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Abstract

Time modulation provides a simple way to control the power radiation
pattern of an antenna array. By appropriately selecting the parameters of
a Time-Modulated Array (TMA) it is possible to obtain a reconfigurable
pencil beam adequate for wireless communications. This work focuses
on the impact of a TMA on the Bit Error Ratio (BER) performance of
a wireless communication receiver with a linear digital modulation. We
show how the BER of such a receiver is affected by the TMA synthesis
variables.

Antenna arrays, digital communication, time-modulated array, linear digital
modulation.

1 Introduction

Time-Modulated Arrays (TMAs) are antenna arrays whose radiated power pat-
tern is controlled by means of periodically enabling and disabling the excitations
of some of their individual elements [1, 2]. Such a periodic modulation is a non-
linear operation that generates sideband radiated signals which are frequency-
shifted at multiples of the time-modulation frequency. The Sideband Radia-
tion (SR) constitutes a phenomenon that may severely reduce the TMA gain
because it can represent a significant amount of the total radiated power, hence
being a cause of efficiency reduction at the carrier frequency. The usual ap-
proach to face the SR problem has been to propose optimization methods capa-
ble of minimizing its relative value (e.g. [2]). Under such considerations, TMA
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synthesis has usually considered the optimum compromise between Side-Lobe
Levels (SLL), SR, and efficiency. However, the SR is not necessarily harmful
and sometimes can be profitably exploited, e.g. to design smart antennas in
time-varying scenarios [3].

The possibility of transmitting communication signals using TMAs has been
studied in [4, 5, 6]. This work goes a step further and analyzes the impact of
TMAs on the system Bit Error Ratio (BER) when Linear Digital Modulation
(LDM) signals are transmitted. In other words, due to the nature of TMAs,
it is relevant here to link the classical array synthesis trade-off among SLL,
gain, and Half-Power Beamwidth (HPBW), to a key figure of merit in digital
communication systems such as the BER. It is also useful to include a less
quantitative parameter, the complexity of the array feeding network.

Antenna arrays with non-uniform amplitude excitation distributions pro-
vide radiation patterns with a desired SLL value. For the case of a conventional
Static Array (STA), since the dynamic range of the amplitude distribution is
higher, the SLL decreases. Furthermore, the STA feeding network becomes
more complex and thus more difficult to design and construct. However, the
TMA philosophy is not based in amplitude control through the feeding geomet-
ric configuration. A TMA feeding network makes use of pure time control; in
fact, its usual circuitry consists of simple ON/OFF periodical switching of the
antenna elements [1]. Therefore, from an engineering point of view, a compar-
ison between a TMA solution and its STA counterpart should unequivocally
include the complexity of the feeding network.

In this work we take, as a design premise, a STA with a relatively low level of
complexity; in other words, not very restrictive in terms of SLL. In this case, and
for simplicity, we consider a real-valued amplitude distribution on a linear array.
We will apply time modulation to the previous STA –thus introducing a modest
extra cost in terms of complexity– in order to achieve a previously specified SLL
level [1]. As a novelty, we quantify theoretically the system BER as a function
of the TMA normalized pulse durations, providing closed-form expressions to
compare TMAs and STAs for different scenarios in wireless communications.

2 Power Balance

Let us calculate the power balance of the wireless communication system shown
in Fig. 1. Such a system uses an M -ary linear digital modulation scheme [7]
with a conventional STA at the transmitter side and a TMA at the receiver side,
separated from the transmitter by a distance R. Both transmit-STA and receive-
TMA exhibit synthesizing pencil-beam patterns whose maximums are pointed
into directions θT and θR radians off the z-axis, respectively (see Fig. 1)1.

Recall now that the radiated field of a linear TMA composed of N isotropic

1It can be seen from that figure that the main axes of the antennas are considered to be
both parallel to the z-axis of a global coordinate system.
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elements distributed along the z axis is given by [1, 4, 5]

F (θ, t) = ejωct
N−1∑

n=0

∞∑

q=−∞
Gnqe

jqω0tInejkzn cos θ =

∞∑

q=−∞
Fq(θ, t), (1)

where Gnq are the Fourier series expansion coefficients of periodic functions
(usually rectangular pulses with period T0 = 2π/ω0) applied to the array n-th
element; In = |In|ejφn and zn are, respectively, the complex current excitation
and the position on the z-axis for such an element; the θ variable corresponds
to the angle with respect to the z-axis; and k = 2π/λ is the wavenumber for a
carrier wavelength λ = c/fc.

The maximum gain of the receive-TMA is given by [5]:

GTMA = ηs4π|F0(θ, t)|2max/Prad, (2)

where ηs corresponds to the efficiency of the switches of the feeding network
including the power absorption of their off-state; F0(θ, t) is Fq(θ, t) given in
Eq. (1) for q = 0; and Prad is the average radiated power by the TMA when a
sinusoidal carrier is transmitted and is given by [6]:

Prad = 4π

∞∑

q=−∞





N−1∑

n=0

|In|2|Gnq|2 + 2

N−1∑

n=0

N−1∑

m=0
m6=n

Re{ImI∗nGmqG∗nq} sinc(k(zm − zn))





(3)

A simplified expression for Eq. (2) is obtained when the inter-element spacing is
set to λ/2, the element excitations are real-valued In ∈ < (thus In = |In|), and
the pulse modulations gn(t) are (e.g. in [4]) even rectangular pulses. This last
hypothesis allows for the representation of gn(t) by means of a Fourier series
expansion with real coefficients of the form

Gnq = ξn sinc(qπξn), (4)

where ξn is the normalized pulse time duration of the n-th element. In such a
case, the maximum squared amplitude can be simplified to

|F0(θ, t)|2max = [F0(θ, t)F ∗0 (θ, t)]θ=π
2

=

[
N−1∑

n=0

Inξn

]2
(5)

We now plug Eqs. (3) to (5) into Eq. (2) to rewrite the receive-TMA gain as

GTMA =

ηs

[
N−1∑

n=0

Inξn

]2

N−1∑

n=0

I2nξ
2
n +

N−1∑

n=0



∞∑
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q 6=0

I2nξ
2
n sinc2 (qπξn)




, (6)
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Having in mind that for all ξn ∈ (0, 1) the sinc-squared infinite series converges
to 1/ξn, then

∞∑

q=−∞
q 6=0

sinc2(qπξn) =
1

ξn
− 1, (7)

and we can simplify Eq. (6) to obtain

GTMA =
ηs

[∑N−1
n=0 Inξn

]2

∑N−1
n=0 I

2
nξn

=
ηs

[∑N−1
n=0 ITMAn

]2

∑N−1
n=0 I

2
nξn

, (8)

where ITMAn = Inξn is the n-th dynamic excitation [4].
Since the transmitting antenna is considered to be a conventional N -element

STA with a λ/2 inter-element spacing and the same static excitations In, we
can find the maximum gain of the transmit-STA in a completely analogous way.
We will then arrive to

GSTA =

[∑N−1
n=0 In

]2

∑N−1
n=0 I

2
n

. (9)

Finally, we apply the well-known Friis Transmission Equation [8] to determine
the received-to-transmitted power ratio,

PR
PT

=
( λ

4πR

)2
GSTAGTMA, (10)

where the transmit and receive antennas are considered to be perfectly aligned2,
i.e., θT = θR = π/2.

3 Discrete-Time Receiver: System BER

Figure 2 shows the block diagram of a M -ary LDM receiver with an embedded
TMA. Such a receiver is able to detect, with minimum error probability,3 the
waveform sent at every symbol interval Ts from a set of M possible transmit
waveforms, with M being the order of the LDM signal constellation. We also
assume that the received signal is distorted by Additive White Gaussian Noise
(AWGN). Therefore, after down-conversion of the signal received by the TMA

2In this case, as the array elements are isotropic, the polarization matching factor is tacitly
regarded as unity.

3The minimum error probability (Pe) criterion [9] is applied in Detection Theory when a
multiple hypothesis test Hi is present (Hi ∈ {True, False} being True if si was sent and False
otherwise), with i ∈ Ψ = {0, 1, · · · ,M − 1} for an M -ary scheme. In addition, both a priory
probabilities p(Hi) and probability density functions p(x/Hi) are assumed to be known for
the indices i ∈ Ψ. The detector chooses the Hi that maximizes p(Hi/x) which is equivalent

to minimize Pe =
∑M−1

i=0

∑M−1
j=0 δijp(Hi/Hj)p(Hj), where δij is the Kronecker delta.
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(which, depending on the receiver architecture, involves operations such as band-
pass filtering, I/Q demodulation or low-pass filtering) at every Ts seconds, the
following signal is available at the input of the LDM detector (see Fig. 2):

x(t) = si(t) + w(t), with i ∈ Ψ = {0, 1, . . .M − 1}. (11)

If the frequencies of both the TMA and the signal satisfy [4]:

T0 � 1/fc and ω0 > Bω, (12)

with ω0 the angular frequency of the TMA periodic pulses, fc the carrier fre-
quency of the LDM signal, and Bω its bandwidth, then the signals si(t), i ∈ Ψ
(see Fig. 2) will be deterministic. On the other hand, w(t) represents AWGN
with zero mean and variance σ2. Under these circumstances, the BER expres-
sions for the system in Fig. 2 can be obtained through the derivations found in
[7]. All BER expressions can be obtained as particular cases of the following
closed-form expression with a common structure [7]:

BERmod(EN ) = fmod(M)Q
(√

gmod(M)EN

)
, (13)

where fmod and gmod are two scalar parameters that depend on the constellation
size M and on the linear modulation type (ASK, PSK, and QAM); Q(·) is the
well-known Gaussian error function; and EN = Eb/N0 is the ratio between
energy per bit and power spectral density of the thermal noise at the receiver,
being given by [7] EN = BωSNR/(2πfs log2M) with SNR, Bω, and fs the
Signal-to-Noise Ratio, the bandwidth, and the symbol rate of the received LDM
signal.

Since our aim is to compare the performance of the system when incorpo-
rating a receive-TMA with respect to its STA counterpart, we introduce the
following TMA cost function (see Eq. (8) and Eq. (9)):

α = α(In, ξn) =
GTMA

GSTA
=
EN |TMA

EN |STA
. (14)

Taking as a reference channel the one corresponding to a scenario with a con-
ventional STA at the receiver, with gain given by Eq. (9), we can evaluate,
over a reference range of EN denoted by ENref = EN |STA, the BER for the
complete family of LDM signals involving a receive-TMA solution with respect
to the STA counterpart by substituting EN |TMA = αEN |STA from Eq. (14) in
Eq. (13) writing, finally:

BERmod|TMA = fmod(M)Q
(√

gmod(M)α(In, ξn)ENref

)
. (15)

4 Numerical Examples

This section presents the results of numerical examples to quantify the impact
on the performance of a QAM digital communication system [7] when using
a TMA at the receiver and a STA at the transmitter side. We consider the
excitation amplitudes of the static feeding network corresponding to two cases:
uniform [10], and Dolph-Tschebyscheff [8, 1] distributions, as explained below.
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4.1 Optimized Uniform Distribution

Let us consider a 30-element array with uniform current excitations, i.e. In =
IUn = 1. By means of Time Modulation (TM) we determine a new pattern with
a better maximum SLL whose coefficients are ITMAn . Such coefficients can be
obtained by applying the normalized TM widths ξn to the uniform excitations,
i.e.

ITMAn = IUnξn = ξn. (16)

We consider the optimized values for ξn obtained in [10]4, which lower the
SLL from −13.24 dB to −19.43 dB (hence giving a ∆SLLdB = |SLLTMA −
SLLU| = 6.19 dB) and provide a first side-band maximum harmonic level be-
low |FTMA1

|max = −30 dB. We then compute the gain cost (see Eqs. (8), (9)
and (16)) with ηs = 1 (ideal switches [5]), the HPBW percentage variation
∆HPBW = HPBWTMA − HPBWU, and the dynamic range ratio of the static
normalized amplitude distribution, defined as a percentage, i.e.

∆|In|% = max{100(In+1 − In)} for n = 0, . . . , N − 2 (17)

Finally, we repeat the comparison by changing the static amplitude distribution
to In = ITMAn , which would lead to the case where the STA has the same
pattern than the optimized TMA. Table 1 shows the results derived from the
mentioned comparisons.

Figure 3 compares the same systems as those given in Table 1 but now in
terms of the BER curves when QAM signals are sent. Notice that in the first
case a considerable improvement in terms of SLL is achieved with a modest
degradation both on the beamwidth and gain, resulting in a slight degradation
of the BER curves. Recall that in the second case the power pattern is the
same for TMA and STA. This indicates that the STA can be replaced by TMA
hence showing that the less complex TMA feeding network fully compensates a
practically negligible gain cost reduction.

4.2 Dolph-Tschebyscheff Distribution

We now consider a 16-element array with In = IDTn corresponding to a −30 dB
DT normalized excitation distribution [8, 1]. We then apply TM to achieve a
new pattern with an SLL = −40 dB.

Table 2 and Fig. 4 show that, when compared to the STADT = 30 dB, the
TMA provides an SLL improvement (10 dB) that still could compensate for
a relatively low impact on gain (0.826) and, consequently in BER. However,
when compared to a STA with the same power pattern, the TMA provides
a clear solution according to its modest gain cost and the reduction of the
dynamic range of the excitations. Note that, according to Eq. (15) and taking

4In fact, it corresponds to a simplified version of the distribution given in [10], where the
very small (close to 0) and very large (close to 1) ξn are replaced by 0 and 1, respectively.
Such a simplification, which further reduces the first harmonic level and does not change the
SLL significantly, is done also in view of the fact that very small or very large time durations
would lead to technical problems (too fast switches).
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EN = EN |STA in Eq. (13), the difference between the absolute values of the
slopes of the BER curves for TMA and its STA counterpart can be quantified
through

mTMA −mSTA = C1

√
α

EN

(
1

eC2EN
− 1

eαC2EN

)
, (18)

with C1 = fmod(M)
√
gmod(M)/(8π) and C2 = gmod(M)/2 observing that, as

0 < α < 1, then mTMA < mSTA.

5 Conclusion

We have characterized the BER of a linearly modulated digital communication
system that incorporates a receive-TMA to synthesize pencil beam radiation
patterns. The system BER is properly connected to the classical trade-off an-
tenna variables for TMA synthesis purposes. The analysis shows the benefits
provided by the TMA technique, namely the reconfigurability of the power pat-
tern while achieving ultra-low levels of SLL with a less complex feeding network,
are obtained with minimal impact on the BER.
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Table 1: Comparison between a TMA uniform optimized distribution –built
from a static uniform distribution– and the STA counterpart.

TMA

SLL = −19.43 dB;N = 30

HPBW = 3.6◦; |F1|max = −32.24 dB

α ∆SLL ∆HPBW ∆{∆|In|}
STA uniform 0.82 6.19 dB 0.36◦ 0.00%

STA uniform optimized 0.98 0.00 dB 0.00◦ 93.65%

Table 2: Comparison between a TMADT with SLL = 40 dB –built from a STADT

with SLL = 30 dB– and the STA counterparts.

TMA

SLL = −40 dB;N = 16

HPBW = 8.98◦; |F1|max = −19.94 dB

α ∆SLL ∆HPBW ∆{∆|In|}
STADT SLL=30 dB 0.83 10.00 dB 0.72◦ 0.00%

STADT SLL=40 dB 0.93 0.00 dB 0.00◦ 148.30%

LDM
TX

LDM
RX

receive TMA

0

1−N

transmit STA

)t(0g

)t(1−Ng

Tθ
Rθ

R

kb̂kb

Figure 1: Digital communication system based on an M -ary linear modula-
tion scheme with a conventional transmit-STA and a receive-TMA synthesizing
pencil beam radiation patterns.
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Figure 2: Generalized receiver based in a linear digital modulation scheme in-
corporating a TMA.
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Figure 3: BER curves for 256- and 1024-QAM signals received through the
arrays outlined in Table 1. For a reference BER = 10−6 the TMA SNR loss
with respect to the STA uniform optimized is 0.1 dB for both 256-QAM and
1024-QAM; and with respect to the STA uniform is 0.9 dB for both 256-QAM
and 1024-QAM.
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Figure 4: BER curves for 16- and 64-QAM signals received through the arrays
outlined in Table 2. For a reference BER = 10−6 the TMA SNR loss with
respect to the STA with SLL = 40 dB is 0.3 dB for both 16-QAM and 64-QAM;
and with respect to the STA with SLL = 30 dB is 0.8 dB for both 16-QAM and
64-QAM.
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