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Abstract 

This paper describes a novel weighted voting tree classification scheme for breast density 

classification. Breast parenchymal density is an important risk factor in breast cancer. Moreover, 

it is known that mammogram interpretation is more difficult when dense tissue is involved. 

Therefore, automated breast density classification may aid in breast lesion detection and analysis. 

Several classification methods have been compared and a novel hierarchical classification 

procedure of combined classifiers with linear discriminant analysis (LDA) is proposed as the best 

solution to classify the mammograms into the four BIRADS tissue classes. The classification 

scheme is based on 298 texture features. Statistical analysis to test the normality and 

homoscedasticity of the data was carried out for feature selection. Thus, only features that are 

influenced by the tissue type were considered. The novel classification techniques have been 

incorporated into a CADe system to drive the detection algorithms and tested with 1459 images. 

The results obtained on the 322 screen-film mammograms (SFM) of the mini-MIAS dataset show 

that 99.75% of samples were correctly classified. On the 1137 full-field digital mammograms 

(FFDM) dataset results show 91.58% agreement. The results of the lesion detection algorithms 

were obtained from modules integrated within the CADe system developed by the authors and 

show that using breast tissue classification prior to lesion detection leads to an improvement of 

the detection results. The tools enhance the detectability of lesions and they are able to distinguish 

their local attenuation without local tissue density constraints. 
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1. Introduction 

Breast cancer continues to be an important health problem. Early detection can 

potentially improve breast cancer prognosis and significantly reduce female mortality. 

Computer-aided detection/diagnosis systems (CAD) can be of tremendous help to 

radiologists in the detection and classification of breast lesions, [1], [2], [3] and [4]. 

Computer-aided detection systems are abbreviated as CADe systems and computer-

aided diagnosis system as CADx systems. The development of reliable CAD systems is 

an important and challenging task because the automated interpretation of mammogram 

lesions remains very difficult. Moreover, the presence of dense breast tissue is one of 

the potential problems. Dense tissue may cause suspicious areas to be almost invisible 
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and may be easily misinterpreted as calcifications or masses [5], [6], [7] and [8]. Since 

the discovery by Wolfe [9] of the relation between mammographic parenchymal 

patterns and the risk of developing breast cancer in 1976, there has been a heightened 

interest in investigating breast tissue density [10], [11] and [12]. There are several 

research articles that describe epidemiological studies including the estimation of breast 

cancer risk [13], [14], [15], [16], [17], [18], [19] and [20], and diagnosis support by 

means of content-based image retrieval [21] and [23] based on breast tissue density 

information. 

Our research has been prompted by this need to classify breast tissue and drive the 

development of CAD algorithms for the automated analysis of breast lesions. Recent 

studies have shown that the performance of the CAD system is improved if breast 

density information is considered [23], [24], [25] and [26]. These studies showed an 

overall sensitivity of CAD system of 88.5% with an accuracy of 78% [23] and [26]. The 

CAD's sensitivity was usually low in density types 3 and 4. In masses with density 3 the 

specificity was 79% and in those with density 4 were 45%. The specificity was up to 

80% both for microcalcifications present in the four types of densities and for masses 

with densities 1 and 2. Thus, it is necessary to adjust the input parameters of a lesion 

detection algorithm to control its sensitivity depending on the tissue type in order to 

reduce false positive detections, especially in dense tissue, at almost the same detection 

rate. 

The rest of this paper is organized as follows. Section 2 shows an overview of the 

problem in the literature. Section 3 describes the methods and materials used in this 

work. These include the feature extraction procedure, the statistical analysis, the 

classifiers tested, the training and testing procedures and the experimental database 

used. Section 4 explains the integration of the classifiers into the CADe and the system 

implementation. Mode of availability and system requirements are explained in Section 

5. Section 6 describes the results obtained with the proposed methods. Finally, in 

Section 7, the main conclusions are drawn. 

2. Background 

Several studies dealing with the breast tissue classification problem have been 

described in the literature [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], 

[38], [39], [40] and [41]. The American College of Radiology BIRADS [42] is the 

standard guide on the assessment of mammographic images, where the images are 

classified into four categories: (T.I) fatty, (T.II) fatty-glandular or fibroglandular, (T.III) 

heterogeneously dense and (T.IV) extremely dense. The first type of breast density, T.I, 

is almost entirely fat, that is, glandular tissue is less than 25%. In T.II breast density, 

there are scattered fibroglandular tissues ranging from [25–50%) of the breast. Dense 

tissue in T.III ranges [50–75%) of the breast tissue. The last category of breast density, 

T.IV, means that the breast contains greater than 75% glandular and fibrous tissue. The 

features used for the classification process are based on: (a) grey-level histograms or 

morphological analysis based on 1st-order statistic, (b) texture information based on 

2nd-order statistic as well as textons and (c) space-frequency properties. The most 

effective features used for characterization are extracted from the gray level histogram 

and texture patterns [28] and [21]. Some studies have indicated that histogram 

information alone might not be sufficient to classify mammograms according to 

BIRADS categories [5] and [36]. Features are extracted from different areas: (a) the 

whole breast area, (b) the breast area without the pectoral muscle or (c) segmented areas 

according to their tissue appearance. The main drawback of the former techniques (b) 

and (c) is their reliance on an initial segmentation of the breast. Wrong segmentation 

may cause errors on the classification [31]. Moreover, the pectoral muscle may contain 

suspicious areas to analyze. 

A variety of classification methods have been used based on neural networks (NN), 

support vector machines (SVM), linear Bayes normal classifier (LBN) classification 

trees (Trees) and feature histogram comparison against χ
2
 and Student's t-test 

distributions. Most of these methods have been demonstrated on screen-film 

mammogram (SFM) databases, including the public mini-MIAS (Mammographic 

Image Analysis Society) dataset, and only two methods have shown results on a full-
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field digital mammogram (FFDM) dataset [41] and [43]. Liu et al. [41] report a correct 

classification percentage (CCP) of 86.4% on a database composed of 88 FFDM, which 

is not statistically representative. Tortajada et al. [43] report a CCP of 92% on a 

database composed of 236 FFDM but only 72% on a dataset composed of 831 SFM. 

The sensitivity of this method depends on the mammogram types and it has the 

additional drawback of the segmentation process prior to classification. 

Furthermore, none of the research studies statistically assessed the influence of the 

tissue types for each calculated feature. The classification methods are summarized in 

Table 1 in comparison with the proposed method. The table includes the number and 

type of features, the database used, the cross-validation method used to train and test the 

classifiers, i.e., 10-fold (10FCV) or leave-one-out (LOOCV), the number of BIRADS 

density categories classified, if there is pectoral muscle segmentation previous to the 

classification and the global results obtained. The classification results are given as a 

correct classification percentage (CCP), that is, the overall sensitivity of the 

classification method. Notice that the overall accuracy for the 2-class classification 

problem is equivalent to the overall sensitivity but that is not the case for the 3- and 4-

class classification problem (accuracy being defined in terms of sensitivity and 

specificity) [44]. 

Table 1. Methods for breast parenchymal density classification from the literature in comparison with the 

proposed method. Columns show: classification methods (NN: neural networks, SVM: support vector 
machines, LBN: linear Bayes normal, Trees, χ2 and Student's T-test), the number and type of features, the 

dataset, i.e., number of mammograms and type (SFM: screen-film mammograms, FFDM: full-field digital 

mammograms and public mini-MIAS: Mammographic Image Analysis Society), the cross-validation method 
used (10FCV: 10-fold, LOOCV: leave-one-out), the number of BIRADS density categories classified, if there 

is pectoral muscle segmentation prior to classification and the correct classification percentage (CCP) 

obtained. 

Reference Classifiers Features Dataset 
Validation 

method 

Tissue 

types 
Segmentation CCP 

        

Bovis and Singh 

[27] 
NN 

180 texture and 

136 frequency 
377 SFM 10FCV 4 No 71.40% 

Wang et al. [28] NN 
4 grey-level 
histogram 

195 SFM 10FCV 4 No 71.00% 

Petroudi et al. 

[29] and [30] 
χ2 40 textons 132 SFM χ2 4 Yes 75.76% 

Bosch et al. [31] SVM Semantic textons 
322 mini-

MIAS 
LOOCV 4 Yes 93.40% 

Wang et al. [39] SVM Iterative textons 
322 mini-

MIAS 
LOOCV 4 Yes 89.00% 

Castella et al. 

[34] 
LBN 36 texture 352 SFM LOOCV 4 No 76.00% 

Boehm et al. 

[35] 
t-Test 3 texture 100 SFM LOOCV 3 No 89.00% 

Oliver et al. [36] LBN 
216 texture &16 
morphological 

322 mini-
MIAS 

LOOCV 4 Yes 82.75% 

Oliver et al. [32] LBN 
216 texture &112 

LBP 

322 mini-

MIAS 
LOOCV 4 No 79.25% 

Oliver et al. [24] Tree 
216 texture &16 

morphological 
200 FFDM LOOCV 2 Yes 90.00% 

Cheng et al. [45] SVM 
textons in bag-of-

words 
23 SFM LOOCV 4 No 80.70% 

Subashini et al. 

[38] 
SVM 9 texture 

43 mini-

MIAS 
3FCV 3 Yes 95.44% 

Oliveira et al. 

[21] and [23] 
SVM CBIR 5024 SFM 10FCV 4 No 80.00% 

Tzikopoulos et 
al. [20] 

SVM fractal 
322 mini-

MIAS 
LOOCV 3 Yes 85.70% 

Liu et al. [41] SVM Moments 88 FFDM 10FCV 4 Yes 86.40% 

Tortajada et al. 
[43] 

LBN 
Texture and 

morphological 
236 FFDM LOOCV 4 Yes 92.00% 
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Table 1. Methods for breast parenchymal density classification from the literature in comparison with the 

proposed method. Columns show: classification methods (NN: neural networks, SVM: support vector 
machines, LBN: linear Bayes normal, Trees, χ2 and Student's T-test), the number and type of features, the 

dataset, i.e., number of mammograms and type (SFM: screen-film mammograms, FFDM: full-field digital 

mammograms and public mini-MIAS: Mammographic Image Analysis Society), the cross-validation method 
used (10FCV: 10-fold, LOOCV: leave-one-out), the number of BIRADS density categories classified, if there 

is pectoral muscle segmentation prior to classification and the correct classification percentage (CCP) 

obtained. 

Reference Classifiers Features Dataset 
Validation 

method 
Tissue 
types 

Segmentation CCP 

Tortajada et al. 

[43] 
LBN 

Texture and 

morphological 
831 SFM LOOCV 4 Yes 72.00% 

Proposed 

method 

Voting 

tree 
277 texture 

322 mini-

MIAS 
LOOCV 3 No 99.68% 

Proposed 

method 

Voting 

tree 
277 texture 

322 SFM 
(mini-

MIAS) 

LOOCV 4 No 99.75% 

Proposed 

method 

Voting 

tree 
218 texture 

1137 

FFDM 
LOOCV 2 No 96.76% 

Proposed 

method 

Voting 

tree 
218 texture 

1137 

FFDM 
LOOCV 4 No 91.52% 

        

 

There is still a need to carry out the statistical analysis of the classification features, 

improve the classification, test it with larger databases that also include FFDM and 

show how classification influences lesion detection. 

In this paper we extend our previous work from [46] and [47]. Additional 

classification methods have been compared here using with principal component 

analysis (PCA), Linear Discriminant Analysis (LDA), feature ranking (FR) and feature 

selection (FS). A novel weighted voting tree classification scheme is proposed as the 

best solution. Moreover, a statistical analysis of the data, including normality tests, 

homoscedasticity tests and the analysis of variance, is carried out to assess the influence 

of the tissue types on each of the 298 calculated features. Thus, only features that are 

significantly influenced by tissue type are considered. Experimental results with the four 

BIRADS classes have been obtained on 1459 mammograms. These mammograms are 

from two datasets, one composed by 322 screen-film mammograms (mini-MIAS) and 

other composed by 1137 full-field digital mammograms (FFDM), both with a range of 

densities and abnormalities. The results obtained with the proposed method improve 

over existing techniques using the same type of dataset (mini-MIAS or FFDM in this 

case), the same number of tissue classes (2–4), the same validation methods (10-fold 

cross-validation, 10FCV, and leave-one-out cross-validation, LOOCV) and without 

previous segmentation (see Table 1). 

3. Methods and materials 

Our proposal is to apply texture analysis to the whole breast. Thus all mammograms 

are pre-processed to identify the breast region and remove background and possible 

labels. This process consists on finding a point of the breast region boundary and then, 

obtaining the complete one using the 8-directional chain code [48] and the Otsu's 

threshold as the chain code threshold. The output of this process is illustrated in Fig. 1 

for the different tissue types considered. The pectoral muscle is not removed since some 

of the malignant and abnormal lesions may appear in this area and it has also some 

textural information. Fig. 2 illustrates this area with some mammograms from the used 

FFDM dataset. The boundary obtained in the pre-processing step may not be so well 

defined but the definition of the breast region boundary does not affect the next steps 

because all texture features are calculated inside of the tissue breast region previously 

identified. 
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Fig. 1. Mammography examples of the four BIRADS breast density classification 

types illustrated with the FFDM (a and b) and SFM datasets (c and d) and their 
preprocessed results (e–h): (T.I) fatty, (T.II) fatty-glandular or fibroglandular, 

(T.III) heterogeneously dense and (T.IV) extremely dense. 

  



 
 

 
Fig. 2. Examples of mammograms from the FFDM dataset with abnormal lesions in the pectoral muscle. 

3.1. Experimental database 

Two datasets were considered. One composed of 322 SFM obtained from the mini-

MIAS public database and another one composed of 1137 FFDM provided by local 

Hospitals. We focus our attention on the use of a FFDM dataset. Both datasets were 

labelled according to the BIRADS categories by four expert radiologists from the 

Hospital General Universitario de Ciudad Real, using the majority vote opinion. The 

number of images of each type is shown in Table 2 and Table 3. The mini-MIAS dataset 

was used also to compare our results with those of other authors and we test the 

proposed method with the mini-MIAS original classification. The image sizes are 

1024 × 1024 and 3328 × 4084 respectively for the SFM and FFDM datasets. 

Table 2. Number of images of each type for SFM and FFDM databases. 

Dense tissue [0–25%) [25–50%) [50–75%) [75–100%] 

Type T.I T.II T.III T.IV 

     

SFM 84 102 92 44 

FFDM 288 289 289 271 

     

 

Table 3. Number of images of each type for mini-MIAS database. 

Dense tissue [0–33%) [33–66%) [66–100%] 

Type T.I T.II T.III 

    

mini-MIAS 106 104 112 

    

 

The SFM database contains images from right and left mediolateral oblique 

projections (RMLO, LMLO) whereas the FFDM database contains also images from 

right and left craniocaudal projections (RCC, LCC). 
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3.2. Feature extraction and statistical analysis 

Most studies on texture classification are based on statistical and morphological 

features obtained from the image (see Section 2). Here we analyze 298 features. All 

features have been calculated using only the pixel values inside the extracted breast area 

of the preprocessed images. 241 features have been drawn from the histograms and the 

co-occurrence matrices by means of the Haralick's coefficients, [49]. The co-occurrence 

matrices have been calculated for a distance d equal to 1, 3 and 5 and an angle a equal 

to 0°, 45°, 90° and 135°. These features are listed in detail in [46]. The other 57 features 

are: mean, variance, kurtosis and asymmetry of the local binary patterns (LBP); 

Chebyshev moments and mean and variance of 24 Gabor filters (6 orientations, 4 

frequencies) [50], [51] and [52]. These 57 features are complementary to the previous 

ones. They cope with non-stationary grey texture images which may be the case for 

mammograms with breast density T.II and T.III. Whereas features defined from the co-

occurrence matrix may cope with stationary grey texture images, which is mainly the 

case of breast density T.I and T.IV. A stationary signal (image) is a signal where there is 

no change in its properties versus a non-stationary signal where there is change in the 

properties. By definition T.I and T.IV have homogeneous density, non-dense and dense 

respectively, while T.II and T.III have heterogeneous density. 

Once all features have been calculated, a statistical analysis is carried out to include 

only features influenced by tissue type. In the literature, several sets of different features 

have been applied to automatic breast tissue classification without determining if these 

features really contain discriminant information (Table 1). Performing a statistical 

analysis on the above data is necessary to know if the texture features have significant 

differences between the four different tissue types. In other words, if they constitute a 

set of discriminant features of the problem or not. 

Feature analysis entails the analysis of variance. In this case, the classification 

criterion (tissue type) is an independent variable called factor. Then, each feature 

variable is divided into four groups by the independent variable. Thus, the feature set 

contains the dependent variables of the problem. This analysis has been carried out to 

check whether or not the means of several groups are all equal for each feature and then, 

if we can conclude that the factor has a significant influence on the results. 

The most common procedure to test if the means of two populations are equal is the 

Student's t-test. However, it is known that using the two sample t-test to evaluate more 

than two groups of data and performing all the possible pairwise comparisons, the 

likelihood of making a Type I error in at least one of our comparisons increases [53]. 

This makes the analysis of variance (ANOVA) more adequate in this case [54]. 

However, there are two main restrictions to apply ANOVA, the normality and the 

homoscedasticity of the data. The lack of the normality in some of the features is not a 

problem for large sets of data due to the Central Limit Theorem (more than 30 samples). 

In cases where features present significant differences between their variances it is 

possible to apply ANOVA if the sizes of the groups are nearly equal. Unfortunately, this 

is not our case and we can only apply the ANOVA analysis over the features that have 

homogeneity of variances. With the features that do not fulfill ANOVA conditions, it is 

possible to apply the non-parametric alternative,the Kruskall-Wallis test (KWt) [55]. 

The KWt tries to perform an analysis similar to ANOVA though with relaxed 

conditions. Then, we use this technique with the features that have significant 

differences between the group variances. 

In order to test the normality of the data the Kolmogorov–Smirnov test (KS) was 

used [56]. It considers a null hypothesis H0 that data comes from populations with 

normal distributions and an alternative hypothesis H1 that data comes from non-normal 

populations. Setting the significance level to α = 0.05, from the results of the KS test 

applied to the SFM database 102 of the 298 features obtained a p-value >α for each 

tissue type so we can assume that these features have a normal distribution with a 

confidence of 95%. For the FFDM database only 32 features obtained a p-value >α. The 

next step of the analysis is to test homoscedasticity. To check it we run the Levene's test 

[57]. One advantage of this test is that it does not require normality of the underlying 

data. Levene's test has as null hypothesis, H0, that the variances are equal between all 

types. 134 and 74 features have equal variances between all types for SFM and FFDM 

datasets respectively. 
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Finally, ANOVA has been applied over the features that follow the normality and 

homoscedasticity conditions and the KWt has been applied with the others. The results 

of applying ANOVA show that in case of using the SFM dataset only in 11 of the 

features the tissue type is not influential. With the FFDM dataset there are 52 features 

with no tissue type influence. On the other hand, the results of the KWt with the non-

homoscedastic features show that all these features are influenced by the tissue type in 

the SFM dataset, but in case of using the FFDM dataset we obtain another 19 features 

without tissue influence. Summarizing, we conclude that all the calculated features 

except for 11 features for the SFM dataset and 71 features for the FFDM have 

significant differences influenced by the tissue type. Table 4 shows these features which 

correspond to those that do not fulfill ANOVA and the non-homoscedastic. Table 4 also 

indicates the feature category, that is, 54 statistical and 22 space-frequency descriptors 

are not influenced by the tissue type. 1st-order statistical descriptors measure typical 

statistics in image histogram. They are sensitive to global variation of gray pixel levels, 

although they ignore their local correlation. The mode and the minimum are those 

descriptors non-influenced by the tissue type. 2nd-order statistical descriptors measure 

statistics in co-ocurrence matrix defined as the distribution of co-occurring neighbor 

gray values. The 2nd-order statistical descriptors non-influenced by the tissue type are: 

difference variance, energy, difference entropy, measure of correlation, maximum 

probability and homogeneity at different distances, d, and angles, a. Space-frequency 

descriptors do not really constitute descriptors by themselves but transformations where 

features, somehow hidden, arise with higher visibility. Here 24 Gabor filters (Gbfi) 

formed calculating the energy at every scaled level have been used. The mean and 

variance of 3 and 11 Gbf for SFM and FFDM dataset respectively were disregarded as 

non-influenced by the tissue type. They correspond to the first and the last scales, which 

contain mostly noise. 

Table 4. Features non-influenced by the tissue type. These features do not fulfill ANOVA and the non-
homoscedastic. 

Dataset Variable Co-occurrence matrices Category 

    

SFM Minimum 
 

1st Statistical 

FFDM Mode 
 

1st Statistical 

SFM Measure correlation d = 5 ∀ a 2nd Statistical 

FFDM Energy ∀d ∀ a 2nd Statistical 

FFDM Difference variance d = 3a = 0°, 90° 2nd Statistical 

FFDM Difference entropy d = 3a = 0°, 45°, 135° 2nd statistical 

FFDM Homogeneity 1, 2 d = 3, 5 ∀ a 2nd statistical 

FFDM Homogeneity 2 d = 1a = 0°, 45°, 135° 2nd statistical 

FFDM Max. Probability ∀d ∀ a 2nd statistical 

SFM, FFDM Gbfi, i = 1, 2, 24 
 

Space-frequency 

FFDM Gbfi, i = 3 …6, 20 … 23 
 

Space-frequency 

    

 

Considering the results above, most of the calculated features are influenced by the 

tissue type and it therefore makes sense to solve this classification problem by using 

these features. 

3.3. Dimension reduction 

Although some calculated features have been discarded as a result of the statistical 

feature analysis (Section 3.2) the total number of features still remains high (287 and 

227 for the SFM and the FFDM datasets respectively). Large numbers of features could 
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reduce classifier accuracy (Hughes’ phenomenon) and increase computational time [58]. 

Then, to reduce and select the feature space, LDA, PCA and FR and FS of individual 

performance were applied for each classification method. PCA transforms a number of 

variables that can be correlated into a smaller set of uncorrelated variables called 

principal components and tries to find a subspace whose basis vectors correspond to the 

maximum-variance directions in the original space [59]. On the other hand, LDA 

searches for those vectors in the underlying space that best discriminate among classes. 

Fig. 3 depicts the feature values of the two first components of the LDA reduced space 

for the SFM, FFDM and mini-MIAS image datasets. 

 

 
 
 

Fig. 3. Values projected on the new axes of the LDA reduced space for the SFM, 

FFDM and mini-MIAS image datasets. Blue-T.I, red-T.II, pink-T.III and black-
T.IV. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of the article.) 

FR is based on the results from intra-cluster and inter-cluster distances between the 

tissue types. These distances measure the variability within and between different 

groups. Finally, FS is a forward selection with the nearest-neighbor criterion to obtain 

the optimal feature reduced set. 

Different tests were performed by varying the number of components from the space 

reduced by PCA and FR. This number of components varies between 10 and 270 or 210 

(for SFM or FFDM datasets) at intervals of 10. LDA transforms the feature dataset into 

a new dataset with the number of groups minus 1 and FS has been used with the optimal 

features returned by this technique. We select all of these features from the training 

partitions. The average errors for all tested classifiers were measured and the 
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reduction/selection techniques show improvements of 8%, 11%, 20% and 52% with 

PCA, FR, FS and LDA respectively. 

Fig. 4 shows the analysis of the feature selection and reduction methods, as well as 

the effect of the classification with the selected features. Fig. 4(a–c) shows the errors 

with all features (ALL) and with the selected ones, that is, before and after applying the 

selection/reduction methods for the different classification methods tested on the 

selected features. These are: support vector machines (SVM), linear Bayes normal 

classifier (LBN), naive Bayes classifier (NAIVE), k-nearest neighbor (k-NN) with k 

equal to 1, quadratic classifier (QD), nearest mean classifier (NMC), Fisher classifier 

(FISH), and parzen classifier (PARZ) [60] and [61]. Fig. 4(d) shows the errors when 

using different set of descriptors under the same classifier (Fisher). It is shown how the 

combination of different types of descriptors can strengthen the capacity of the 

classifiers to discriminate. Thus, from this chart, the use of the statistical features 

(STAT) plus Gabor (GB) complements their efficacy. Note that adding LBP and 

Chebyshev moments (ChM) barely affects performance. 

 
 
 

Fig. 4. Analysis of features. (a–c) Comparison of feature reduction and feature 

selection methods. (d) Comparing descriptor types under the same Fisher classifier. 
The leave-one-out cross-validation method is used to train and test the classifiers. 
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3.4. Classifiers, data training and testing 

To train and test classifiers the 10FCV and the LOOCV methods were used. The 

10FCV method consists of randomly dividing the data into 10 different groups 

containing approximately the same number of samples. One of these groups is selected 

to test the classifier and training is performed on the rest of the groups. The process is 

then repeated with the other groups of the dataset as the test set, and the average 

classification error is obtained. The LOOCV method works like 10FCV but dividing the 

data into N groups, being N the number of samples. A sample case is composed of all 

mammogram projections of a woman. Then, RMLO and LMLO projections of a woman 

from the SFM database are a sample case and RMLO, LMLO, RCC and LCC 

projections from the FFDM database are another sample case. At the classification 

stage, the projections of each woman are analyzed by the classifier trained using the 

mammograms of all other women in the database. Thus, a leave-one-woman-out 

methodology is used to avoid bias. The performance of the proposed classification 

scheme with both methods is shown and discussed in Section 6. 

Examining the results [46], it was observed that the classifiers with the best global 

CCP do not necessarily have the best CCP for each tissue type because their training 

algorithms try to minimize the global error. In order to improve the individual results of 

the classifiers we propose to combine them in a weighted voting classification scheme. 

The weighted voting scheme is based on the idea that not all voters are equal. Instead, if 

a classifier has better performance at one class, a larger weight is assigned to it for 

detecting instances of this class. The process begins by training and testing the 

classifiers individually. Then, the best classifier, j, for each tissue type, i  , is selected. 

After selecting the classifiers, five weights are assigned to each classifier, one of them 

corresponds to the global sensitivity of the classifier, wgiwgi, and the other four 

correspond to the sensitivity for each tissue type, w1…4iw1…4i. Finally, the classifiers 

are applied individually over the test set obtaining four decisions. Each decision has a 

weight as a result of multiplying the global classifier sensitivity times the individual 

class sensitivity of the decision. Adding all the weights, the tissue type that has the 

largest value becomes the final decision (
𝑚𝑎𝑥
𝑖

∑ 𝑤𝑔𝑗 ∗ 𝑤𝑖𝑗
4
𝑗=1 ). Fig. 5 depicts the 

proposed weighted voting combination. 

 
 
 

Fig. 5. Proposed weighted voting combination scheme for the 4-class classification problem. 
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Mammographic density can be evaluated and reported by radiologists on the basis of 

visual analysis of mammograms by following two different radiologic patterns of dense 

and non-dense tissue in the breast. Thus, the first evaluation by radiologists follows a 

two-class problem, differentiating between fatty and dense breast types. Afterwards, 

percentage density is visually analysed to discriminate between subtle glandular and 

dense tissue types. Therefore, a tree structure looks the natural way to mimic the 

classification of mammographic parenchyma patterns. Moreover, the higher 

classification errors are given by densities Type II and III. Then, in order to make the 

classification problem easier the four tissue types could be merged into two main 

groups, fatty and dense, according to the percentage of dense tissue. Then, it is possible 

to get a two level classification problem with a tree structure in which the first level 

separates fatty mammograms, {{T.I∪T.II}, from dense ones, {T.III∪T.IV}} (see Fig. 

6). The second level separates each of the two main tissue types in the original two 

grouped tissues. Then, it separates T.I from T.II and T.III from T.IV, leading to the four 

classification groups. 

 
 

 
Fig. 6. Proposed tree classifier structure. 

Finally, we propose to use the above tree classifier structure combined with the 

weighted voting classification scheme resulting in a weighted voting tree classification 

scheme. Therefore, only two individual classifiers are needed in each node of the tree 

and three weights are calculated for each individual classifier (Fig. 7). 
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Fig. 7. Proposed weighted voting tree combination scheme for the two stage classification 

problem. 

4. Systems and program 

A CADe system for mammography with different detection methods has been 

developed. These are β-splines, wavelet, adaptive filtering and fuzzy k-means 

[4] and [62]. The methods may be potentially applied to all lesions and tissues. 

However, after comprehensive tests with these methods we concluded that their 

accuracy, in terms of sensitivity and specificity, was tissue and lesion type dependent 

[26] and [63]. It is necessary to adjust the input parameters to control the sensitivity of 

the algorithm depending on the tissue type, especially in areas of high density, in order 

to reduce the false positive rate at almost the same true positive detection rate. Then, 

prior to the detection algorithm, tissue classification is applied. Fig. 8 shows a scheme 

of the system. The system is divided into three stages: (i) mammographic image 

selection and preprocessing, (ii) mammographic density classification and (iii) lesion 

detection. The training and testing process described in previous sections are done for 

the feature selection and the voting tree classification. Once the tissue classification is 

done, lesion detection is carried out with the defined set of input parameters. 
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Fig. 8. Scheme of the CADe algorithm execution steps. 

The input parameters of the detection methods are the number of clusters in the 

fuzzy k-means, the number of iterations in the wavelet method and the angular rate in 

the adaptive filtering. These parameters should be increased when processing T.IV and 

proportionally decreased with the other types. Higher order wavelets are smoother and 

better able to distinguish between the various frequencies. Thus, if the noise is hardly 

noticeable or there are various frequencies, we may need more levels in order to get the 

fine details of the image. Usually, the detail information of level 7 was considered for 

T.IV, as the frequencies covered by this level were similar than the frequency content of 

the dense mammogram. Also in the case of T.III and T.IV, wavelets and β-spline 

algorithms are applied in conjunction with the fuzzy and the adaptive filtering, 

respectively. Wavelets have the advantage of being able to separate the fine details in an 

image and deblurred. Moreover, wavelets and β-splines are able to enhance image 

contrast by adjusting its gray-level probability density function. This processing makes 

lesion detection easier in T.III and T.IV mammograms by fuzzy k-means and the 

adaptive filtering algorithms. In terms of lesions, adaptive filtering and β-splines are 

better used for microcalcifications, wavelets for distortions, and fuzzy k-means for mass 

lesions. 

β-spline filtering uses the first derivative of a cubic spline model. It is applied on the 

images over both the X- and Y-axis directions obtaining new coefficients that are re-

scaled from 0 to 255 for visualization purposes. The results are shown in Fig. 9 for both 

axes. It is possible to see how the output simulates a raised relief of the image. This is 

due to the intensity changes produced on the image when converting from discrete to 

continuous coefficients with the β-spline transform. 

 
 

 
Fig. 9. β-spline filtering: (a) Selected region obtained from the original images corresponding to a 

mammography with T.II, (b) Highlighted contrast by β-splines applied to X-axis and (c) Highlighted contrast 
by β-splines applied to Y-axis. 
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The method has also been compared to wavelet analysis. Several wavelet transforms 

were tested, and the Debauchies transform was found to give the best results, with 20 

coefficients (DB20) over high frequencies, after 3 iterations for T.I and T.II, and 7 

iterations for T.III and T.IV. Section 6.2 illustrates these results. 

4.1. Implementation 

In order to make the CADe system accessible it has been developed based on a 

client-server architecture. The CADe can be accessed through a web browser from any 

computer with network and user privilege access. The server is responsible for carrying 

out the appropriate operations and facilitating the communication with the image 

database to provide the necessary information to clients. We selected Java as the 

programming language for the CADe, more specifically, Java Applets for the 

application interface and JavaScript for the CADe – web communication. 

The software developed follows a three layer architecture. This architecture 

performs a code division according to the responsibilities that has every part of the 

application code. The classical division of the code divides it into a presentation layer, a 

domain layer, and a data layer. The presentation layer handles the code of the user 

interface, the domain layer contains all the business logic required to perform all the 

application functions and the persistence layer is responsible for managing data 

persistence in databases or files. 

Finally, the software development process is selected according to the software 

structure that has to be developed. The quality of the developed software often depends 

on the methodology used for its construction. Currently, one of the most used methods 

to develop a complete system is the Unified Process [64]. The Unified Process is a 

methodology for developing object-oriented software using the Unified Modelling 

Language (UML) for representing system models. This development methodology is 

perfectly compatible with the three layer architecture. 

5. Mode of availability 

A demo version of the CADe and the FFDM database is available upon request at 

the VISILAB website [65]. The CADe application can be accessed by a web browser 

with Java Applets enabled. It runs on a typical modern PC and has no specific hardware 

requirements. The FFDM database provided is composed of 1137 jpg images of size 

3328 × 4084 pixels. 

6. Results and discussion 

Results have been divided in two main categories, one evaluating density 

classification and other evaluating the CADe results with and without tissue 

classification. The tests have been performed on a PC with 2 Intel Xeon CPU E5-2690 

(2.9 GHz) processors, 64GB of RAM and Windows 7 Professional 64-bit with SP1. 

6.1. Density classification results 

The different classifiers were analyzed using 10FCV and LOOCV. Experiments 

were carried out with all features (287 features for SFM and 227 for FFDM databases) 

and reducing the feature space with PCA, LDA, FR and FS. Weighted with respect to 

the number of mammograms of each type, classification with LDA provides better 

results. The best classifiers for all tested databases and both validation methods are 

shown in Table 5 and Table 6. Results show the 99.21% of the SFM mammograms 

correctly classified using 10FCV and LOOCV. For the FFDM dataset, on average 

89.34% of the images are correctly classified. The CCP for the mini-MIAS dataset is 

99.06% for both 10FCV and LOOCV with SVM classifier and LDA. 
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Table 5. Best correct classification percentage (CCP) for SFM and FFDM databases using the classifiers with 

the feature reduction techniques. 

Dataset CV Classifier Red TI TII TIII TIV CCP 

         

SFM 10FCV k-NN LDA 100% 99.01% 97.82% 100% 99.21% 

 
LOOCV LBN LDA 100% 99.01% 97.82% 100% 99.21% 

FFDM 10FCV LBN LDA 91.66% 83.73% 88.23% 94.09% 89.43% 

 
LOOCV LBN LDA 91.66% 83.73% 87.88% 93.72% 89.25% 

         

 

Table 6. Best correct classification percentage (CCP) for mini-MIAS database using the classifiers with the 

feature reduction techniques. 

Dataset CV Classifier Red TI TII TIII CCP 

        

mini-MIAS 10FCV SVM LDA 99.10% 99.05% 99.03% 99.06% 

 
LOOCV SVM LDA 99.10% 99.05% 99.03% 99.06% 

        

 

After that, we combine the best classifiers for each tissue type in order to obtain 

better results with the weighted voting combination scheme explained in Section 3.4. 

Thus, we have four individual classifiers with their corresponding feature selection 

techniques applied to both, SFM and FFDM datasets and three individual classifiers for 

the mini-MIAS database classified in three tissue types. The results of this scheme for 

10FCV and LOOCV are shown in Table 7 and Table 8. The classifiers which have been 

used in the combination are also shown together with the final CCP for each tissue type. 

Table 7. Results of the weighted voting combination scheme. Rows contain the initial classifiers that have 

been combined and their feature selection techniques. The percentage shown is the final correct classification 

percentage of the combined classifier by each tissue type. Columns contain the database and the cross-
validation used. 

Dataset SFM  FFDM 

Criterion 10FCV LOOCV  10FCV LOOCV 

      

Classifiers NMC + LDA LBN + LDA  FISH + LDA FISH+LDA 

 
FISH + LDA FISH + LDA  LBN + LDA NMC + LDA 

 
LBN + LDA LBN + LDA  PARZ + LDA SVM + LDA 

 
LBN + LDA LBN + LDA  FISH + LDA PARZ + LDA 

 
 

T.I CCP 100% 100%  93.05% 92.70% 

T.II CCP 98.03% 97.05%  81.31% 81.66% 

T.III CCP 91.30% 89.13%  87.88% 86.85% 

T.IV CCP 100% 100%  94.83% 93.72% 

 
 

Final CCP 97.33% 96.54%  89.27% 88.73% 
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Table 8. Results of the weighted voting classification scheme for the mini-MIAS 

classification. Rows contain the initial classifiers that have been combined and their 

feature selection techniques. The percentages shown are the final correct 
classification percentage of the combined classifier by each tissue type. Columns 

contain the cross-validation used. 

Dataset mini-MIAS 

Criterion 10FCV LOOCV 

   

Classifiers LBN + LDA LBN + LDA 

 
SVM + LDA NAIVE + LDA 

 
FISH + LDA FISH + LDA 

T.I CCP 100% 100% 

T.II CCP 98.11% 99.05% 

T.III CCP 99.03% 99.03% 

Final CCP 99.05% 99.36% 

   

 

Finally, the weighted voting tree combination scheme, also explained in Section 3.4, 

was applied. Now, we have 6 individual classifiers with their corresponding feature 

selection techniques for this scheme for the SFM and FFDM datasets (2 for the first 

layer or separation node and 4 for the second layer or the last two separation nodes) and 

4 individual classifiers for the mini-MIAS dataset. The results of this scheme for 10FCV 

and LOOCV are shown in Table 9 for the SFM and FFDM datasets, together with the 

classifiers obtained in the combination and the CCP for each tissue type. The weighted 

voting tree classification scheme improves upon previous results. On average, and 

weighted with respect to the number of mammograms of each type, the results reflect up 

to 99% and 97% of samples correctly classified in the 1st layer, i.e., when the number of 

classes is reduced to fatty and dense densities only, for SFM and FFDM datasets. In the 

2nd layer, classifying into four BIRADS categories, for the SFM dataset we obtain up to 

99.75% by means of both validation metods, 10FCV and LOOCV. For the FFDM 

dataset the results reflect up to 91.63% of mammograms correctly classified. The best 

results for the mini-MIAS dataset were obtained separating T.I from {T.II,T.III} in the 

first layer and then T.II from T.III in the second layer. In both layers the CCP obtained 

was 99.68% with FISH classifier and LDA. 
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Table 9. Results of the weighted voting tree combination scheme. Results are classified according to the 

separation level. On each level, rows contain the initial classifiers that have been combined and their feature 
selection technique. The percentage shown are the final correct classification percentages of the combined 

classifier by each type. Columns contain the database and the cross-validation used. 

Dataset SFM  FFDM 

Criterion 10FCV LOOCV  10FCV LOOCV 

      

1st Layer PARZ + LDA FISH + LDA  NAIVE + LDA NAIVE + LDA 

Classifiers FISH + LDA FISH + LDA  SVM + LDA SVM + LDA 

{T.I, T.II} CCP 99.46% 98.92%  96.01% 95.32% 

{T.III, T.IV} CCP 98.52% 99.26%  98.21% 98.21% 

1st Layer CCP 98.99% 99.04%  97.11% 96.76% 

2nd Layer FISH + LDA FISH + LDA  FISH + LDA SVM + LDA 

 
FISH + LDA FISH + LDA  NAIVE + LDA NMC + LDA 

Classifiers FISH + LDA FISH + LDA  PARZ + LDA SVM + LDA 

 
FISH + LDA FISH + LDA  FISH + LDA FISH + LDA 

T.I CCP 100% 100%  93.75% 93.05% 

T.II CCP 99.01% 99.01%  83.04% 82.00% 

T.III CCP 100% 100%  93.41% 96.19% 

T.IV CCP 100% 100%  96.30% 94.83% 

 
 

Final CCP 99.75% 99.75%  91.63% 91.52% 

      

 

The confusion matrices for the weighted voting tree combination scheme are shown 

in Table 10 and Table 11 for SFM and FFDM datasets respectively and using both 

LOOCV and 10FCV methods. The Tables also shown the False Positive Rate (FPR) 

and the True Positive Rate (TPR) or sensitivity, similar to the CCP. The specificity and 

the accuracy of the classification method may be obtained from these measures. The 

specificity is equal to (1 – FPR) and the accuracy is equal to (sensitivity * positive 

cases + specificity * negative cases). The results show an overall specificity of 99.9% 

for the SFM and 97.2% for the FFDM dataset and an overall accuracy of 99.8% for the 

SFM and 94.3% for the FFDM dataset. 

Table 10. SFM. Weighted voting tree classification scheme confusion matrices together with the true positive 

rate or sensitivity and the false positive rate per tissue type. 

Types Estimated True total TPR FPR 

 
T.I T.II T.III T.IV 

   
        

T.I 84 0 0 0 84 100% 0.0% 

T.II 0 101 1 0 102 99% 0.4% 

T.III 0 0 92 0 92 100% 0.0% 

T.IV 0 0 0 44 44 100% 0.0% 
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Table 11. FFDM. Weighted voting tree classification scheme confusion matrices together with the true 

positive rate or sensitivity and the false positive rate per tissue type. 

Types Estimated True total TPR FPR 

 
T.I T.II T.III T.IV 

   
 

(a) Final results – 2nd layer using 10FCV 

T.I 270 16 2 0 288 93.75% 3.2% 

T.II 25 240 18 6 289 83.04% 2.9% 

T.III 2 8 270 9 289 93.42% 3.4% 

T.IV 0 1 9 261 271 96.30% 1.7% 

(b) Final results – 2nd layer using LOOCV 

T.I 268 18 2 0 288 93.05% 3.3% 

T.II 28 237 18 6 289 82.00% 3.2% 

T.III 0 8 278 3 289 96.19% 3.8% 

T.IV 0 1 13 257 271 94.83% 1.0% 

        

 

Summarizing, the proposed approach reflects up to 99% of samples correctly 

classified into 4 BIRADS classes by means of the weighted voting tree classification 

scheme for the SFM dataset. For the FFDM dataset on average 91.57% of samples were 

correctly classified using 10FCV and LOOCV. When the number of classes is reduced 

to fatty and dense densities only, the results of CCP are 99% and 96.93% for SFM and 

FFDM datasets respectively. Therefore, our approach improves upon previous results 

reported in the literature for breast tissue classification (see Table 1). 

6.2. CADe results 

These classification methods have been integrated into a CADe system and applied 

prior to the detection algorithms as explained in Section 4. Fig. 10 illustrates the result 

of the detection algorithms after tissue type classification. The figures show the original 

image with the spatial location of the lesion, the lesion and tissue type, the detected 

lesion marked in black, and the parameters used for each algorithm, those are, the 

number of clusters, c, in the fuzzy k-means, the number of iterations, iter in the DB20 

wavelet method and the angular rate γ in the adaptive filtering. A wrong selection of γ in 

the adaptive filtering can lead to a high number of FPR, and a wrong number of 

iterations in the wavelet algorithm does not allow visualizing the lesion. This is 

illustrated in Fig. 10 2nd row with the results of the detection algorithms without 

previous classification of the breast tissue. 
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Fig. 10. Lesion detection for different tissue types. 1st column TI where Fuzzy k-means algorithm has been 

applied, 2nd column TII where adaptive filter has been applied, 3rd column TIII where Fuzzy k-means 

algorithm has been applied, 4th column TIII with wavelet processing, 5th and 6th columns TIV where 

adaptive filtering has been applied. 

The sensitivity and the specificity of the CADe were analyzed with FFDM 724 

mammograms with and without breast tissue classification. All density classes were 

balanced, that is, they were equally represented by 181 mammograms from each type. 

The mammograms contain two lesion types, that is, masses and microcalcifications. All 

lesions of the FFDM dataset were manually located by the four expert radiologists, 

similarly as in Fig. 10(a). The lesions and their location in the SFM dataset were 

obtained from the information provided by the mini-MIAS database. Then, the 

automatic detection provided by the CADe system, similarly as in Fig. 10(c), was 

compared with the manual one. The results of this analysis is shown in Table 12 for 

masses and microcalcifications present in the four types of densities. On average TPR 

increases 13% and the FPR decreases 14% with tissue type classification. The main 

differences are in the adaptive filtering and wavelet processing applied to 

microcalcifications and masses for T.III and T.IV. This conclusion and performance of 

the CAD system is similar to that reported in the literature [23], [24] and [26]. The 

overall sensitivity obtained previous tissue type classification is 77.5% and after 90.5%. 

The overall specificity obtained previous tissue type classification is 77.87% and after 

91.6%. That is, an overall accuracy of 91% is obtained with our CADe if the breast 

densities are taken into account. 
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Table 12. Sensitivity and specificity for the CADe algorithms without and with breast tissue classification 

Lesions Without breast density  With breast density 

 
T.I T.II T.III T.IV  T.I T.II T.III T.IV 

  

Masses 
 

Sensitivity 88% 79% 50% 48%  90% 91% 89% 90% 

Specificity 92% 94% 93% 90%  92% 93% 92% 94% 

 
 

Microcalcifications  

Sensitivity 87% 85% 93% 90%  91% 90% 92% 91% 

Specificity 90% 86% 38% 40%  91% 90% 90% 91% 

          

 

It is worth mentioning the comments made by the clinicians: The tools improve the 

resolution, in terms of the detectability of lesions, and additionally, they are able to 

distinguish their degrees of attenuation. The ability of wavelets to homogenize the 

background and of β-spline filtering to provide contrast and relief was judged to be 

quite useful. Both wavelets and β-spline work well in analyzing the resolution, which 

means that they properly characterize the border of the region of interest. They project 

the image onto a gray background which highlights the spicules, distortions and 

parenchyma. The β-spline transform keeps the original size of the calcium nodes. The 

filtering presented has shown to be successful at highlighting breast lesions on different 

tissue types. 

7. Conclusions 

In this work a novel hierarchical procedure based on weighted classifiers on texture 

features has been proposed for breast tissue classification. 

Our approach reflects up to 99% of samples are correctly classified into 4 BIRADS 

classes by means of the weighted voting tree classification scheme for the SFM dataset. 

For the FFDM dataset on average 91.57% of samples were correctly classified using 

10FCV and LOOCV. When the number of classes is reduced to fatty and dense 

densities only, the results of CCP are 99% and 96.93% for SFM and FFDM datasets 

respectively. This improves upon previous results reported in the literature. 

Moreover, a large database of full-field digital mammograms classified into the four 

BIRADS categories by radiologists has been used. The classification information has 

been incorporated into a CADe system to show how classification influences lesion 

detection. Breast density classification improves CADe results not only for masses, as 

shown in [25], but also for microcalcifications. 

A statistical analysis of the 298 calculated texture features has been carried out to 

include only features significantly influenced by the tissue type. In this step we 

concluded that the tissue type affects the values of most features. Furthermore, the 

discriminatory power of the features was analyzed using the relation between the 

inter/intra cluster distances, PCA and LDA. The best results were obtained with LDA. 

Future work may additionally consider other textural features and the use of the bag-of-

words methodology. 

The processing tools implemented into the CADe system have been tested and 

qualitatively validated by expert clinicians at Hospital General Universitario de Ciudad 

Real. The results of the lesion detection algorithms obtained from the CADe system 

show that using breast tissue classification prior to lesion detection leads to an 

improvement of the detection results. Therefore, the ability to detect suspicious lesions 

on dense and heterogeneous tissue has been tested. 

Finally, the breast parenchymal procedure presented helps to adjust correctly the 

parameters of the CADe algorithms, which improves the detection results of the whole 

system increasing the true positive rate and decreasing the false positive rate. 
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