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Abstract 

Brain natriuretic peptide/natriuretic peptide precursor B (NPPB) is one of the most studied genes in relation 

to heart failure (HF) conditions. However, it is still unclear as to whether alternative splicing could create 

NPPB mRNA variants, which may be expressed in normal and diseased myocardium. We aimed to identify 

and characterize a novel alternatively spliced variant of porcine and human NPPB resulting from exon 2 

skipping (designated as ΔE2-NPPB). A variety of conventional molecular, biochemical and immunochemical 

methods were used to examine the expression and functional consequences of ΔE2-NPPB in vitro and in vivo. 

The pig ΔE2-NPPB mRNA is effectively translated into stable protein in cell-based assays but, in contrast to 

normally spliced NPPB, the ΔE2-NPPB protein is not secreted into the media. Co-transfection assays 

demonstrate that ΔE2-NPPB attenuates production and secretion of normally spliced NPPB, suggesting a 

negative feedback loop of NPPB signaling through generation of ΔE2-NPPB. The inhibitory effects of ΔE2-

NPPB on the expression of NPPB are associated with sequence elements residing in exon 3 of ΔE2-NPPB. In 

piglets, ΔE2-NPPB gene expression is downregulated in both ventricles after birth, but it is markedly re-

activated in the postnatal myocardium in experimental diastolic heart failure. In addition, we demonstrate that 

the exon-skipped NPPB variants are expressed in the postnatal and adult human myocardium and upregulated 

at end-stage HF due to dilated cardiomyopathy. Our work uncovers an important role of alternative exon 

skipping in the regulation of NPPB gene expression, thereby pinpointing a putative new mechanism for post-

transcriptional regulation of NPPB production and secretion.  
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Introduction 

Brain natriuretic peptide (BNP), originally identified in porcine brain, is produced 

predominantly in the heart as a natriuretic peptide precursor B (NPPB) prepro protein. It is then 

released as pro-BNP and post-translationally modified by endopeptidase cleavage to form the N-

terminal (NT) and biologically active C-terminal (CT) peptide also known as B-type natriuretic 

peptide, or simply BNP.
1
 Elevated circulating levels of BNP have been found to have prognostic, 

risk stratification and therapeutic implications in various cardiovascular disorders, especially in 

systolic
2–4 

and diastolic
5–7 

heart failure (HF).  

 

Genes for mammalian NPPB have been characterized and consist of three exons separated by 

two introns.
8
 It is believed that most NPPB is synthesized in response to NPPB gene promoter 

activation by physiological or pathological stimuli.
3,4,8,9

 The main stimulus for NPPB synthesis and 

secretion from cardiomyocytes is biomechanical stretch resulting from pressure overload, volume 

expansion or increased filling pressure.
5,10,11

 Since NPPB gene expression was found to be rapidly 

induced by a variety of cardiac expressed transcriptional factors (including GATA4, NKX2.5 and 

MEF-2), which are thought to activate NPPB production in myocardium through transcriptional 

mechanisms,
8,9,12

 possible post-transcriptional control has been largely ignored. However, there is 

evidence that posttranscriptional regulation can also play a role in both NPPB production and 

secretion.
13,14

  

 

Alternative splicing is a prevalent mode of posttranscriptional regulation of approximately one-

half of all mammalian genes. Recently, the alternatively spliced NPPB transcript, resulting from 

intron 2 retention, was identified in failing human left ventricular (LV) myocardium.
15

 We 

employed differential mRNA display of the LV versus right ventricular (RV) myocardium in 

newborn piglets to identify putative marker genes for distinct patterns of postnatal hypertrophic 

remodeling. One of the transcripts that were predominantly upregulated in the LV revealed a 

strong sequence homology with both exons 1 and 3 of the NPPB gene.
16

 In the present work, we 

identify and characterize this transcript as a novel alternatively spliced variant of porcine NPPB 

resulting from exon 2 skipping (designated as ΔE2-NPPB).  

 

In piglets, ΔE2-NPPB expression is downregulated in both ventricles shortly after birth, but it 

is markedly re-activated in myocardium at experimental HF. Our study also provides evidence that 

ΔE2-NPPB can post-transcriptionally repress both NPPB production and secretion in cell-based 

assays, thereby revealing a novel negative feedback mechanism that might influence the 

production of normally spliced NPPB in experimental HF settings in vivo. In addition, exon-

skipped NPPB transcripts were detected in normal and failing human myocardium, suggesting the 

existence of similar mechanisms by which levels of normally spliced NPPB might be regulated in 

patients.  

Materials and methods  

Animals and experimental procedures  

Six-day-old piglets were randomized into two groups (12 animals each), and assigned to 

receive a single intravenous (i.v.) injection of isotonic saline (phosphate-buffered saline [PBS]) or 

1.5–2.0 mg/kg of doxorubicin (Dox; Sigma, Madrid, Spain) as described in ref.
17

 On day 24 after 

injection, cardiac output and extravascular lung water were monitored in closed-chest piglets by a 

PiCCO device (PulsionAG, Munich, Germany) in accordance with the manufacturer’s 

recommendations. The measurements of ventricular end-systolic and end-diastolic pressure were 

performed in open-chest piglets as described in refs.
18,19

 The piglets were then euthanized to 

harvest cardiac tissues for RNA isolation. Myocardial samples were also isolated from newborn 

piglets. Samples were frozen in liquid nitrogen immediately after isolation and then stored until 

use at 80ºC. Experimental procedures were carried out in accordance with the European 

Commission Directive 86/609/EEC on the protection of animals used for experimental and other 



scientific purposes, and all protocols were approved by the Institutional Animal Care and Use 

Ethical Committee.  

Patient cardiac samples  

Samples of non-failing LV myocardium were obtained from five donor hearts not transplanted 

for technical reasons. Failing myocardial LV samples were obtained from explanted hearts of five 

patients undergoing orthotropic heart transplantation due to end-stage HF resulting from dilated 

cardiomyopathy, which was confirmed by clinical examinations.
20

 Cardiac specimens were also 

collected from one infant patient (8 weeks old) with heart septal defects. Samples were collected 

into RNAlater solution (Ambion, Madrid, Spain), assayed in accordance with the manufacturer’s 

recommendations, and stored at 80ºC. Informed consent was obtained from patient relatives, and 

the protocol was approved by the respective Institutional Ethics Committee. The research adheres 

to the principles outlined in the Declaration of Helsinki.  

RNA isolation  

Deep-frozen cardiac tissue samples were directly disrupted in RLT buffer (Qiagen, Madrid, 

Spain) using a high-speed rotor-stator homogenizer (Ultra-Turrax T8, IKA Labortechnik, Staufen, 

Germany), digested with Proteinase K (Qiagen), loaded into a RNeasy Midi column (Qiagen), 

subjected to on-column digestion of DNA with RNase-free DNase (Qiagen) and the protocol was 

completed in accordance with the manufacturer’s recommendations. Total RNA was also isolated 

from separate batches of transfected COS-7 cells using RNeasy Mini Columns (Qiagen) as just 

described. Resulting RNA preparations were ethanol-precipitated, re-suspended in RNase-free 

water and kept at 80ºC. RNA yield and purity was determined spectrophotometrically at 260–280 

nm and RNA integrity was verified by running samples on 1.5% agarose gels and staining with 

ethidium bromide.  

Semiquantitative reverse transcription-polymerase chain reaction  

Two micrograms of total RNA were reverse transcribed (RT) using SuperScript III reverse 

transcriptase (Invitrogen, Barcelona, Spain) and oligo(dT)
12–18

 primer according to the 

manufacturer’s instructions. Piglet and human cardiac cDNAs were used for PCR reactions in a 

Biometra II PCR system to detect different RNAs using the primers indicated in Table 1. 

Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) was performed as 

described previously. 
17,20

 Each RT-PCR setup included primers for the candidate (pig/human 

NPPB variants) and control (pig/human rpl19 gene coding for ribosomal protein L19). All PCR 

setups, including no-RT and no template (NT) controls, were performed at least in duplicate. Each 

PCR sample was resolved on a 2% agarose gel, and PCR products were visualized with ethidium 

bromide staining and UV illumination. Band intensity was estimated by densitometry (VersaDoc 

1000) and Quantity One software (Bio-Rad, Madrid, Spain). The PCR products were cloned and 

sequenced (Secugen, Madrid, Spain) to confirm their identity.  

Quantitative realtime RT-PCR  

Two-step quantitative realtime RT-PCR (qPCR) was performed on a Bio-Rad IQ5 detection 

system with SYBR Green I mix.
19,21

 The cycling parameters used were standard for SYBR Green I 

analysis. The reference rpl19 gene was amplified to normalize expression. For each RNA sample, 

genomic DNA contamination was determined by PCR on a no-RT control for the rpl19 gene. 

Within each experiment, PCR reactions were done in triplicate. Each PCR reaction was evaluated 

by melting curve analysis and checking the PCR products on 8% SYBR Green-stained 

polyacrylamide gels. Fold changes were calculated using the CT method. Data were analyzed using 

IQ5 optical system software 2.0 and CT comparative analysis. For primer sequences used in qPCR 

analysis, please see Table 1.   



Table 1 Primers used in this study 

Primer Species Gene Primer sequence (from 5’ to 3’) F/R Used in 

      

289 p nppb GGC TGC TAG GAA GTG AAA AGT G F RT-PCR 
82 p nppb GCT CCT GCT CCT GTT CTT GCA R qPCR 

251 p nppb GGT CCA GCA GCT CCT GTA TC F RT-PCR, qPCR 

288 p nppb AAG AAC CGT CTT ATA TAC AAC CAC F RT-PCR 
252 p nppb AGT ACC TCC TGA GCA CTG TAT C F RT-PCR, qPCR 

291 h nppb AAG CAA ACC CGG ACG CAT CG R RT-PCR 

84 h nppb CTC CTG CTC TTC TTG CAT CTG R RT-PCR 
286 h nppb ATG TTG ACT TTA TTT CAC CGT GGA F RT-PCR 

287 h nppb ATG CCG CCT CAG CAC TGT AAC F RT-PCR 

36 p/h rpl19 AAC TCC CGT CAG CAG ATC CG R RT-PCR 
65 p/h rpl19 CTT GGT CTC TTC CTC CTT GGA F RT-PCR 

64 p rpl19 CTG CTC AGA AGA TAC CGT GAA T R qPCR 

206 p rpl19 GCT TGT GGA TGT GCT CCA TGA F qPCR 
      

 
p: pig; h: human; F/R: forward/reverse primers; nppb: gene coding for natriuretic peptide precursor B 

preprotein; rpl19: gene coding for ribosomal protein L19; RT-PCR, reverse transcription-polymerase 
chain reaction; qPCR, quantitative realtime RT-PCR 

Gene cloning and expression in Escherichia coli  

Full-length (FL) and partial (exon 3) cDNA sequences of the pig ΔE2-NPPB, as well as FL-

cDNA of the pig NPPB (see Figure 2a) were RT-PCR cloned into the BamHI and NcoI sites of the 

pCAL-n-FLAG expression vector (Stratagene, Madrid, Spain) and expressed in BL21 E. coli cells 

(Stratagene). Expressed proteins that fused to the 5-kDa tag, which included the calmodulin-

binding peptide (CBP) and FLAG peptide, were purified from bacterial extracts, using calmodulin-

affinity resin (Stratagene). Affinity-purified fusion proteins (with or without 10 mmol/L 

dithiothreitol [DTT]) were separated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis 

(SDS-PAGE) followed by Western blot with anti-FLAG (Sigma) or with our-lab-derived anti-PLP 

antibodies (see below).  

COS-7 cell culture, transfection and transient expression assays  

COS-7 cells were cultured in Dulbecco’s modified Eagle’s Medium (Gibco, Barcelona, Spain) 

supplemented with 10% fetal bovine serum and penicillin–streptomycin–glutamine (Gibco) under 

standard tissue culture conditions at 37ºC. Cells were trypsinized at 70–80% confluence, cell 

numbers were determined using an automated cell counter (Countess, Invitrogen) and 80,000 cells 

were plated in each well of 12-well plates and allowed to attach overnight. The ΔE2-NPPB and 

NPPB variants, as well as the FL-ΔNKRD1 (ankyrin repeat domain 1 protein) were amplified 

from piglet LV oligo-dT-primed cDNA, cloned into pcDNA3.1/ myc-His B (Invitrogen) or 

p3XFLAG-CMV-14 (Sigma) vectors and verified by sequencing. Transfection of each CMV-

driven plasmid expressing pig ΔE2-NPPB, NPPB, ANKRD1 or control empty vector (see Figure 

2a) was carried out with Lipofectamine LTX and PLUS Reagents (Invitrogen) following the 

manufacturer’s instructions. For each plasmid or combination of plasmids, at least three separate 

transfection assays were employed, and in each assay, transfections were performed in duplicate. 

In some experiments, NPPB-transfected cells were cultivated in the presence of synthetic peptides 

comprising FL or partial amino acid (aa) sequences of the pig DE2-NPPB. The FL-DE2-NPPB 

peptide (aa 1–86) was synthesized by GeneScript (Piscataway, NJ, USA), while peptides labeled 

as KSW (aa 48–61) and PLP (aa 61–72) were synthesized by Davids Biotechnologie (Regensburg, 

Germany) (see Figure 4d). Samples of the respective peptides were mixed with Transport Protein 

Delivery Reagent (Lonza) before adding final concentrations of 50 and 100 nmol/L to the media. 

Changes in the status of transfected cells, such as cell number, cell morphology and cell adhesion 

or cell viability, were monitored in realtime using a realtime cell analyzer (RTCA) SP Station 

(Roche, Madrid, Spain) placed inside a tissue culture incubator, in accordance with the 



manufacturer’s recommendations. In all transfection assays, after 48 hours in culture, the medium 

was saved (without disrupting the cells) and 10- to 30-fold concentrated (Amicon YM 3-kDa 

cutoff units). To obtain total protein lysates, the cells were rinsed with PBS, scraped into 2 x 

Laemmli sample buffer (Invitrogen) and centrifuged (20,000g, 30min, 15ºC) saving the 

supernatants.  

SDS-PAGE and Western blotting  

Samples in a standard Laemmli sample buffer (Invitrogen) supplemented with complete 

protease inhibitors (Roche) were subjected to SDS-PAGE (Mini-Protean III, Bio-Rad), stained 

with Coomassie or blotted onto polyvinylidene fluoride membranes (Hybond-P, Amersham 

Biosciences, Barcelona, Spain) and probed with mouse monoclonal anti-myc and anti-FLAG 

antibodies (Sigma) or polyclonal immuno-affinity-purified anti-PLP antibodies. The antiserum 

against the PLP synthetic peptide, compromising aa residues 61–72 of the pig ΔE2-NPPB (see 

Figure 1d), was generated in rabbits by Davids Biotechnologies. Blocking, washing, incubation 

with diluted primary and secondary horse radish peroxidase-conjugated antibodies (Sigma) and 

visualization of immunodecorated bands by the Super-Signal West Pico chemiluminescent 

substrate (Pierce Biotechnology, Madrid, Spain) was carried out as described.
19,21

 Molecular 

weight (MW) standards (MARK-12 and SeeBlue Plus2 from Invitrogen) were included on each 

gel.  

Co-immunoprecipitation  

COS-7 cells were co-transfected with myc-tagged FL-NPPB and FLAG-tagged FL-ΔE2-NPPB. 

After 48 h in culture, the cells were homogenized in lysis buffer (50 mmol/L Tris, pH 8.0, 200 

mmol/L NaCl, 1 mmol/L EDTA, 1% Triton X-100) supplemented by protease inhibitor cocktail 

(Roche). Lysates were centrifuged at 20,000g for 20 min, and supernatants were incubated 

overnight with FLAG(M2)-epitope antibodies coupled to agarose beads (Sigma). Beads were 

washed five times with lysis buffer, and bead-bound proteins were eluted by competition with 

3xFLAG peptide (Sigma), resolved by SDS-PAGE, and Western blot probed with mouse 

monoclonal anti-myc or anti-FLAG antibodies (Sigma).  

Statistics  

Results are expressed as mean ± standard error of the mean. Statistical significance was 

evaluated by Student’s t-test. Statistical analyses were performed with SPSS 13 software. A value 

of P ≤ 0.05 was considered statistically significant. 

  



 
 

 
Figure 1 Identification, characterization and expression of a novel exon 2-skipped BNP variant (ΔE2-NPPB) in newborn 

piglet heart. (a) Schematic representations of pig normally spliced NPPB (acc. no. NM_213846) and exon-skipped DE2-

NPPB sequences used for primer design: 1–3, exons; ATG, start codon; and TC, termination codon. The approximate 
location of the primers for downstream RT-PCR and qPCR analyses is indicated. The expected size of the corresponding 

amplicons is shown in black lines. (b and c) ΔE2-NPPB and NPPB mRNA expression in four cardiac chambers of newborn 

piglets as revealed by RT-PCR and qPCR, respectively (primers used are indicated in brackets). *P≤ 0.05. (d) Nucleotide 
and amino acid (capital letters) sequences of ΔE2-NPPB. The exon 3 coding sequence is marked in gray. The amino acid 

sequence that was used to generate anti-PLP antibodies is underlined. (e) Domain motifs identified in the primary structure 

of the ΔE2-NPPB protein. LAMP-like and TM domains were mapped using CDD29 and ConPred II30 algorithms, 
respectively. ΔE2-NPPB, alternatively spliced variant of porcine and human NPPB resulting from exon 2 skipping; NPPB, 

natriuretic peptide precursor B; qPCR, quantitative realtime RT-PCR; RT-PCR, reverse transcription-polymerase chain 

reaction; LV/RV, left/right ventricle; LA/RA, left/right atrium; LAMP, lysosome-associated membrane proteins; TM, 
transmembrane; SP, signal peptide  

  



 
 

 
Figure 2 Protein expression analysis of the pig ΔE2-NPPB in cell-based assays. (a) Schematic representation of CBP-

FLAG-tagged constructs carrying various configurations of pig NPPB and ΔE2-NPPB. Exon 3 (E3) coded and SP 
sequences are denoted with black and white boxes, respectively. Predicted MW values (kDa) are indicated. (b) Western 

blot (WB) detection of E. coli-expressed constructs with anti-FLAG (left panel) or anti-PLP (right panel) antibodies. 

Expressed constructs: FL-ΔE2-NPPB (lane 1), FL-ΔE2-NPPB/wSP (lane 2), E3/ΔE2-NPPB (lanes 3–5) and FL-NPPB 
(lane 6). MW values are indicated (kDa). (c) Protein coded by E3 of the pig ΔE2-NPPB (E3/ΔE2-NPPB in a) was 

electrophoresed in the presence (+DTT, lanes 1, 5 and 6) or absence (DTT, lanes 3, 7–10) of reducing agents and 

immunoblotted with anti-FLAG (left panel, lanes 1 and 3: E3/ΔE2-NPPB; lanes 2 and 4: NPPB) or anti-PLP (right panel, 
lanes 5–10: E3/ ΔE2-NPPB) antibodies. (d) COS-7 cells transfected with FLAG-tagged FL-ΔE2-NPPB (left panel; lanes 1 

and 2) or FL-NPPB (right panel; lanes 5 and 6) constructs were immunoblotted with anti-FLAG antibody. VT, vector-only 

transfected cells (lanes 3 and 4). (e) RTCA SP data plot of realtime scanning of COS-7 cell index (i.e. cell number, 
attachment and viability) before, at the moment and after transfections. (f ) COS-7 cells were transfected with FLAG-

tagged FL-ΔE2-NPPB (left panel) or FL-NPPB (right panel) constructs, and medium-free cell extracts (lanes 1 and 6) and 
cell-free unconcentrated (lanes 2 and 7) and two-fold (lanes 3 and 8), four-fold (lanes 4 and 9) and 12-fold (lines 5 and 10) 

concentrated culture medium samples were immunoblotted with anti-FLAG antibody. MW value, kDa. CBP, calmodulin-

binding peptide; ΔE2-NPPB, alternatively spliced variant of porcine and human NPPB resulting from exon 2 skipping; 
NPPB, natriuretic peptide precursor B; SP, signal peptide; Wsp, without signal peptide; MW, molecular weight; DTT, 

dithiothreitol; M, monomers; D, dimmers; RTCA, realtime cell analyzer  

  



Results  

Exon skipping generates a novel NPPB variant which is asymmetrically expressed in newborn 

piglet heart  

Two bands were detected by RT-PCR analysis of the NPPB transcript (exon 1/primer 289–

exon 3/primer 288; Figure 1a) in each chamber of the newborn piglet heart (Figure 1b). Sequence 

analysis of the bands revealed that the 618-bp band carried an entire sequence of exons 1 and 2, 

and approximately 80% of exon 3 of the NPPB gene, while the 362-bp band contained exons 1 and 

3, but skipped exon 2 (Figure 1d). The complete cDNA of this NPPB variant, including the signal 

peptide sequence, was designated as ΔE2-NPPB. Both the ΔE2-NPPB and normally spliced NPPB 

transcript showed a similar asymmetric distribution in the newborn heart, being more abundant in 

atria than in ventricles and in left ventricle/ atrium as compared with right ventricle/atrium (Figure 

1c).  

 

Figure 1d shows nucleotide and aa sequences of the ΔE2-NPPB variant. Skipping of exon 2 

causes a frameshift in the open-reading frame (from the beginning of exon 3) generating a coding 

sequence, which would be expected to produce a novel 86 aa peptide (with theoretical pI/MW: 

8.9/9.2) that is unique and distinct from other known protein families. Bioinformatic analysis of 

the ΔE2-NPPB aa sequence revealed the following structural features (Figure 1e): (1) a signal 

peptide (aa 1–23); (2) a putative domain (aa 52–66) resembling the Lamp family of lysosome-

associated membrane proteins (i.e. LAMP-like domain); and (3) a transmembrane domain (aa 65–

85). The C-terminal halfsequence of ΔE2-NPPB also contains three cysteine residues and is likely 

to be able to form internal di-sulfide bonds required for a classical ‘LAMP fold’.
22

  

 

Exon-skipped NPPB transcript is effectively translated into protein in cell-based expression 

systems  

The coding region of the FL sequence, with and without signal peptide, and the exon 3 coding 

sequence of pig ΔE2-NPPB, as well as the coding sequence of pig FL-NPPB (with signal peptide) 

were cloned into the prokaryotic pCAL-n-FLAG vector and overexpressed in E. coli (Figure 2a). 

The affinity-purified single proteins were probed by SDS-PAGE followed by Western blot with 

anti-FLAG or with our lab-derived anti-exon 3-ΔE2-NPPB antibodies (named anti-PLP) (Figure 

2b). The anti-PLP antibodies raised against the synthetic peptide located in the pig ΔE2-NPPB CT 

region recognized its exon 3-coded peptide, but did not recognize either FL-ΔE2-NPPB or FL-

NPPB (Figure 2b). Based on immunoblot analysis, we observed that the mobility of the expressed 

constructs is consistent with their predicted MW. In addition, the results revealed that elevated 

production of the ΔE2-NPPB exon 3-coded peptide in E. coli could result in its dimerization. Co-

electrophoresis of the DTT-free and DTT-treated samples demonstrated that this peptide does form 

dimers in the absence of a reducing agent (Figure 2c).  

 

To further confirm that the ΔE2-NPPB could be effectively translated in vivo, we constructed a 

CMV promoter-driven FL-ΔE2-NPPB cDNA expression vector to enable its functional 

characterization in the mammalian COS-7 cell transfection system. The FLAG-tagged FL-NPPB 

expression vector was used in parallel as a reference. Transient expression in COS-7 cells 

demonstrated that the FL-ΔE2-NPPB variant translated to a stable peptide able to accumulate to 

readily detectable levels within transfected cells (Figure 2d). ΔE2-NPPB-transfected COS-7 cells 

displayed no apparent difference in viability, replication rate or phenotype compared with FL-

NPPB- and mocktransfected cells (see Figure 2e). Similar levels of FL-ΔE2-NPPB and FL-NPPB 

were detected in COS-7 cell extracts; however, only FL-NPPB was detected in conditioned 

medium (Figure 2f ). These results indicated that differences in the secretion properties of FL-

ΔE2-NPPB and FL-NPPB are not related to the signal peptide, which they have in common. 

  



Expression of exon-skipped NPPB is downregulated in the piglet myocardium during early 

postnatal development  

Cardiac ΔE2-NPPB mRNA levels were reduced in 30-day-old compared with newborn 

animals, but the extent of the decrease was different in each heart chamber (Figure 3a). The 

maximum reduction in ΔE2-NPPB mRNA levels was observed in the RV (21.6-fold change), 

together with its lesser but significant downregulation in the LV (12.7-fold change) of 30-day-old 

animals. In contrast, in the right and left atria of these piglets, decreased ΔE2-NPPB gene 

expression was significantly less (5.6- and 1.7-fold change, respectively) in comparison with the 

changes observed in the ventricles.  

Expression of exon-skipped NPPB is markedly re-activated in piglet model of diastolic heart 

failure  

NPPB levels are predictive of impaired diastolic function.
6,7

 In this work, experimental 

diastolic heart failure (DHF) was induced in six-day-old piglets by a single Dox injection. At day 

30, neonatal piglets developed a severe biventricular diastolic dysfunction resulting in pulmonary 

congestion.
19

 We quantified (by qPCR) the relative amounts of the ΔE2-NPPB splice variant in the 

LV/RV myocardium of control (i.e. PBS-injected) and experimental (i.e. Dox-injected) piglets 

(Figures 3b and c). In 30-day-old piglets with Dox-induced DHF, the ΔE2-NPPB mRNA levels 

were consistently and significantly augmented in both ventricles; ΔE2-NPPB mRNA levels were 

more upregulated in the RV (38.8-fold change) than in the LV (9.4-fold change) as compared with 

age-matched PBS-injected controls. The average fold-increase of the normally spliced NPPB 

mRNA in the failing versus control RV and LV myocardium was only 6.3 and 5.1, respectively 

(data not shown).  

Exon-skipped NPPB attenuates accumulation and secretion of normally spliced NPPB in co-

transfection assays  

Because ΔE2-NPPB and normally spliced NPPB variants are co-expressed in the normal piglet 

myocardium and co-upregulated in the failing piglet myocardium, we were interested in 

determining if the presence of a non-secreted ΔE2-NPPB isoform might influence rates of 

accumulation/ secretion of the protein isoform produced by the normally spliced NPPB transcript. 

In order to test this possibility, we simultaneously co-transfected COS-7 cells with: (1) a constant 

concentration of a plasmid encoding FLAG-tagged FL-NPPB; (2) ascending concentrations of a 

plasmid encoding myc-tagged FL-ΔE2-NPPB; and (3) descending concentrations of empty-vector 

to normalize total plasmid DNA concentration in different co-transfections. COS-7 cells 

transfected with the different plasmids were then harvested for Western blot and RT-PCR 

analyses. Figure 4a shows the detection of NPPB and ΔE2-NPPB protein expression. However, 

the most striking observation was the dramatic inhibition of NPPB accumulation (Figure 4a, upper 

panel, lanes 4–6) when co-expressed with increasing amounts of the ΔE2-NPPB-expressing 

plasmid, but not with empty vector alone (Figure 4a, upper panel, lane 1) or control non-relevant 

protein (Figure 4c, upper panel, lanes 2–6), where similar amounts of the NPPB protein isoform 

were detected. Of note, inhibition of NPPB accumulation in transfected cells was associated with 

its reduced secretion into the media (Figure 4a, lower panels). Figure 4b shows the overall results 

of four independent repetitions of this setup assay demonstrating a dosedependent inhibition of 

NPPB accumulation by ΔE2-NPPB in co-transfected COS-7 cells.  

 

To exclude possible non-specific side-effects of elevated ΔE2-NPPB protein concentrations on 

NPPB translation per se, we performed additional co-transfection experiments using the NPPB 

vector in combination with non-relevant plasmid expressing the pig ANKRD1. The levels of 

myctagged NPPB protein were unchanged in spite of extremely high levels of FLAG-tagged 

ANKRD1 accumulation in co-transfected COS-7 cells (Figure 4c, compare lanes 1–3 with lanes 

4–6), respectively. In DE2-NPPB/NPPB co-transfections (Figure 4b), the NPPB mRNA levels 

(determined by RT-PCR) were not affected, ruling out a possible effect of overexpressed DE2-

NPPB on the CMV promoter function. Co-immunoprecipitation failed to detect endogenous 



interaction between ΔE2-NPPB and NPPB isoforms co-expressed in COS-7 cells (data not 

shown).  

 

To determine whether exogenously added ΔE2-NPPB protein could also influence NPPB 

accumulation, we monitored the NPPB expression levels (determined by Western blot) in 

transfected COS-7 cells cultivated in the presence of the synthetic FL-ΔE2-NPPB or its CT-

derived peptides in the media (Figure 4d), respectively. At the concentrations used in this assay, all 

synthetic peptides inhibited NPPB protein accumulation in transfected cells, with the inhibitory 

action of the KSW peptide most evident (Figure 4e and f ). Of note, the extent of the inhibitory 

effect of the KSW peptide was comparable with that of the synthetic FL-ΔE2-NPPB. This suggests 

that the inhibitory activities of ΔE2-NPPB on the post-transcriptional expression of normally 

spliced NPPB are associated with sequence elements residing in exon 3 of ΔE2-NPPB.  

 
 

 
Figure 3 Cardiac ΔE2-NPPB mRNA levels in piglet postnatal development and diastolic heart failure. (a) Average ΔE2-

NPPB mRNA levels in cardiac chambers of newborn (NB, n = 6) versus 30-day-old (30d, n = 6) piglets. P ≤ 0.05. (b) 

Representative semiquantitative RT-PCR for ΔE2-NPPB (target) and RPL19 (reference) transcripts in the RV myocardium 
of Dox- (n = 3) versus PBS-injected (n = 3) 30d piglets. Primer pairs used are indicated in brackets. (c) Average fold 

increase in LV/RV ΔE2-NPPB mRNA levels in Dox-injected (n = 12) versus PBS-injected (n = 12) piglets estimated by 

qPCR analysis. _P ≤ 0.05. ΔE2-NPPB, alternatively spliced variant of porcine and human NPPB resulting from exon 2 
skipping; PBS, phosphate buffered saline; RT-PCR, reverse transcription-polymerase chain reaction; qPCR, quantitative 

realtime RT-PCR; RPL19, ribosomal protein L19; LV/RV, left/right ventricle; LA/RA, left/right atrium; Dox, doxorubicin  

Exon-skipped NPPB variants are detected in normal and failing human myocardium  

We first surveyed the presence of exon-skipped NPPB variants in cardiac samples from an 

eight-week-old patient. Two novel exon-skipped NPPB variants were readily detectable by our 

RT-PCR assay in human myocardium: one similar to the porcine ΔE2-NPPB with exon 2 

completely skipped (named ΔE2 human NPPB or ΔE2-hNPPB) and the other transcript with a 

partially skipped exon 1 and completely skipped exon 2 named pΔE1/ΔE2-hNPPB (Figure 5a and 

b). According to sequence analyses, the ΔE2-hNPPB is an ortholog of the porcine ΔE2-NPPB 

variant, while the pΔE1/ΔE2-hNPPB represents a transcript without any bioinformatics-predicted 



open-reading frame. We also compared exon-skipped NPPB expression in RNA samples from 

non-failing and failing human myocardium (Figure 5c). The level of expression of the two exon-

skipped NPPB transcripts is significantly upregulated in LV tissue samples from explanted as 

compared with those from donor human hearts (Figure 5d).  

 
 

 
Figure 4 Relevance of the ΔE2-NPPB protein to production and secretion of normally spliced NPPB precursor as revealed 

by co-transfection cell assays. (a) Total cell protein lysates (cells) and cell-free media (culture medium) from COS-7 cells 

co-transfected with myc-tagged FL-NPPB, FLAG-tagged FL-ΔE2-NPPB and empty vector were electrophoresed and 
immunoblotted (WB) with anti-myc or anti-FLAG antibodies. MW values (kDa) of the bands detected are shown. (b) 

Inverse relationship between NPPB and ΔE2-NPPB protein expression in co-transfected COS-7 cells. Data from four 

replicates of each co-transfection combinations (lanes 1–6 as indicated in a) were pooled and averaged. (c) Total cell 
protein lysates (cells) of COS-7 cells co-transfected with myc-tagged FL-NPPB, FLAG-tagged FL-ANKRD1 (non-relevant 

protein expression control) and empty vector were electrophoresed and immunoblotted (WB) with anti-myc or anti-FLAG 
antibodies. MW values (kDa) of the bands detected are shown. (d) Schematic mapping of synthetic FL, KSW and PLP 

peptides (black solid lines) to the complete ΔE2-PNNB protein sequence. (e) COS-7 cells transfected with FLAG-tagged 

FL-NPPB were cultivated in the medium complemented with: protein-transfection vehicle (lane 1), FL-ΔE2-NPPB (lane 
2), PLP (lane 3) and KSW (lane 4) synthetic peptides. The whole protein cell lysates were immunoblotted (WB) with anti-

FLAG antibody. MW values (kDa) of the bands detected are shown. (f ) Average inhibition effects of FL-, PLP- and KSW-

ΔE2-NPPB synthetic peptides on NPPB protein accumulation into transfected COS-7 cells, respectively. ΔE2-NPPB, 
alternatively spliced variant of porcine and human NPPB resulting from exon 2 skipping; NPPB, natriuretic peptide 

precursor B; FL, full length; ANKRD1, ankyrin repeat domain 1 protein; MW, molecular weight   



 
 

 
Figure 5 Identification and expression profiling of exon-skipped variants of NPPB in human myocardium. (a) Schematic 
representations of human (h) normally spliced NPPB (acc. no.: NM_002521) and exon-skipped NPPB sequences used for 

primer design: 1–3, exons; ATG and TC, start and termination codon, respectively. The approximate location of the 

primers for downstream RT-PCR analysis is indicated. (b) In addition to the normally spliced hNPPB transcript, exon-
skipped NPPB variants (pΔE1/ΔE2-hNPPB and ΔE2-hNPPB) are detected in myocardium of an eight-week-old patient as 

revealed by semiquantitative RT-PCR. Primers 291–286 co-amplified two RT-PCR bands corresponding to hNPPB and 

pΔE1/ΔE2-hNPPB, whereas primers 291–287 and 84–286 selectively amplified ΔE2-hNPPB and hNPPB, respectively. 
The expected size of the corresponding amplicons is shown in black lines. (c) Representative semiquantitative RT-PCR for 

target (pΔE1/ΔE2-hNPPB and ΔE2-hNPPB) and reference (RPL19) transcripts in NF versus F LV samples. Primer pairs 

used are indicated in brackets. The size of the corresponding amplicons is shown. (d) Average pΔE1/ΔE2-hNPPB and ΔE2-
hNPPB mRNA levels in NF (n = 5) versus F (n = 5) LV samples. *P ≤ 0.05. NPPB, natriuretic peptide precursor B; RT-

PCR, reverse transcription-polymerase chain reaction; RPL19, ribosomal protein L19; NF, non-failing; F, failing; LV, left 

ventricle  

Discussion  

In the present study, we report a novel variant of the NPPB mRNA, ubiquitously expressed in 

pig cardiac tissues, which, if translation does occur, would generate a novel protein isoform that 

terminates 40 aa downstream of the correctly terminated NPPB product (see Figure 1a and e). This 

means that this variant would not proceed to form a classical ‘ring’ structure characteristic of 

mature NPPB. Further, exon 2 deletion causes a frameshift in the open-reading frame generating a 

coding sequence which would be expected to produce a previously unrecognized ΔE2-NPPB 

isoform with homology restricted to only the exon 1 coding sequence of normally spliced pig 

NPPB. Our cell-based translation assays and immunoblot analysis revealed that FL-ΔE2-NPPB is 

expressed with no significant differences in expression level compared with that of the normally 

spliced NPPB. However, the ΔE2-NPPB protein, unlike the NPPB, was detected only in the 



cytosol of transfected cells, indicating that the deletion of exon 2 impairs its secretion into the 

culture media.  

 

We found that both ΔE2-NPPB and normally spliced NPPB are co-expressed in normal piglet 

myocardium and co-upregulated in failing piglet myocardium (see Figure 3). The next question we 

addressed was whether the co-regulated expression of two NPPB variants in normal and failing 

myocardium, one secreted and the other not, is of any functional significance. To answer this 

question, we simultaneously co-transfected COS-7 cells with alternatively spliced pig ΔE2-NPPB 

and normally spliced NPPB. Under these experimental conditions, NPPB protein levels were 

reduced in inverse proportion to the increased amount of synthesized DE2-NPPB (see Figure 4b), 

indicating that ΔE2-NPPB-mediated inhibition of NPPB protein accumulation/ secretion is dose 

dependent. Such inhibitory effects were mimicked by introducing the synthetic DE2-NPPB or its 

CT-derived peptides (KSW peptide) into the media of COS-7 cells transfected with only NPPB 

plasmid. It should be stressed that inhibition of NPPB protein accumulation/ secretion by ΔE2-

NPPB did not affect the levels of normally spliced NPPB mRNA in co-transfected COS-7 cells. 

Thus, the decreased translational yield of NPPB could either be due to the decreased translatability 

of the normally spliced NPPB message or to the diminished stability of the encoded polypeptide. 

In this regard, we observed that the downregulation of NPPB protein levels by ΔE2-NPPB could 

be partially reversed (up to 20–40%) by cultivation of the co-transfected COS-7 cells in the media 

supplemented with protease inhibitors such as leupeptin or chloroquine (data not shown). 

 

Our data indicate that pig ΔE2-NPPB and NPPB are proteins with distinct molecular properties 

and retention/ secretion dynamics. As such, one might expect that these isoforms encoded by the 

two splice NPPB variants would tend to operate independently, with non-complementary roles 

with regard to each other.
15

 Instead, our data from cell-based assays support a model in which 

ΔE2-NPPB appears to attenuate production of normally spliced NPPB, suggesting a negative 

feedback loop of NPPB signaling through generation of ΔE2-NPPB. Given that these protein 

isoforms do not interact with each other in co-precipitation assays, it may be that ΔE2-NPPB 

affects the rate of NPPB production/accumulation indirectly.  

 

The post-transcriptional mechanisms, which control intracardiac production and secretion of 

NPPB, are as yet poorly elucidated. Lowering of intracellular concentrations of calcium and 

calcium-dependent proteins, such as calcineurin
23

 and calcium-calmodulin kinase II,
24

 could result 

in inhibition of NPPB production/secretion. In addition, blocking membrane calcium channels 

significantly reduced NPPB secretion by both normal and hypertrophied cardiomyocytes.
25

 The 

present study suggests a new pathway that is mediated by the alternatively spliced ΔE2-NPPB 

variant for control of NPPB expression and secretion. This raised the relevant clinical question of 

whether exon-skipped NPPB variants are expressed in failing human myocardium. Our results 

show that two exon-skipped NPPB transcript variants are detected in normal and upregulated in 

failing human myocardium. In human myocardium, NPPB exon-skipping results in the generation 

of one variant without a bioinformatics-predicted open-reading frame (i.e. pΔE1/ΔE2-hNPPB), 

while it is predicted that the other (i.e. ΔE2-hNPPB) variant will have a premature termination 

codon (see Figure 5). Such mRNAs might be sensitive to the nonsense-mediated mRNA decay 

(NMD) pathway.
26

 However, transcripts harboring premature termination codons can escape 

NMD, leading to the synthesis of truncated proteins that may exert a dominant negative effect.
27

 

This interpretation is consistent with our findings, insofar as ΔE2-NPPB does attenuate NPPB 

production and secretion in cell-based co-transfection assays.  

 

In summary, we provide here three novel observations relevant to the regulation of cardiac 

expression of the NPPB gene under physiological and pathological conditions: (1) normal pig and 

human myocardium exhibit alternative splicing of the NPPB mRNA, based on exon skipping; (2) 

intracellular levels and secretion of normally spliced NPPB are negatively regulated by their exon-

skipped variants at a post-transcriptional level; and (3) exon-skipped NPPB variants are 

upregulated in failing myocardium in both the porcine model and patients with end-stage HF. 

Given that human HF is a state of deficiency of active NPPB,
28

 the demonstrated negative 

feedback relationship between ΔE2-NPPB and NPPB expression may be especially relevant in 

further studying the molecular, functional and clinical consequences of exon-skipped NPPB 

variant expression in patients.   
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