures, Target rotation 
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1 1 Introduction 

2 Bi-factor analysis is an increasingly popular strategy to conceptualize psychological constructs 

3 (Reise, 2012). Their distinctive feature is addressing within-item multidimensionality by 

4 allowing the indicators to load simultaneously on one orthogonal general factor (e.g., emotional 

5 stability) and narrower group factors (e.g., anxiety and depression). In other words, all items 

6 share some common variance attributable to a single factor that captures a broader meaning 

7 than that of the specifc dimensions and is orthogonal to them. It has been argued that this 

8 perspective prompts the understanding of complex phenomena like intelligence (Beaujean, 

9 2015), personality (Abad et al., 2018), and psychopathology (Bornovalova et al., 2020), where 

10 the data usually display a hierarchical organization, with narrow constructs nested within 

11 broader dimensions. As an example, consider the HiTOP model, a new approach to the 

12 taxonomy of psychopathology that conceptualizes psychopathological traits across diferent 

13 strata and, ultimately, may conceive a general factor of psychopathology (Kotov et al., 2017). 

14 Such hierarchical structures are ubiquitous in psychometric modeling and statistical models 

15 like the bi-factor aim to address this important feature. 

16 Currently, the exploratory estimation of bi-factor structures is an active research area 

17 with proposals involving the use of analytic rotation criteria (Jennrich & Bentler, 2012, 2011) 

18 and target matrices on the factor loadings (Abad et al., 2017; Garcia-Garzon et al., 2019; 

19 Lorenzo-Seva & Ferrando, 2019; Waller, 2018). Exploratory bi-factor analysis (EBFA) is a 

20 relevant contribution to applied research because real data exhibit complex features (e.g., 

21 cross-loadings) that are prone to be misspecifed in confrmatory factor analysis (CFA). Usually, 

22 CFA is overly restrictive, especially for large factor structures, and such misspecifcations 

23 severely bias the parameter estimates and undermine model ft indices (Marsh et al., 2014). 

24 Despite these recent advances, a limitation of bi-factor analysis is that it only enables a 

25 single general factor, whereas a bi-factor model may include more than one general factor 

26 (Giordano et al., 2020) and many instances of psychological assessment involve multiple 

27 general factors. As a consequence of this limitation, applied researchers analyzing large factor 
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28 structures may fnd themselves constrained to ft an independent bi-factor model to each 

29 domain of the data (i.e., analyzing frst the items that theoretically load on Neuroticism, then 

30 those pertaining to Extraversion, and so on). In this situation, the model misspecifcations 

31 that EBFA tried to address become a concern again because the items are not allowed to 

32 cross-load on general and group factors outside their theoretical domain, with the correlations 

33 between the general factors being also ignored. This is highly problematic because, in a domain 

34 by domain analysis, item loadings on the theoretical domain would be upwardly biased if they 

35 actually load with the same sign on another domain (i.e., interstitial cross-loadings) that is 

36 positively correlated with the theoretical one. On the other hand, they would be downwardly 

37 biased if the interstitial loadings have opposite signs or the correlation between the domains is 

38 negative (Abad et al., 2018). For these reasons, we consider necessary to generalize EBFA to 

39 account for multiple general factors (Figure 1), giving raise to exploratory bi-factor analysis 

40 with multiple general factors (EBFA-MGF). This generalization accommodates several bi-

41 factor structures within a unique model, presenting a layer of general factors that is orthogonal 

42 to the layer of group factors. In EBFA-MGF, all the factor correlations within the same 

43 layer of factors and all the cross-loadings would be estimated, ofering the opportunity to 

44 uncover item complexities and factor correlations that with other methods of analysis would 

45 remain hidden, biasing the parameter estimates. In this framework, the group factors bear 

46 the same meaning as in the exploratory bi-factor case: they refer to specifc content. However, 

47 we note an important diference between the traditional bi-factor model and the proposed 

48 bi-factor model with multiple general factors. In the former, the general factor is a common 

49 dimension afecting all items whereas in the latter, a general factor is conceptualized as a 

50 broader dimension that encompasses the indicators pertaining to a subset of group factors. 

51 According to this defnition, general factors in EBFA-MGF should appear to comprise, at 

52 least, two group factors. For instance, in Figure 1 the items X1 − X3 and X4 − X6 are salient 

53 indicators of the group factors S1 and S2, respectively, and each of these items is also a salient 

54 indicator of a broader factor, G1. In the same manner, the items X7 − X9 and X10 − X12 are 
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55 salient indicators of the group factors S3 and S4, respectively, and each of these items is also 

56 a salient indicator of another broader factor, G2. Thus, there are two general factors defned 

57 by the fact that each of them encompasses the salient indicators of two group factors. 

58 Graphically, the bi-factor model with multiple general factors is similar to the two-tier 

59 model proposed by Cai (2010). However, the two-tier model assumes a confrmatory simple 

60 structure for the group-specifc latent dimensions. The model that we propose is also somewhat 

61 similar to the two-layer hierarchical model of Tian and Liu (2021), but the latter seeks for 

62 simple structure and nested factors within broader factors. On the other hand, EBFA-MGF 

63 would estimate a fully exploratory model in which the items loading on the group factors 

64 may also load on more than one general factor. Hence, the group factors are not necessarily 

65 nested within a single general dimension. For these reasons, we think that the bi-factor model 

66 with multiple general factors estimated in EBFA-MGF does not have a clear precedence. 

67 The rest of the manuscript is organized as follows. First, we present the Schmid-Leiman 

68 approximation to a bi-factor model with multiple general factors (Schmid & Leiman, 1957). 

69 Second, we describe an exploratory approach to estimate the model (i.e., a full-rank bi-factor 

70 structure with correlated general factors). Third, we explain the simulation setup and describe 

71 the results. Fourth, we illustrate an application of EBFA-MGF in psychopathology using 

72 open data. A fnal discussion of the results, their implications for applied research, and the 

73 limitations of the method completes the paper. 

74 1.1 The Schmid-Leiman transformation 

75 The Schmid-Leiman transformation (SL) gives a straightforward approximation to a bi-factor 

76 confguration with an arbitrary number of general factors in an exploratory manner (Schmid 

77 & Leiman, 1957). It is based on the following hierarchical representation of the empirical 

78 correlation matrix R, 
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R = Λ1Φ1Λ⊤ 
1 + Ψ1, (1) 

Φ1 = Λ2Φ2Λ2 
⊤ + Ψ2, (2) 

79 where Λ, Φ and Ψ denote a loading matrix, a correlation matrix among factors, and a 

80 diagonal matrix of uniquenesses, respectively. Replacing (2) in (1) and expanding, we have 

R = Λ1Λ2Φ2Λ⊤ 
2 Λ1 

⊤ + Λ1Ψ2Λ⊤ 
1 + Ψ1, (3) 

81 which can be arranged as 

. .R = (Λ1Λ2Φ1/2 .. Λ1Ψ1/2)(Λ1Λ2Φ1/2 .. Λ1Ψ1/2)⊤ + Ψ1, (4)2 2 2 2 

.82 where (X 

.. Y) denotes the column-wise concatenation of matrices X and Y with same row 

83 dimension. Finally, from (4), we can obtain a bi-factor confguration with multiple (correlated) 

84 general factors by setting 

..ΛSL = (Λ1Λ2 . Λ1Ψ12
/2), (5)  

ΦSL = 
 
Φ2 0 . (6)
0 I 

85 The estimation procedure can be summarized in three steps: First, do an exploratory 

86 factor analysis (EFA) with the expected number of group factors and apply an oblique rotation 

87 to obtain Λ̂ 1 and Φ̂ 1. Second, do an EFA on Φ̂ 1 by extracting the expected number of general 

88 factors and apply an oblique rotation again to get Λ̂ 2 and Φ̂ 2. In the last step, use the 
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89 expressions (5) and (6), replacing all the terms by their estimates, to obtain a bi-factor 

90 representation of this hierarchical model. As a result, the item loadings on the general factors 

91 (Λ1Λ2) are the sum of their direct efects according to the hierarchical representation, while 

92 the item loadings on the group factors (Λ1Ψ12
/2) become paths explaining the variance not 

93 accounted for by the general factors. Moreover, the group factors are assumed to be orthogonal 

94 among them and to the general factors, whereas the correlation between the general factors is 

95 estimated (Φ̂ 2). 

96 This transformation may be useful to identify independent cluster structures (McDonald, 

97 2000) and to suggest a confgural structure prior to target rotation (Abad et al., 2017; 

98 Reise et al., 2011). Unfortunately, SL results in a rank-defcient solution for imposing linear 

99 dependencies on the factor loading matrix (Mansolf & Reise, 2016; Waller, 2018). More 

100 precisely, the item loadings on the general factors are not independent from the item loadings 

101 on the group factors because they share the same ingredients. As a consequence, SL is unable 

102 to accurately estimate realistic bi-factor structures including cross-loadings and pure item 

103 loadings on the general factor, because the linear dependencies forced by SL are increasingly 

104 violated at the population level (Abad et al., 2017; Reise et al., 2011). To our surprise, SL has 

105 not been tested in any simulation study contemplating more than one general factor, despite 

106 the availability of free software for conducting such analyses (Waller, 2021)1. Nevertheless, 

107 as we expect the same detrimental performance of SL in the bi-factor case with multiple 

108 general factors, we suggest a novel method that aims to perform EBFA-MGF for the frst 

109 time while efciently dealing with cross-loadings and pure items. The description of this 

110 algorithm, which we have termed the Generalized Schmid-Leiman iterative Diference-based 

111 target rotation (GSLiD), is given in the next section. 

1The SchmidLeiman function from the fungible package (Waller, 2021) already implements the capability 
of performing this kind of Schmid-Leiman transformation to obtain ΛSL and Φ2. They can be accessed via 
the outputs $B and $Phi2, respectively. 
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112 1.2 The Generalized Schmid-Leiman iterative Diference-based 

113 target rotation 

114 We propose an iterative target rotation procedure (GSLiD) that automatically refnes the 

115 target matrix for the loadings while taking into account the presence of two layers of general 

116 and group factors. It can be regarded as a generalization of the SLi and SLiD algorithms 

117 developed by Abad et al. (2017) and Garcia-Garzon et al. (2019), which have been applied 

118 with success in exploratory bi-factor modeling (Garcia-Garzon et al., 2021), and is devoted to 

119 amend the possible misspecifcation errors in the initial target. This iterative scheme with 

120 partially specifed targets is not new but was already suggested by Browne (2001, p. 125), 

121 and has been recently implemented in other recent algorithms for conducting exploratory 

122 factor and bi-factor analyses (Lorenzo-Seva & Ferrando, 2019, 2020; Moore et al., 2015). 

123 Let A be a p × q matrix of unrotated factor loadings with p manifest variables and q 

124 common factors. The rotation problem is conceptualized as the estimation of a transformation 

125 matrix X such that the rotated factor solution, Λ = AX−⊤ , minimizes some complexity 

126 function to provide a more interpretable loading matrix pattern. When X is constrained to the 

127 oblique manifold of Rq×q rotation matrices, OB(q, q) = {X ∈ Rq×q : ddiag(Φ = X⊤X) = I}, 

128 where ddiag(X) returns a diagonal matrix with the diagonal elements of X, the of-diagonal 

129 elements of Φ corresponds to the correlations between the factors. 

130 Until recently, all complexity functions only concerned the rotated loading matrix Λ. 

131 However, Zhang et al. (2019) proposed a new complexity function based on partially specifed 

132 targets for both factor loadings and factor correlations (i.e., the extended target criterion). 

133 This criterion was successfully applied to identify multitrait-multimethod structures where the 

134 correlations among trait factors and method factors are freely estimated, but the correlations 

135 between them are penalized the more they deviate from zero. The rotation problem posed by 

136 the extended target criterion can be defned as fnding the solution to 

argmin 
1
2∥WΛ ⊙ (Λ − TΛ)∥2 + 

w 
4 
∥WΦ ⊙ (Φ − TΦ)∥2 , (7)

X∈OB(q,q) 
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137 where ⊙ is the Hadamard product. WΛ and TΛ denote the weight and target matrices for the 

138 loading matrix, while WΦ and TΦ bear the analog interpretation for the factor correlations. 

139 TΦ must be symmetric and WΦ must be of-diagonal2 symmetric with nonnegative elements. 

140 Lastly, the scalar w represents the relative contribution of the second term in (7) to solve the 

141 minimization problem. 

142 In GSLiD, to efciently rotate a factor solution with an arbitrary number of correlated 

143 general factors, we propose to set an initial partially specifed target on the factor loadings 

144 based on the SL transformation, as described above. Then, the target matrix is updated 

145 upon each rotation until it matches the target created in a previous iteration. This update is 

146 performed separately for both layers of general and group factors and consists of calculating, 

147 for each factor, the mean of the one-lagged diferences between the sorted squared normalized 

148 loadings. These values are then used as cut-ofs to create the new target matrix3. In the 

149 bi-factor context, such automatic determination of the target has been shown to improve on 

150 the demarcation of subjective cut-points in complex structures with many small cross-loadings 

151 (Garcia-Garzon et al., 2019). An illustration of this updating method can be found in Table 1 

152 of Garcia-Garzon et al. (2019). 

153 With regard to the targets for the factor correlations, they remain constant in the GSLiD 

154 algorithm and must be provided by the researchers according to their theoretical expectations. 

155 As an illustrative example, one possibility is to free the correlations among the general factors 

156 by fxing their targets to one, fxing to zero the targets for the remainder correlations, and 

157 then defning the weight matrix for Φ, WΦ, as the complement of TΦ 4. These matrices are 

158 illustrated in (8) for the case of three general factors and six group factors: 

2The diagonal of Φ is a constant vector of ones and therefore is not considered during the minimization. 
3To encourage the uniqueness of the rotated solution, we additionally checked that the target matrix 

satisfed the rotational uniqueness conditions in Peeters (2012) in each iteration of the GSLiD algorithm. 
These conditions ensure that, under oblique rotation, there exists a unique solution when some of the loadings 
are fxed to zero. 

4In other published work, it is common to refer to non-specifed targets with either asterisks (*) or missing 
values (NA). Here, such specifcations are given by the elements of the weight matrix, where a 0 means the 
corresponding correlation is freed. 
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 

TΦ = 

 

1 1 1 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

 

, WΦ = 

 

0 0 0 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 

1 1 1 0 1 1 1 1 1 

1 1 1 1 0 1 1 1 1 

1 1 1 1 1 0 1 1 1 

1 1 1 1 1 1 0 1 1 

1 1 1 1 1 1 1 0 1 

 

. (8) 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 

159 With this setup, we should expect both layers of general and group factors to remain 

160 uncorrelated by encouraging the orthogonality of the latter. However, it is important to keep 

161 in mind that in any oblique rotation procedure no correlation is guaranteed to be exactly 

162 zero. If some noticeable correlations are estimated between the general and group factors 

163 after using the extended target criterion, we may simply increase the scalar w to eventually 

164 satisfy the orthogonality requirement. This is often desirable for a better interpretation of the 

165 model because it allows to disentangle the item variance due to the general and group factors. 

166 The case presented in (8) is an example in which the extended target criterion will be 

167 minimized when the group factors are completely orthogonal. Notwithstanding, we would like 

168 to remark that the non-orthogonality of the group factors can also be easily accommodated in 

169 GSLiD whenever it makes sense from a theoretical point of view. We may just simply change 

170 the values of their targets and weights. Another important feature of this rotation criteria is 

171 that it does not necessarily encourage a nested structure where the items of a group factor 

172 are indicators of a single general factor, as may be done with the Schmid-Leiman procedure. 

173 Instead, during the extended target rotation step of the GSLiD algorithm, the items of a 

174 group factor may freely load on more than one general factor. 

175 The details of GSLiD and the target updating procedure are outlined in Algorithms 1 and 

176 2, respectively. 
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Algorithm 1 Exploratory bi-factor analysis with multiple general factors using GSLiD 

Inputs: symmetric target matrix for factor correlations, TΦ; symmetric weight matrix for factor 
correlations with non-negative of-diagonal elements, WΦ. 
1: Find a Schmid-Leiman solution by calculating the expressions (5) and (6) from a hierarchical 

factor model. 
2: Set k = 0. 
3: Find TΛk 

and WΛk 
using the loading and factor correlation matrices obtained in the Schmid-

Leiman solution as inputs of Algorithm 2. 
4: Set a maximum iteration N . 
5: Estimate an unrotated loading matrix, Â u, by ftting an exploratory factor analysis extracting 

the total number of common factors (i.e., the sum of general and group factors). 
6: while k < N do 
7: Use TΛk 

and WΛk 
to rotate Â u by solving the extended target rotation problem (7) and set 

Λ̂ 
k+1 and Φ̂ 

k+1 as the rotated loading and correlation matrices, respectively. 
8: Find TΛk+1 

and WΛk+1 
using Λ̂ 

k+1 and Φ̂ 
k+1 as inputs for Algorithm 2. 

9: if TΛk+1 
is a duplicate (i.e., TΛk+1 

= TΛj for some j ≤ k), then 
10: break 
11: end if 
12: k ← k + 1 
13: end while 

Algorithm 2 Target updating for the loading matrix 

Inputs: loading matrix, Λ; correlation matrix, Φ. 
1: Create Λg and Φg by extracting from Λ the columns pertaining to the general factors and, from 
Φ, the correlation matrix among them, respectively. 

2: Normalize the rows of Λg by item communalities, Λgnorm := ddiag(ΛgΦgΛg 
⊤)−1/2 Λg. 

3: Sort the elements of Λg 
2 in decreasing order in each column and compute the one-lagged norm 

diferences by column. 
4: Set the mean of each column-vector of one-lagged diferences as a column cut-point. 
5: Initialize a target matrix Tg with same dimensions than Λg. 
6: Entries of Tg whose corresponding elements in Λg 

2 are above the column cut-point are fxednorm 
to one and entries below the cut-point are fxed to zero. 

7: if the identifcation conditions C1 to C3 defned in Peeters (2012) are not met for Tg, then 
8: the entry corresponding to the smallest non-fxed-to-zero element of each sorted normalized 

loading column vector is fxed to zero in the target matrix. 
9: end if 

10: Repeat steps 1-9 for the group factors to obtain Λs, Φs, and Ts. 
..11: Join both target matrices column-wise to obtain the complete target matrix, TΛ := (Tg . Ts). 

12: Defne the weight matrix WΛ := 11⊤ − TΛ, where 1 is a column vector of ones. 
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177 2 Methods 

178 To test the estimation accuracy of SL and GSLiD, we ran an extensive simulation involving 

179 many variables of interest. The simulation can be considered an extension of the one found in 

180 Abad et al. (2017). In this case, two additional variables were considered: (1) the number of 

181 general factors and (2) the correlation among the general factors. Thus, nine variables were 

182 manipulated in a Monte Carlo simulation to accomplish a fully crossed design that amounts 

183 to 7776 conditions, each replicated 50 times. The variables and their levels were: (1) number 

184 of general factors (N.GF: 2, 3, 4, 5); (2) correlation between the general factors (COR.GF: 

185 0, 0.5); (3) sample size (N: 500, 1000, 2000); (4) variables per group factor5 (VAR.GRF: 

186 4, 5, 6); (5) number of group factors defning each general factor (NUM.GRF: 4, 5, 6); (6) 

187 cross-loadings among the group factors (CROSS.GRF: no, yes); (7) factor loadings on the 

188 group factors (LOAD.GRF: low, medium, high); (8) factor loadings on the general factors 

189 (LOAD.GF: low, medium, high); and (9) pure indicators of the general factors (PURE.GF: 

190 no, yes). 

191 The factor loadings were generated from .30 to .50 for the low loadings condition, from 

192 .40 to .60 for the medium condition, and from .50 to .70 for the high condition. In every case, 

193 the loadings ranged by equal increments across the indicators of each group factor (e.g., for 

194 the low condition with four items by group factor, the population factor loadings were .30, 

195 .37, .43, and .50). When cross-loadings were present, the item with the greatest loading on 

196 each group factor had a cross-loading of .40 in another group factor. Moreover, to maintain 

197 the communality constant, a small value was subtracted from the remaining non-zero item 

198 loadings. In addition, pure indicators in the general factors were determined by decreasing 

199 the loading of the middle item of each group factor to .01 (e.g., the second item of each group 

200 factor in a four-item condition and the third item in a fve-item condition) and increasing the 

201 loading on the general factor in order to maintain, again, the initial communality. 

5Please, note that VAR.GRF indicates the ratio between the total number of items to the total number of 
group factors and not the number of variables that are indicators of each group factor. The last interpretation 
would only be correct for structures without pure items. 
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202 With this simulation, we tried to investigate the stability of the methods in the presence of 

203 two well-known disturbances of the simple structure, namely cross-loadings between the group 

204 factors and pure item loadings on the general factors. The combinations of these variables 

205 recreate the four types of structures investigated in Abad et al. (2017): (IC) Independent 

206 cluster structure: neither cross-loadings nor pure indicators are present; (ICB) Independent 

207 cluster basis: cross-loadings but not pure indicators are present; (ICP) Independent cluster 

208 pure: pure indicators but not cross-loadings are present; and (ICBP) Independent cluster 

209 pure basis: both cross-loadings and pure indicators are present. A simulated pattern for the 

210 IC, ICB, ICP, and ICBP conditions is displayed in Table 1. 

211 The performance of the SL and GSLiD methods were compared in two outcomes: the 

212 average of the Tucker’s factor congruence coefcients (ACC; Burt, 1948) between the simulated 

213 and estimated factor loadings and the root mean square error between the true and estimated 

214 correlations among the general factors (Φ̂ 
g RMSE), 

ˆ − ˆ 2 
1 i λij λij ϕgij ϕgijACC = q , Φ̂ 

g RMSE = , (9) 
q λ̂2 g(g − 1)/2j i λ

2 
i>ji ij ij 

215 where g denotes the number of general factors. 

216 Congruence coefcients greater than .95 were taken to indicate an adequate level of 

217 similarity between factor loadings (Lorenzo-Seva & Berge, 2006) and root mean square errors 

218 smaller than .05 were considered good levels of misft. 

219 For each condition, we generated 50 population structures from which a random sample 

220 was drawn from a multivariate normal distribution. ANOVAs estimating up to third-order 

221 interactions among all the variables, treated as factors, were carried out for each combination 

222 of outcome and method. The partial omega squared (Ω2 ) was then used as an efect size prtl 

223 measuring the importance of each coefcient. Following the benchmarks proposed by Cohen 

224 (1988) for eta squared efect sizes, we diferentiated between small (Ω2 = .01), medium prtl 
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225 (Ω2 = .06) and large (Ω2 = .14) efect sizes. prtl prtl 

226 Unweighted least squares estimation was applied to ft the factor models. When Heywood 

227 cases were encountered, minimum rank factor analysis was performed to ensure that positive 

228 uniquenesses were estimated. The quartimin criterion was applied to rotate the frst and 

229 second-order solutions for SL. To attain a global minimum in the rotation step within each 

230 target iteration, we generated ten random orthogonal matrices as starting values and selected 

231 the solution which produced the smallest objective function. These orthogonal matrices were 

232 obtained as the Q factors of the QR decompositions of matrices with random standard normal 

233 deviates. The maximum number of target iterations in the GSLiD algorithm was set to 100 

234 to guarantee that the estimated loading matrix converged to an optimal target specifcation 

235 (when it existed). Nevertheless, convergence failure may still occur when the updated target 

236 is a duplicate of a previous one that is diferent from the target computed in the last iteration. 

237 In this case, the algorithm would enter an endless loop. When such a situation was identifed, 

238 we decided to retain the solution obtained in the current iteration. To check whether these 

239 solutions were suboptimal compared to the solutions which attained convergence, we ran two 

240 analyses of variance, one for each outcome (ACC and Φ̂ 
g RMSE), using the convergence of 

241 the GSLiD algorithm as an additional factor to the nine variables listed above. 

242 All simulations were performed in R (R Core Team, 2018) under the 4.0.3 version. The 

243 models were ftted using the bifactor package, version 0.1.0. The congruences between 

244 the true and estimated factor loading matrices were calculated by matching both via least 

245 squares, using the faAlign function from the fungible package (Waller, 2021), version 

246 2.2. The ANOVAs were executed with the aov function and treating all the variables as 

247 factors. A development version of the bifactor package can be downloaded from https: 

248 //github.com/Marcosjnez/bifactor and the necessary fles to reproduce the simulations are 

249 available at https://osf.io/7aszj. 
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250 3 Results 

251 Few Heywood cases were encountered (< 0.08%), and no rotation convergence failure for 

252 the extended target criterion was observed. However, 2.5% of the simulations resulted in 

253 recurrent target iterations without convergence. Nonetheless, the ANOVAs on both outcomes 

254 did not reveal an efect of the convergence of the GSLiD algorithm as a factor (Ω2 = .00 forprtl 

255 ACC and Φ̂ 
g RMSE), so we retained all replicates in subsequent analyses. 

256 Table 2 contains the marginal outcomes for each variable level. Marginal ACCs were high 

257 for the GSLiD method across all the variables except for some unfavorable conditions such 

258 as low loadings on the group factors (ACC [LOAD.GRF = low] = .923) and the minimum 

259 sample size condition (ACC [N = 500] = .934). In total, 19 of the 25 levels considered in the 

260 simulation resulted in an ACC greater than .95 for GSLiD, contrasting with the four observed 

261 for SL. In fact, GSLiD performed better or equal (ACC [PURE = no] = .966) than SL across 

262 all the variable levels. Overall, the sample size, the number of items per group factor and 

263 the loadings’ magnitude on the group and general factors were positively related to the ACC, 

264 whereas the number of general and group factors, cross-loadings and pure items diminished 

265 the ACC. Conversely, the correlation among the general factors afected the performance of 

266 neither method. The results of the ANOVA on the ACC (Table 3) confrmed that GSLiD 

267 was substantially less sensitive than SL to most of the variables, with the latter being largely 

268 infuenced by the presence of pure items and cross-loadings (Ω2 [PURE.GF] = .90; Ω2 
prtl prtl 

269 [CROSS.GRF] = .80), which were also involved in several high two-way interactions. Whereas 

270 SL slightly overcame GSLiD in the independent cluster structure (IC: ACC [SL] = .975; ACC 

271 [GSLiD] = .965), it provided worse results in the remaining structures. Figure 2 displays the 

272 third-order interaction between pure items, cross-loadings and the number of variables per 

273 group factor. GSLiD was stable in all the conditions, except under ICBP structures with four 

274 indicators per group factor, while SL underperformed in the presence of pure items (ICP), 

275 especially when they occurred simultaneously with cross-loadings in the ICBP structures 

(Ω2276 prtl [CROSS.GRF × PURE.GF] = .62). 
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277 Concerning the recovery of the correlations among the general factors, all marginal Φ̂ 
g 

278 RMSEs were much smaller for GSLiD than SL, improving the correlation estimates across 

279 all the four structure types. In total, 23 out of 25 marginal RMSEs were smaller than 

280 .05 for GLSiD, while SL only produced an average RMSE below this threshold under the 

281 orthogonal general factors level (Φ̂ 
g RMSE [COR.GF = 0] = .031). Increasing sample sizes 

282 also reduced the Φ̂ 
g RMSE while increasing the number of general factors undermined the 

283 accuracy of the correlation estimates. Remarkably, all these efects were stronger for SL. 

284 The magnitude of the loadings on the group factors increased the Φ̂ 
g RMSE for SL and did 

285 not afect GSLiD. In contrast, the loadings’ magnitude on general factors afected GSLiD 

286 but not SL. Concretely, the Φ̂ 
g RMSE diminished progressively with higher loadings on 

287 the general factors. Finally, the efect of the number of group factors and the number of 

288 items per group factor were small. According to the ANOVA, the most important variable 

289 afecting the accuracy of the methods was COR.GF (Ω2 ≥ .55), indicating that the Φ̂ 
gprtl 

290 RMSE was much smaller for both methods when estimating true zero correlations. The 

291 presence of cross-loadings afected SL (Ω2 [COR.GF × CROSS.GRF] = .34) while pure items prtl 

292 infuenced GSLiD (Ω2 [COR.GF × PURE.GF] = .28). However, the role of these variables prtl 

293 was diferent in each method, with cross-loadings impairing SL (Figure 3a) and pure items 

294 benefting GSLiD (Figure 4a). Additionally, the interaction COR.GF × N.GF revealed that 

295 SL is sensitive to the number of general factors when they are correlated (Figure 3b). As a 

296 downside, the interaction COR.GF × LOAD.GF exposed that GSLiD was more susceptible 

297 to the magnitude of the loadings on correlated general factors (Figure 4b), with smaller 

298 magnitudes worsening the estimation. 

299 3.1 Personality Inventory for DSM-5 Short Form 

300 The Personality Inventory for DSM-5 Short Form (PID-5-SF; Maples et al., 2015) is an 

301 instrument that aims to measure maladaptive personality features on 25 traits and fve 

302 domains using 100 items, four by trait. However, the American Psychiatric Association 
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303 instructs clinicians to measure the fve domains using 15 traits, three per domain6. The 

304 domains (G) and traits (S) are listed as follows: Negative Afect (G1), Emotional Lability 

305 (S1), Anxiousness (S2) and Separation Insecurity (S3); Detachment (G2), Withdrawal (S4), 

306 Anhedonia (S5) and Intimacy Avoidance (S6); Antagonism (G3), Manipulativeness (S7), 

307 Deceitfulness (S8) and Grandiosity (S9); Disinhibition (G4), Irresponsibility (S10), Impulsivity 

308 (S11) and Distractibility (S12); Psychoticism (G5), Unusual Beliefs (S13), Eccentricity (S14) 

309 and Perceptual Dysregulation (S15). 

310 To investigate this structure, we selected the PID-5-SF items that belong to the factors 

311 listed above, retaining a total of 60 items7. Data of 2532 participants from the French 

312 validation of a larger inventory (Roskam et al., 2015) were employed. To assess the hierarchical 

313 organization of their data, Roskam et al. (2015) diagnosed the presence of 5 general factors 

314 using Goldberg’s Bass-Ackwards method (Goldberg, 2006). However, the Bass-Ackwards is 

315 not a truly hierarchical method but a way of summarizing solutions for diferent number of 

316 factors. In contrast, we assessed the hierarchical organization of the data using hierarchical 

317 exploratory graph analysis (hierEGA), a method that has shown to be highly accurate in a 

318 recent simulation (Jimenez et al., 2022). In the end, hierEGA suggested 16 group factors 

319 and 5 general dimensions, concurring in the number of general factors with the Goldberg’s 

320 Bass-Ackwards method. However, only one item loaded primarily on the additional factor 

321 estimated with GSLiD. Therefore, we decided to reft the model using 15 group factors, which 

322 is the number expected by theory. The polychoric correlation matrix was used as input and 

323 the oblimin criterion was employed to obtain the frst and second-order solutions for SL. 

324 We freed the correlations between the general factors and fxed to zero the targets for all 

325 the remaining correlations. The GSLiD algorithm detected an optimal target after eight 

6See the 8th page of the APA template, which can be downloaded from https://osf.io/b9rjh/. 
7The items we retained were 122, 138, 165, 181 (Emotional Lability); 79, 109, 130, 174 (Anxiousness); 50, 

127, 149, 175 (Separation Insecurity); 82, 136, 146, 186 (Withdrawal); 23, 26, 124, 157 (Anhedonia); 89, 120, 
145, 203 (Intimacy Avoidance); 107, 125, 162, 219 (Manipulativeness); 53, 134, 206, 218 (Deceitfulness); 40, 
114, 187, 197 (Grandiosity); 129, 156, 160, 171 (Irresponsibility); 4, 16, 17, 22 (Impulsivity); 118, 132, 144, 
199 (Distractibility); 106, 139, 150, 209 (Unusual Beliefs); 25, 70, 152, and, 205 (Eccentricity); 44, 154, 192, 
217 (Perceptual Dysregulation). 
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326 iterations, each performing ten rotations with random starting orthogonal matrices to avoid 

327 local minima. Neither Heywood cases nor rotation convergence failures were encountered. 

328 The estimated loading and factor correlation matrices are displayed in Tables 4 and 5 from 

329 Appendix B, respectively. 

330 With respect to the hypothesized hierarchical structure of the PID-5-SF, most items 

331 presented medium to high loading magnitudes on their expected general and group factors. 

332 The target matrix obtained by the GSLiD algorithm agreed with the theoretical pattern of 

333 the PID-5-SF 90% of the time when assigning a 1 to a factor loading. 50 items (83.3%) and 54 

334 items (90%) primarily loaded on their expected general and group factors, respectively. The 

335 indicators that did not conform to this pattern were items 1, 2, 37, 38, 39, 40, 53, 54, 55 and 

336 56, in the frst case, and items 31, 38, 40, 51, 57 and 60, in the second. Four items were pure 

337 indicators of a general factor (6.7%; items 14, 15, 28 and 52) and three items cross-loaded 

338 on another group factor (0.5%; items 3, 57 and 59). Three Detachment domain (G2) items 

339 cross-loaded on Negative Afect (G1) and two from Negative Afect (G1) cross-loaded on 

340 Disinhibition (G4). Also, eight items pertaining to two group factors switched the domain 

341 on which they were expected to load: items 37, 38, 39 and 40 loaded on Antagonism (G3) 

342 instead of on Disinhibition (G4), and items 53, 54, 55 and 56 loaded on Disinhibition (G4) 

343 instead of on Psychoticism (G5). This novel result may suggest that Irresponsability (S10) 

344 and Eccentricity (S14) could be traits related to diferent domains than previously thought. 

345 Finally, the correlations between the general factors were moderate, ranging from .12 

346 to .64, while the correlations between the layers and among the group factors remained 

347 negligible (i.e., all the estimated correlations were below .10). Thereby, we can conclude 

348 that the underlying structure of the PID-5-SF is compatible with a bi-factor structure with 

349 multiple general factors and low-to-moderate loadings and factor correlations. 

350 Alternative analyses to GSLiD are also possible upon the availability of a theory supporting 

351 a particular factor structure, like the case at hand. For instance, we could perform a plain 

352 orthogonal target rotation using the presumed PID-5-SF pattern to build the target matrix. 
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353 A shortcoming of this approach is that ignoring the factor correlations between the general 

354 factors will result in the estimation of many spurious cross-loadings if they are truly correlated. 

355 To avoid this problem, we can simply replace the target criterion with the extended target 

356 criterion to encourage the orthogonality of the group factors; or, even better, we may iterate 

357 the PID-5-SF target in a similar scheme as GSLiD does8. However, all these analyses rest 

358 on a theoretical target that does not always exist in practice and that, when available, 

359 may provide unstable solutions in structures with low communalities (Myers et al., 2015). 

360 Furthermore, rotations involving theoretical targets may produce overconfdence in desired 

361 pattern structures that are diferent from the true ones (Hurley & Cattell, 1962). Moore et al. 

362 (2015) also warned that iterating from an initial theoretical target is still at risk of validating 

363 a wrong theory and that beginning from an empirically-defned target should be preferred. 

364 In these regards, GSLiD ofers a solution to preclude such confrmation bias, facilitating the 

365 discovery of misspecifcations in the theory (i.e., identifying items landing on diferent group 

366 and general factors than expected by the theory)9. 

367 4 Discussion 

368 Until now, researchers have been restricted to separately analyze general dimensions to 

369 build complex models, ignoring the presence of cross-loadings and factor correlations across 

370 the structures of diferent general factors. Consequently, current models may not resemble 

371 important aspects of the hierarchical structures commonly encountered in many felds like 

372 intelligence, personality, and psychopathology, where narrow constructs are usually nested 

373 within broader dimensions. Therefore, we propose EBFA-MGF, an extension of EBFA that 

374 estimates factor structures involving multiple general factors. A key feature of EBFA-MGF is 

8All the code to execute these alternative analyses can be found at https://osf.io/tb2kh/. 
9At the time of exploring alternative analyses, we noticed that the SLi function from the fungible 

package permits the estimation of a bi-factor model with multiple general factors, generalizing the SLi method 
proposed by Abad et al. (2017) for the bi-factor case. However, at diference with GSLiD, the former does not 
use the extended target criterion to avoid estimating the factor correlations between the general and group 
factors nor use the improved cut-of determination developed by Garcia-Garzon et al. (2019). 
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375 that it estimates a fully exploratory model, allowing all items to cross-load in both layers of 

376 general and group factors. Furthermore, factors within the same layer may be allowed to freely 

377 correlate among them. These are important advantages of EBFA-MGF over confrmatory 

378 factor analysis, which usually leaves these real data features misspecifed resulting in biased 

379 parameter estimates and unacceptable model ft indices (Marsh et al., 2014). 

380 We developed an algorithm (GSLiD) to reliably perform, for the frst time, this kind 

381 of analysis. As emphasized by Marsh et al. (2020), confrmatory factor analysis lacks the 

382 fexibility to identify cross-loadings, while exploratory factor analysis may lack parsimony. 

383 On the other hand, Zhang et al. (2019) stated that target rotation can be considered a 

384 procedure that lies between CFA and EFA and we think this view encourages the utility 

385 of GSLiD as a reliable method capable of uncovering complex factor structures involving 

386 several general factors in a parsimonious way. The fexibility of GSLiD lies in the fact that 

387 the model estimation is completely exploratory (i.e., all parameters are estimated), with the 

388 orthogonality between the general and group factors being approximated by fxing to zero 

389 the targets related to such factor correlations. Another fexibility of this method lies on the 

390 possible patterns of loadings that it can estimate. Whereas the initial target created from 

391 the SL solution usually has a nested indicator structure (i.e., the items of a group factor are 

392 mainly indicators of a single general factor), the extended target rotation does not penalize 

393 non-nested indicator structures but allows complex patterns with the indicators of a group 

394 factor loading on diferent general factors. 

395 Overall, the Monte Carlo results showed GSLiD was less sensitive than SL to all the 

396 variables considered in the simulation. Furthermore, GSLiD largely outperforms SL not only 

397 by demonstrating a good performance across most conditions but stability under complex 

398 structures with cross-loadings and pure items (ICBP). In contrast, SL retrieves good average 

399 congruence coefcients in IC and ICB structures but breaks down once pure items are present 

400 (ICP), especially when they concur with cross-loadings in ICBP structures. The reason behind 

401 the defective performance of SL is that it cannot adequately reproduce full-rank bi-factor 
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402 patterns where items load on general factors but do not load on the group factors: according 

403 to SL, an item loading on a general factor is a linear combination of the item loadings on 

404 the factors from the frst-factor solution weighted by these factor loadings on such general 

405 dimension; thereby, when the latter loadings are small, the former loadings must also be small. 

406 Consequently, spurious loadings on the group factors may be estimated to account for the 

407 variance explained by the general factors. This problem is exacerbated in the presence of 

408 cross-loadings between the group factors because they increase item communalities, and thus 

409 favors higher item loadings on the general factors. Hence, SL is also incompatible with a 

410 modest item loading on a general factor but several item loadings on the group factors. These 

411 shortcomings of SL may induce a biased initial target matrix when trying to estimate an 

412 ICBP structure, explaining why GSLiD displayed a modest performance in this structure type 

413 under the conditions involving four items per group factor. Regarding the estimation of the 

414 general factor correlations, the estimates provided by SL were also increasingly inaccurate in 

415 the presence of cross-loadings but not in the presence of pure items. In contrast, cross-loadings 

416 bore no efect for GSLiD, but pure items contributed to improve the estimates of the general 

417 factor correlations. 

418 Our simulation study has several strengths. On the one hand, it is the frst in investigating 

419 the performance of exploratory methods in bi-factor situations involving more than one 

420 general factor, which is of interest for many felds in individual diferences. On the other 

421 hand, we manipulated many variables of interest to achieve a comprehensive understanding 

422 of the strengths and pitfalls of the methods that were tested. Additionally, the simulations 

423 were executed assuming nothing was known about the underlying factor structure beyond the 

424 number of group and general factors, which is desirable to avoid model misspecifcation. In 

425 this situation, our results reveal that the determination of the initial target based on a Schmid-

426 Leiman transformation is justifed. However, the performance of GSLiD was not investigated 

427 under dimensionality misspecifcation, so we advise caution when GSLiD is used and the 

428 number of general factors and group factors are unknown. In a similar simulation study, we 
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429 devised a method to assess the hierarchical structure of bi-factor data with multiple general 

430 factors, termed hierarchical exploratory graph analysis (hierEGA, Jimenez, Abad, Garcia-

431 Garzon, Golino, et al., 2022). This hierarchical version of EGA displayed high accuracies when 

432 estimating the number of group factors and yielded a close to perfect hit rate with respect to 

433 the number of general factors. Therefore, we recommend to assess the dimensionality of the 

434 data with hierEGA10. Other variables worth considering for oncoming simulations and not 

435 covered here are cross-loadings between general factors, correlations among group factors, and 

436 systematic noise in the form of correlated errors. Another limitation is that we did not study 

437 the behavior of ft indices nor compare the bi-factor model with multiple general factors to 

438 other competing models. 

439 We also remark the unexplored possibility of supplying a custom initial target for the 

440 GSLiD algorithm in the case that more information is available about the loading matrix 

441 pattern. This possibility is already implemented in the bifactor package but the benefts of 

442 such custom initial targets are still unknown and should consider the problem of of confrmation 

443 bias (Hurley & Cattell, 1962; Moore et al., 2015). In this case, and following the results of our 

444 simulation, we would recommend to specify at least four targets per column since four salient 

445 indicators per group factor resulted in good factor congruences in most of the investigated 

446 conditions. However, this number depends on the complexity and size of the factor structure 

447 at hand. 

448 Another possibility worth studying, although uncommon in the psychometric literature, 

449 involves estimating an additional general factor in which all items load, resulting in a three-

450 layer bi-factor model akin to the one proposed in Tian and Liu (2021). This new factor would 

451 be orthogonal to any other, so that the item variance that it explains can be diferentiated 

452 from that of the remaining factors. Implementing such a model with GSLiD would be easy, 

453 since it only requires to generalize further the Schmid-Leiman transformation to extract a 

454 third-level general factor and to adjust the construction of the target matrices to accommodate 

10The hierEGA method for dimensionality assessment is already available via the function hierEGA from 
the EGAnet package (Golino & Christensen, 2022), version 1.1.0. 
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455 this new factor. Interestingly, the function SchmidLeiman from the fungible package already 

456 allows this generalization of the Schmid-Leiman approximation but no simulation research 

457 has been conducted yet to evaluate its performance. 

458 The robustness of GSLiD can already be exploited to uncover features that remain 

459 hidden under hierarchical representations and modeling limitations. The portraying feature 

460 of GSLiD consists of automatically updating the target for the factor loading matrix, so 

461 that the initial target misspecifcations can be empirically resolved to successfully identify 

462 cross-loadings and pure items. Therefore, it is well suited to study the large and complex scale 

463 structures encountered nowadays in intelligence, personality, and psychopathology research, 

464 where bi-factor models with multiple general factors have not been explored enough. For 

465 instance, consider the Hierarchical Taxonomy of Psychopathology (Kotov et al., 2017), a new 

466 classifcation system that considers the dimensional nature of psychopathology to increase the 

467 reliability of diagnoses. Ultimately, it is proposed as an alternative to the DMS classifcation 

468 scheme by addressing the need to establish clear boundaries between psychopathological 

469 conditions. For this aim, the GSLiD algorithm ofers a reliable method to identify cross-

470 loadings between items referring to diferent maladaptive traits and, more broadly, to diferent 

471 spectra. Moreover, its ability to identify pure items may also become useful to distinguish 

472 exclusive indicators of spectra. To illustrate how EBFA-MGF can be done with GSLiD in this 

473 context, we analyzed a real dataset concerning maladaptive personality traits and compared 

474 the estimated multiple bi-factor pattern to the presumed structure of the PID-5-SF. The 

475 results showed that, although we found considerable agreement between the theoretical and 

476 the estimated factor patterns, there were important cross-loadings and pure items that should 

477 not be ignored. Yet, the most interesting result implied that many items loaded on group 

478 factors related to a diferent general dimension than expected by the theory, suggesting that 

479 a diferent confgural pattern should also be assessed when analyzing data from the PID-5-SF. 

480 Indeed, another important feature of GSLiD is beginning the iterative process from a target 

481 that is empirically built. This route guards against the confrmation bias that may happen 
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482 when specifying a theoretical target. As warned by Moore et al. (2015), it is sometimes easy 

483 to incorrectly support the confgural structure of a theory when the same theory was used 

484 to build the target matrix. In this regard, GSLiD may become specially useful for detecting 

485 misspecifcations in the theoretical model structure by identifying items loading on diferent 

486 factors than expected in theory. 
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613 Appendix A 

614 The minimization of the extended target criterion (7) can be performed using the gradient 

615 projection algorithm (Bernaards & Jennrich, 2005), which is the standard optimization routine 

616 implemented in popular statistical software packages such as MPlus (Muthén & Muthén, 

617 2017), lavaan (Rosseel, 2012), psych (Revelle, 2022), and EFAutilities (Zhang et al., 2020). 

618 However, the convergence rate of the gradient projection algorithm is linear and may take a 

619 long time when the number of factors is large, as usually happens in hierarchical structures. 

620 Thus, we decided to implement the Riemannian trust-region method devised by Absil et al. 

621 (2007) and outlined in algorithm 2 of Liu (2020). Although the cost of Newton-based routines 

622 is more expensive per iteration than that of their gradient-based counterparts, their superlinear 

623 rate of convergence (Absil et al., 2007, sec. 4) makes them more suitable for high dimensional 

624 settings. Liu (2020) was the frst to apply Riemannian Newton algorithms to rotate factor 

625 loading matrices and showed a signifcant speedup in the oblique case when compared to the 

626 gradient projection algorithm (Liu, 2020, fg. 4 and 5). To use this optimization routine, an 

627 expression of the Riemannian Hessian for the extended target criterion is required. 

628 Defne fΛ(Λ) := ∥WΛ ⊙ (Λ − TΛ)∥2/2 and fΦ(Φ) := ∥WΦ ⊙ (Φ − TΦ)∥2/2 such that the 

629 extended target criterion becomes 

f(X) = fΛ(Λ) + 
w 
2 

fΦ(Φ), X ∈ OB(q, q). (10) 

630 Endowed with the canonical inner product, the set of q × q normalized columns OB(q, q) is an 

631 embedded Riemannian submanifold of Rq×q whose tangent space is defned by TXOB := {Z : 

632 ddiag(X⊤Z) = 0} (Absil & Gallivan, 2006, sec. 2). To solve (10) with the gradient projection 

633 algorithm of Bernaards and Jennrich (2005), we need to move along the descend direction 

634 −gradf , where gradf is termed the Riemannian gradient of f . Following the notation of 

635 Absil and Gallivan (2006), let f̃  be a smooth extension of f to the Euclidean space and let 

636 PTXOB Z = Z − Xddiag(X⊤Z) be the projection of Z onto TXOB (Absil & Gallivan, 2006, 
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637 sec. 2). Then, gradf(X) = PTXOB gradf̃(X) (Absil et al., 2010, equation 3.37), where the 

638 Euclidean gradient can be easily found by the chain rule, 

gradf̃(X) = −X−⊤gradf̃Λ(Λ)⊤ Λ + wX gradf̃Φ(Φ), (11) 

639 with gradf̃Λ(Λ) = WΛ
2 ⊙ (Λ − TΛ) and gradf̃Φ(Φ) = WΦ

2 ⊙ (Φ − TΦ). 

640 For second-order methods, the Riemannian Newton equation becomes Hessf(X)[Z] = 

641 −gradf(X) (Absil et al. (2009), equation 6.2), where Hessf(X)[Z] is the Riemannian Hessian 

642 of f at X along Z. We may write Hessf(X)[Z] as the projection of the directional derivative 

643 of the Riemannian gradient along Z onto OB(q, q) (Absil et al., 2013, sec. 3): 

Hessf(X)[Z] = PTXOB D gradf(X)[Z] 

= PTXOB D gradf̃(X)[Z] − Z ddiag(X⊤gradf̃(X)), (12) 

644 This means that we need the directional derivative of the Euclidean gradient along Z. An 

645 expression for the directional derivative of the frst term of the right-hand part of (11) is given 

646 by Liu (2020) as −X−⊤Z⊤gradf̃(X) + X−⊤D gradf̃Λ(Λ)[ΛZ⊤X−⊤]⊤Λ − gradf̃(X)Z⊤X−⊤ 

647 (Appendix A, equation 37). On the other hand, the directional derivative of the second term 

648 along Z is w (Z gradf̃Φ(Φ) + X(W2
Φ ⊙ (Z⊤X + X⊤Z))). Thus, the directional derivative for 

649 (11) becomes 

D gradf̃(X)[Z] = −X−⊤Z⊤gradf̃(X) + X−⊤D gradf̃Λ(Λ)[ΛZ⊤X−⊤]⊤Λ − gradf̃(X)Z⊤X−⊤+ 

w (Z gradf̃Φ(X) + X(WΦ
2 ⊙ (Z⊤X + X⊤Z))), (13) 

650 where D gradf̃Λ(Λ)[ΛZ⊤X−⊤] = WΛ
2 ⊙ (ΛZ⊤X−⊤) for the extended target criterion. An 

651 approximate solution for Z is then found with the truncated conjugate gradient method 

652 outlined in algorithm 4 of Liu (2020). 

653 In the same way, to rotate the frst and second-order solutions required for the Schmid-

654 Leiman transformation, we need to minimize the quartimin criterion, 

f(X) = 
1
4∥Λ

2⊤Λ2N∥2 , X ∈ OB(q, q). (14) 
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655 where N is a square matrix with zeros on the diagonal and ones elsewhere. 

656 In this case, the Euclidean gradient of a smooth extension of f is 

gradf̃(X) = −X−⊤gradf̃Λ(Λ)⊤Λ, (15) 

657 where f̃Λ(Λ) = ∥Λ2⊤Λ2N∥2/4 and gradf̃Λ(Λ) = Λ ⊙ (Λ2N). 

658 Finally, to fnd the directional derivative of the Euclidean gradient along Z we simply 

659 ignore the last term of the right-hand part of (13), as Φ does not afect the quartimin criterion, 

660 and replace D gradf̃Λ(Λ)[ΛZ⊤X−⊤] with 

D gradf̃Λ(Λ)[ΛZ⊤X−⊤] = ΛZ⊤X−⊤ ⊙ (Λ2N) + 2Λ ⊙ ((ΛZ⊤X−⊤ ⊙ Λ)N). (16) 
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661 Appendix B 

Table 4. Estimated loadings for the reduced version of the PID-5-SF with 15 facets or group factors. Loadings with 
absolute values greater than .20 are shown in bold and underlined. Each facet encompasses 4 items delineated between 
horizontal bars. 

Item General factors Group factors 

G1 G2 G3 G4 G5 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 

1 .73 -.05 -.04 .12 .02 .29 -.05 -.04 .04 -.09 -.02 .00 .01 -.02 .03 .03 .05 .02 .01 .02 

2 .31 -.01 -.02 .50 .07 .46 .05 .01 .07 .05 .00 -.04 -.04 -.01 -.06 .03 -.04 -.04 -.06 -.01 

3 .63 .02 -.04 -.06 .04 .35 -.08 -.03 -.08 -.23 -.02 .04 -.03 .02 .05 .05 .07 -.04 .03 -.02 

4 .33 -.03 -.01 .64 -.11 .40 -.01 .00 -.01 -.04 .01 -.01 .00 -.01 -.03 .00 -.09 .03 -.05 -.03 

5 .59 .00 .01 -.04 .07 .03 .54 .03 .01 -.05 -.01 -.03 .01 -.02 .00 .02 .02 .05 .01 -.04 

6 .76 .04 -.03 .02 -.10 -.03 .34 -.11 .08 .05 .02 .04 .04 .02 .00 -.03 -.03 -.01 .01 -.03 

7 .76 .07 .00 -.04 -.05 -.02 .20 -.10 .14 .05 .02 -.04 -.03 -.02 -.02 -.01 .00 .05 -.03 .06 

8 .60 .01 .05 .07 .05 .03 .57 .06 -.04 .02 -.01 -.01 .01 .00 -.04 -.05 .04 -.04 .00 .00 

9 .59 -.05 -.01 .00 -.04 -.02 .05 .63 .07 .04 -.03 -.01 .00 -.01 .03 .02 .01 .03 .00 .03 

10 .57 -.02 .04 -.04 -.01 .00 -.02 .67 .06 .06 -.01 -.03 -.03 -.03 -.01 .00 .00 .04 -.02 .02 

11 .42 -.01 .08 .06 .07 .02 .00 .40 -.05 -.02 -.06 .00 .08 -.02 -.07 .02 .00 -.10 .00 -.03 

12 .47 -.01 .02 .03 .01 -.01 .05 .62 -.11 -.04 -.04 .04 .04 .05 .00 .02 .02 -.02 -.05 .01 

13 .05 .67 -.07 .08 -.04 -.01 .04 -.04 .30 .02 .01 .04 -.04 .03 -.02 -.04 -.01 -.01 .01 -.12 

14 -.04 .73 .06 -.05 .03 -.02 .00 -.14 .18 -.02 -.05 -.15 -.04 .02 -.03 -.04 -.02 .13 .00 .04 

15 -.09 .80 .01 .00 -.05 -.03 .01 -.16 .04 -.11 -.01 .00 .02 .07 .02 .00 -.02 .03 -.01 .02 

16 .08 .71 .00 .02 .00 .05 .01 -.07 .22 -.02 .00 -.03 -.01 .05 .00 -.10 .04 .04 .12 -.04 

17 .07 .43 .01 .13 -.03 .03 -.06 .02 .05 .35 -.03 -.06 .05 -.02 .01 .05 .15 -.04 .07 -.03 

18 .33 .55 -.08 -.12 .00 -.05 .03 -.02 .11 .39 .01 -.03 .03 .00 -.02 -.05 .00 .04 .05 -.04 

19 .39 .48 .03 -.03 .03 .04 .02 .02 -.04 .52 .00 .04 -.01 .02 .03 -.02 .07 .00 .02 -.03 

20 .31 .50 .04 .07 .01 -.02 -.02 .01 -.09 .51 .05 -.04 .01 -.04 .02 -.02 .01 -.02 .00 .05 

21 -.02 .43 .04 .02 .04 -.02 .03 -.03 .06 .09 .70 .02 .01 -.01 -.03 .00 .00 .02 .01 .01 

22 .05 .52 -.17 -.07 .07 .04 .02 -.06 -.06 -.05 .30 -.01 .03 .00 .03 .02 .02 -.04 .02 .06 

23 -.02 .55 .00 .03 -.03 -.02 -.03 .01 .02 -.01 .72 .02 .01 .01 .01 -.01 .01 -.03 .00 -.02 

24 -.04 .56 .00 .03 .00 .03 -.01 -.07 -.08 -.04 .59 -.03 -.05 -.01 -.01 -.01 -.02 .00 .01 .04 

25 -.01 -.04 .59 .03 .02 -.01 .01 .00 -.01 -.01 -.01 .55 -.06 .06 .00 .03 -.01 .11 .04 -.01 

26 .02 -.02 .73 -.04 -.01 .03 .02 .05 .08 -.03 .04 .28 .03 .02 .02 .00 .00 .03 -.03 .13 

27 -.05 .00 .72 .02 -.04 -.08 .00 -.02 -.07 .02 .01 .46 -.07 -.02 .00 .05 -.02 -.03 .02 -.02 

28 -.02 .00 .90 -.09 -.03 .00 .00 .01 -.06 .00 -.02 .15 .00 -.06 -.07 -.01 -.04 -.03 .03 .04 

29 .11 .07 .52 .01 .05 .00 .00 .04 -.02 .00 .01 .04 .40 .05 .08 .03 -.08 .00 .07 .04 

30 -.08 -.06 .58 .12 .01 -.07 .00 .05 .01 .05 .01 .05 .26 .01 .00 .11 .04 -.01 -.07 .08 

31 -.03 -.01 .88 .01 -.07 .04 .00 -.01 .05 -.03 .01 .25 .05 .00 -.05 .00 -.01 -.03 .01 .11 

32 .06 -.05 .76 -.01 -.01 -.03 -.01 -.01 -.05 -.02 -.01 -.03 .44 -.09 -.03 -.01 .04 -.01 -.03 -.06 

33 .02 -.08 .60 .00 -.09 -.03 -.05 -.05 .03 .01 .01 -.05 -.04 .66 .00 .02 .01 .05 .03 -.03 

34 -.05 .00 .58 -.06 .00 .02 -.03 -.02 -.05 -.01 -.02 .06 -.06 .59 -.01 .00 .03 .09 .10 .00 

35 -.03 .04 .41 .08 .13 .01 .08 .08 .04 .02 .00 .04 .05 .49 -.01 -.04 -.06 -.06 -.04 .08 

36 .02 .13 .50 -.01 .04 .00 .02 .01 -.02 -.04 .00 .02 .01 .45 -.01 -.04 -.06 -.06 -.04 .01 

33 



40

45

50

55

60

Table 4 (Continuation) 

Item General factors Group factors 

G1 G2 G3 G4 G5 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 

37 -.03 .04 .23 .18 .04 .03 .01 .02 .07 .03 .09 -.07 .04 .04 .34 .10 .11 -.07 .00 .03 

38 .03 .05 .49 .00 .06 .06 .02 .02 .07 .07 -.03 -.05 .21 .02 .15 .08 .01 -.16 -.03 .00 

39 -.02 -.03 .28 .24 -.01 -.02 -.04 -.04 -.08 -.03 -.05 .02 -.01 -.03 .73 -.01 .02 .01 -.02 .03 

.10 .03 .36 .05 .13 .04 -.03 .03 .17 .03 .02 -.04 .08 -.09 .16 .02 .10 -.24 .05 -.07 

41 .08 -.01 .03 .39 -.04 .01 -.06 .00 -.09 -.03 .01 .01 -.04 -.03 -.02 .64 -.03 .08 .00 -.08 

42 -.01 -.02 .01 .48 -.01 .04 -.05 -.01 -.01 .01 -.01 -.01 .05 .02 .02 .72 .02 .00 -.03 .05 

43 .01 -.03 .06 .33 .05 .03 .04 .01 .06 -.03 -.01 .00 .06 -.01 .03 .59 .05 -.04 .00 -.01 

44 -.04 -.01 -.02 .47 .02 .01 .03 .05 .01 -.01 -.01 .04 -.03 -.01 .03 .65 .03 -.05 .03 -.02 

.03 .04 .02 .54 .02 -.02 -.01 .01 .02 .08 .01 .02 .02 .00 .06 .02 .60 .00 .03 .01 

46 .06 -.12 .00 .57 -.06 .04 .02 -.03 .06 -.01 .00 .00 -.01 -.04 .05 .03 .64 .00 .04 -.04 

47 .01 .07 -.03 .58 .00 -.02 .02 .04 -.04 .01 .04 -.02 .00 -.01 .01 .03 .65 -.01 -.08 .00 

48 .03 .06 -.01 .53 .04 .02 .01 .04 -.03 -.04 -.04 -.03 -.01 .00 .00 -.02 .64 -.03 .02 -.02 

49 .04 -.02 -.07 -.06 .81 .02 .01 .02 .05 .02 .00 .15 .05 .02 -.02 .03 -.01 .42 .03 -.04 

-.02 .01 .01 -.04 .83 .01 -.01 -.03 .03 .03 -.02 .02 .00 -.01 .03 .01 -.03 .27 .05 -.01 

51 -.01 -.04 .03 -.07 .63 .01 -.09 -.02 -.02 -.07 -.01 .34 .10 .19 -.05 -.03 -.02 -.06 -.02 .19 

52 .00 -.06 -.04 .17 .70 -.12 -.01 -.02 -.02 -.04 -.01 .00 -.05 -.01 -.02 .00 -.10 .01 .11 -.12 

53 .00 .02 .05 .60 -.05 -.01 -.02 -.04 .03 .03 .00 -.01 -.01 .00 .01 .05 .00 .00 .62 .00 

54 -.01 .14 .00 .60 -.01 -.05 -.04 -.01 .01 -.02 .01 .00 -.03 .05 .01 .03 -.05 .00 .58 -.02 

.04 .00 .06 .60 .14 .00 -.05 -.01 -.03 .07 .02 .04 -.05 -.01 -.03 -.08 .04 -.05 .48 -.02 

56 -.05 .00 .00 .65 .09 -.01 .05 -.01 .01 -.01 .01 .05 .10 .01 -.05 -.04 -.03 .06 .48 .01 

57 -.04 .01 .02 .08 .46 .26 .11 .06 .00 .08 -.04 .01 .16 .02 .03 .05 .09 .04 .30 .06 

58 .00 .05 .00 .02 .66 -.02 .00 -.03 -.05 .02 .03 -.04 -.02 .02 .02 -.04 -.03 .02 .02 .56 

59 .02 .03 .06 .02 .63 -.01 .00 .06 .04 -.02 .05 .01 -.03 .03 .06 .02 -.04 -.20 .00 .25 

.04 .09 .10 .03 .60 .19 .06 .01 -.04 -.01 .04 -.03 -.01 .00 .04 -.06 .06 -.01 .22 .02 

Note. G1 = Negative Afect; G2 = Detachment; G3 = Antagonism; G4 = Disinhibition; G5 = Psychoticism; S1 = Emotional 
Lability; S2 = Anxiousness; S3 = Separation Insecurity; S4 = Withdrawal, S5 = Anhedonia; S6 = Intimacy Avoidance; S7 = 
Manipulativeness; S8 = Deceitfulness; S9 = Grandiosity; S10 = Irresponsibility; S11 = Impulsivity; S12 = Distractibility; S13 = 
Unusual Beliefs; S14 = Eccentricity; S15 = Perceptual Dysregulation. 
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Table 5. Estimated factor correlations for the PID-5-SF with 15 facets or group factors. Correlations with absolute values 
greater than .20 are shown in bold and underlined. 

Factors General factors Group factors 

G1 G2 G3 G4 G5 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 

G1 1.00 .24 .12 .44 .34 .01 -.04 .00 .03 .02 -.05 -.03 .04 -.04 -.02 .01 .10 .01 .00 -.03 

G2 .24 1.00 .46 .47 .44 .00 .05 -.11 .00 -.01 -.01 -.04 -.01 .06 .01 -.08 .02 -.01 .07 .05 

G3 12 .46 1.00 .50 .44 -.02 -.01 .09 -.04 .01 .01 .00 -.02 -.02 -.03 .07 -.01 .00 .05 .04 

G4 .44 .47 .50 1.00 .64 .00 .00 .01 .02 .03 .03 .02 .01 -.03 .01 .04 -.03 -.04 -.06 -.05 

G5 .34 .44 .44 .64 1.00 .04 .04 .05 -.01 -.01 .02 -.01 .05 .03 .04 -.02 .01 -.04 .07 .01 

S1 .01 .00 -.02 .00 .04 1.00 .02 .00 .01 -.01 -.01 -.02 -.01 .00 .00 .05 .03 -.02 -.02 -.01 

S2 -.04 .05 -.01 .00 .04 .02 1.00 .07 .03 .02 .00 -.01 .02 .00 -.03 -.03 .03 .01 -.01 .00 

S3 .00 -.11 .09 .01 .05 .00 .07 1.00 .00 .04 -.07 .01 .04 .01 -.01 .03 .04 -.03 -.05 .02 

S4 .03 .00 -.04 .02 -.01 .01 .03 .00 1.00 .04 .01 -.02 .01 .01 -.01 .00 .01 .02 .01 -.01 

S5 .02 -.01 .01 .03 -.01 -.01 .02 .04 .04 1.00 .03 -.03 .02 -.02 .01 -.03 .03 .00 .05 .00 

S6 -.05 -.01 .01 .03 .02 -.01 .00 -.07 .01 .03 1.00 .00 -.01 .00 .00 -.01 .01 -.02 .01 .03 

S7 -.03 -.04 .00 .02 -.01 -.02 -.01 .01 -.02 -.03 .00 1.00 .01 .04 -.01 .01 -.03 .02 .03 -.01 

S8 .04 -.01 -.02 .01 .05 -.01 .02 .04 .01 .02 -.01 .01 1.00 -.02 .01 .03 .01 -.03 -.01 .02 

S9 -.04 .06 -.02 -.03 .03 .00 .00 .01 .01 -.02 .00 .04 -.02 1.00 -.01 -.01 -.04 .02 .03 .03 

S10 -.02 .01 -.03 .01 .04 .00 .00 .01 .01 -.02 .00 -.01 .01 -.01 1.00 .06 .08 .00 .01 .03 

S11 .01 -.08 .07 .04 -.02 .05 -.03 .03 .00 -.03 -.01 .01 .03 -.01 .06 1.00 .05 .00 .00 -.02 

S12 .10 .02 -.01 -.03 .01 .03 .0 .04 .01 .03 .01 -.03 .01 -.04 .08 .05 1.00 -.04 .03 -.03 

S13 .01 -.01 .00 -.04 -.04 -.02 .01 -.03 .02 .00 -.02 .02 -.03 .02 .00 .00 -.04 1.00 .03 -.01 

S14 .00 .07 .05 -.06 .07 -.02 -.01 -.05 .01 .05 .01 .03 -.01 .03 .01 .00 .03 .03 1.00 -.02 

S15 -.03 .05 .04 -.05 .01 -.01 .00 .02 -.01 .00 .03 -.01 .02 .03 .03 -.02 -.03 -.01 -.02 1.00 

Note. G1 = Negative Afect; G2 = Detachment; G3 = Antagonism; G4 = Disinhibition; G5 = Psychoticism; S1 = Emotional 
Lability; S2 = Anxiousness; S3 = Separation Insecurity; S4 = Withdrawal, S5 = Anhedonia; S6 = Intimacy Avoidance; S7 = 
Manipulativeness; S8 = Deceitfulness; S9 = Grandiosity; S10 = Irresponsibility, S11 = Impulsivity; S12 = Distractibility; S13 = 
Unusual Beliefs; S14 = Eccentricity; S15 = Perceptual Dysregulation. 
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Table 1. A random sample of simulated parameters under each of the IC, ICB, ICP and 
ICBP structures. In the ICB and ICBP structures every pair of group factors belonging to 
the same general factor shares one indicator cross-loading while in the ICP and ICBP 
structures one item per group factor only loads on the general factor. 

Item IC ICB 

G1 G2 S1 S2 S3 S4 S5 S6 h2 G1 G2 S1 S2 S3 S4 S5 S6 h2 

1 .45 .60 .57 .35 .53 .40 .57 
2 .47 .50 .48 .47 .50 .48 
3 .51 .40 .42 .51 .40 .42 
4 .58 .60 .70 .51 .40 .53 .70 
5 .44 .50 .44 .44 .50 .44 
6 .58 .40 .50 .58 .40 .50 
7 .59 .60 .71 .52 .40 .53 .71 
8 .53 .50 .53 .53 .50 .53 
9 .53 .40 .44 .53 .40 .44 
10 .41 .60 .53 .30 .53 .40 .53 
11 .44 .50 .44 .44 .50 .44 
12 .44 .40 .35 .44 .40 .35 
13 .54 .60 .65 .46 .40 .53 .65 
14 .48 .50 .48 .48 .50 .48 
15 .55 .40 .47 .55 .40 .47 
16 .50 .60 .61 .41 .40 .53 .61 
17 .54 .50 .55 .54 .50 .55 
18 .60 .40 .52 .60 .40 .52 
Avg .52 .52 

Item ICP ICBP 

G1 G2 S1 S2 S3 S4 S5 S6 h2 G1 G2 S1 S2 S3 S4 S5 S6 h2 

1 .45 .60 .57 .35 .53 .40 .57 
2 .69 .01 .48 .69 .01 .48 
3 .51 .40 .42 .51 .40 .42 
4 .58 .60 .70 .51 .40 .53 .70 
5 .67 .01 .44 .67 .01 .44 
6 .58 .40 .50 .58 .40 .50 
7 .59 .60 .71 .52 .40 .53 .71 
8 .73 .01 .53 .73 .01 .53 
9 .53 .40 .44 .53 .40 .44 
10 .41 .60 .53 .30 .53 .40 .53 
11 .67 .01 .44 .67 .01 .44 
12 .44 .40 .35 .44 .40 .35 
13 .54 .60 .65 .46 .40 .53 .65 
14 .69 .01 .48 .69 .01 .48 
15 .55 .40 .47 .55 .40 .47 
16 .50 .60 .61 .41 .40 .53 .61 
17 .74 .01 .55 .74 .01 .55 
18 .60 .40 .52 .60 .40 .52 
Avg .52 .52 

Note. The Avg row is for the average communality, h2. 
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Table 2. Marginal outcomes for each variable level, structure and method. 
Marginal average congruence coefcients (ACC) equal or greater than .95 and 
marginal root-mean square residuals of the general factor correlations (Φ̂ 

g

RMSE) equal or smaller than .05 are shown in bold and underlined. 

Variable ACC Φ̂g RMSE 

SL GSLiD SL GSLiD 

N.GF 
2 .943 .970 .060 .029 
3 .935 .961 .076 .038 
4 .927 .953 .090 .044 
5 .920 .945 .102 .049 

COR.GF 
no .931 .956 .031 .022 
yes .931 .958 .133 .058 
N 

500 .911 .934 .100 .053 
1000 .935 .962 .080 .039 
2000 .947 .976 .065 .028 

VAR.GRF 
4 .909 .944 .084 .039 
5 .933 .961 .082 .040 
6 .951 .967 .079 .041 

NUM.GRF 
4 .935 .959 .080 .042 
5 .932 .959 .082 .040 
6 .926 .954 .084 .038 

CROSS.GRF 
no .955 .962 .068 .040 
yes .907 .953 .095 .039 

LOAD.GRF 
low .902 .923 .087 .040 

medium .937 .966 .081 .040 
high .954 .983 .077 .039 

LOAD.GF 
low .919 .947 .088 .050 

medium .932 .957 .081 .039 
high .942 .967 .077 .031 

PURE 
no .966 .966 .084 .049 
yes .896 .948 .080 .031 

STRUCTURES 
IC .975 .965 .069 .050 

ICB .957 .968 .098 .048 
ICP .935 .959 .068 .031 

ICBP .857 .938 .092 .031 
TOTAL .931 .957 .082 .040 

Note. N.GF = number of general factors; COR.GF = Correlation between gen-
eral factors; N = sample size; VAR.GRF = Number of indicators per group 
factor; NUM.GRF = number of group factors per general factor; CROSS.GRF = 
cross-loadings in the group factors; LOAD.GF = loadings on the general factors; 
LOAD.GRF = loadings on the group factors; PURE.GF = pure indicators of the 
general factors; IC = Independent cluster structure: neither cross-loadings nor 
pure indicators are present; ICB = Independent cluster basis: cross-loadings but 
not pure indicators are present; ICP = Independent cluster pure: pure indicators 
but not cross-loadings are present; ICBP = Independent cluster pure basis: both 
cross-loadings and pure indicators are present. 
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Table 3. Partial omega squared coefcients (Ω2 ) from the ANOVAs on the average prtl 

congruence coefcients (ACC) and the root-mean square residuals of the general factor 
correlations (Φ̂ 

g RMSE) for all the 9 main efects, and for the remaining coefcients 
whose Ω2 

prtl > .14 in at least one method. 

Coefcients ACC Φ̂g RMSE 

SL GSLiD SL GSLiD 

Main efects 
N.GF .34 .27 .39 .17 
COR.GF .00 .00 .87 .55 
N .60 .57 .35 .29 
VAR.GRF .68 .28 .01 .00 
NUM.GRF .10 .02 .01 .01 
CROSS.GRF .80 .08 .32 .00 
LOAD.GRF .77 .73 .05 .00 
LOAD.GF .37 .23 .05 .19 
PURE.GF .90 .26 .01 .23 

Two-way interactions 
CROSS.GRF × PURE.GF .62 .14 .00 .00 
CROSS.GRF × VAR.GRF .52 .17 .00 .00 
CROSS.GRF × LOAD.GRF .17 .04 .03 .00 
PURE.GF × LOAD.GRF .17 .18 .01 .02 
PURE.GF × VAR.GRF .59 .21 .00 .00 
N × LOAD.GRF .31 .32 .01 .00 
COR.GF × N.GF .00 .00 .35 .12 
COR.GF × CROSS.GRF .00 .01 .34 .00 
COR.GF × PURE.GF .01 .01 .00 .28 
COR.GF × LOAD.GF .00 .00 .01 .24 

Three-way interactions 
CROSS.GRF × PURE.GF × VAR.GRF .42 .17 .00 .00 

Note. N.GF = number of general factors; COR.GF = Correlation between general factors; N 
= sample size; VAR.GRF = Number of indicators per group factor; NUM.GRF = number 
of group factors per general factor; CROSS.GRF = cross-loadings in the group factors; 
LOAD.GF = loadings on the general factors; LOAD.GRF = loadings on the group factors; 
PURE.GF = pure indicators of the general factors. 

39 



663 Figures 

40 



41 



42 



43 



44 



664 Figure captions 

Figure 1. Illustration of an exploratory bi-factor model with two general factors (G) and four 
group factors (S) for twelve indicators (X). Dark arrows correspond to salient loadings and 
light arrows indicate possible cross-loadings and correlations. 

Figure 2. Interaction PURE.GF × CROSS.GRF × VAR.GRF on the ACC for GSLiD and 
SL. 

Figure 3. Interactions COR.GF × CROSS.GRF (a) and COR.GF × N.GF (b) on the Φ̂ 
g

RMSE for SL. 

Figure 4. Interactions COR.GF × PURE.GF (a) and COR.GF × LOAD.GF (b) on the Φ̂ 
g

RMSE for GSLiD. 
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