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ABSTRACT 

This paper shows that, by the proper use of time modulation in equispaced linear arrays with uniform 

excitation distribution, it is possible to maintain the sidelobe zone under certain -previously stipulated- level 

whereas the undesired harmonics intensities are minimized. In addition to that, the further extension of the 

technique to non-equispaced arrays permits to obtain broadband response, by simply searching the positions of the 

elements that reach to the desired power pattern behaviour within the required bandwidth. 

I. INTRODUCTION 

The use of time modulation in antenna arrays appeared in a recent work [1] brings back to the technical and 

scientific community the initial concepts introduced by Kummer et al. [2]. In Kummer’s paper, the authors show 

how this technique is exploited to maintain under a desired value the sidelobe level of a linear array with non-

uniform excitation distribution. A few years later, the concepts related to this technique are briefly re-described by 

some other authors [3, 4]. This simple model is based on the insertion of on-off switching devices in the feeding 

network of the array that allow to control, by means of periodic rectangular pulses, the power distribution of the 

antenna, in addition to the variables customarily used by the designers in pattern synthesis –i.e. excitations and 

positions of the array elements. The main problem with this kind of control is the undesired appearance of 

harmonics –usually called sideband radiation– whose levels are related to the Fourier coefficients used in the 

expansion of the element excitations so controlled. In one of the abovementioned papers, written by S. Yang et al. 

[1], the sideband radiation pattern is minimized through the use of the differential evolution algorithm. That 

suppression is applied to a Taylor excitation distribution. By contrast, in this paper it is shown that, with the 

appropriate use of the Simulated Annealing technique [5], it is possible to maintain the power pattern sidelobe 
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region of a uniformly excited (which constitutes the novelty of the method presented here) linear equispaced array 

under certain prestablished value, by perturbing the time pulses, whereas its sideband radiation is minimized. To 

take further advantage of this technique, the bandwidth of such a linear array is enhanced by releasing the 

equispacing between contiguous radiators.  

II. THEORETICAL BACKGROUND 

Let us consider a linear array of N isotropic elements lied along the z axis. Its traditional array factor 

expression is given by: 
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where zn is the position of every element, k 2 /    is the wavenumber,   is the usual spherical polar 

coordinate, and 2 / T    represents the operation frequency of the RF signal. If the complex current amplitude In 

of each element is considered to be periodic function of time, with a period pT T , it can be expanded as a 

Fourier series, giving [3]: 
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One of the easiest ways of implementing the time-modulation is through the use of on-off switching devices 

(diodes, for example). If the n–th “switch-on” time is represented by n , with n p0 T   , after some 

manipulations apn can be found to be: 
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where p takes the values 0, 1, 2,… It can be readily seen that the expression of the operating frequency is 

mainly determined by the p=0 component, whose pattern is given by the following expression: 
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It is well known that antenna designers synthesize desired radiation patterns with the usual adjustment of the 

excitation distribution In and the zn elements positions. The appearance of the n n pt / T   ratio adds another 

dimension –time– to those available parameters. The method applied in this work takes advantage of this 

additional degree of freedom –in a similar way made by the previously mentioned authors [1–2]–, and this is 

explained in next sections.    
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III. THE METHOD 

The simple implementation of the on-off switchers in the feeding network leaves to the designer the 

option of setting In –which we will call hereafter static distribution– equal to 1 (i.e. uniform distribution)n[0, 

N–1], since the adjustment of the power pattern is achieved by the appropriate selection of the tn ratios. This is a 

very desirable static excitation distribution, because simplifies the array feeding. In a first look –see equations (1) 

and (3)– and under the named condition In=1, the direct replacement of the numerical values of tn by any known 

static distribution normalized to its maximum (a Chebyshev one, or any of the Taylor’s with a specific sidelobe 

level, for example) leads to a desired response of the p=0 (fundamental component) power pattern, but at the price 

of obtaining undesirable high sideband radiation. This behaviour obligates to recalculate the tn coefficients, 

searching for a minimization of the sideband patterns (|p|1), and trying to maintain the initial characteristics of 

the fundamental one. The work presented here is based on these main characteristics. The Simulated Annealing 

(SA) –a very good global optimizer algorithm widely known due to its versatility [5]– is chosen to perform the 

following examples.  

IV. DESCRIPTION AND EXAMPLES 

A.  Sidelobe lowering, at a single frequency f, of an equispaced linear array of isotropic elements. 

As a first example, an array of 30 elements with a constant spacing of f0.7 between contiguous 

elements (which implies n fz 0.7 n  , being f the wavelength at frequency f) is taken. The SA perturbs the tn 

values in order to minimize the following cost function: 
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where SLL represents the sidelobe level of the fundamental power pattern. The subscripts “o” and “d” mean 

obtained (during the optimization procedure) and desired, respectively, at certain frequency f. H is the Heaviside 

step function. M represents the maximum value of any (|p|=1 or 2) of the sideband patterns. cA,1, and cA,2 are 

weighting parameters selected to obtain a better operation of CA. In this example, SLLd,f = –20 dB, Md,f = –30 dB, 

both relative to the maximum of the fundamental power pattern main beam, and fp=1/Tp=f/60. The patterns 

obtained with this optimization are shown in figure 1, in which the fundamental and the two first harmonics are 
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represented (sidelobe level at –20.04 dB, maximum of the first harmonic at –30.08 dB). Figure 2 shows the tn 

distribution that, when replaced in (3), generates the abovementioned patterns.  

If we define the dynamic range ratio rr (in this special case with a uniform static excitation distribution) 

as {tn}max/{tn}min, we obtain a high value (15.75) after calculating it with the values shown in figure 2. Neglecting 

elements 1, 3, 4 and 5 the rr is reduced to 5.71, which leads to a very similar fundamental power pattern, with a 

sidelobe level slightly increased (0.5 dB). After those suppressions, the sideband radiations maintain their 

maximum values under –30 dB. 

 

B.  Sidelobe lowering, at two frequencies (f and 2f), of a non-equispaced linear array of collinear dipoles. 

To see the scope of the method, and in order to obtain a more realistic example, we now consider a 

specific linear array of 30 non-equispaced elements of collinear dipoles. This can be achieved by the sole 

inclusion of the element factor of a dipole –whose axis coincides with the array line– into the abovementioned 

array expression (1), which now becomes:  

 n

N 1
j kz cosθ+ t

n

n=0

cos(kLcos ) cos(kL)
F(θ,t)= I e

sin


  

  
  (6) 

being 2L the length of every dipole, taken to be 0.5f in this example.   

The conditions of the optimization, achieved by perturbing both tn and zn values, can be summarized as: 

1) Minimize the fundamental power pattern sidelobes at two different frequencies f and 2f, under two desired 

values SLLd,f and SLLd,2f. It is known that the duplication of the RF frequency raises the levels of the sidelobes 

into grating lobes if the elements are equispaced. This justifies the perturbation of zn that optimizes the array 

pattern behaviour at those frequencies.  

2) Try to suppress sideband radiations at f and 2f, lowering them below Md,f=Md,2f (the same for both 

frequencies), and taking, as in the example of paragraph A, fp=1/Tp=f/60.  

Setting SLLd,f = –17 dB, SLLd,2f = –15 dB, Md,f = Md,2f = –30 dB, and now using a cost function analogous to 

CA: 



  

-5- 

2
2 2

B B,1,qf qf qf B,2,qf qf qf

q 1

qf o,qf d,qf

qf o,qf d,qf

C c H( ) c H( )

SLL SLL
with

M M



       

  

  


 (7) 

the power patterns shown in figures 3 and 4 are obtained (SLLf = –17.77, SLL2f = –16.58, Mf = M2f = –31.93, 

all of them expressed in dB), both generated by the array whose tn and zn can be observed in table 1. For a better 

control, the zn were constrained to be within the range [0.7f, 0.95f]. If we calculate the rr, a high value (236.69) 

is obtained if the elements with low tn are considered. They can be further neglected (i.e. the elements 3, 22, 24, 

25 and 27 are removed from the array), and in this case the patterns keep almost unaltered (fundamental and 

sidebands change very slightly), obtaining a very remarkable reduction of rr (1.6).  

C.  Analysis of some characteristics of the fundamental and sideband power patterns behaviours between f and 2f.  

To see how the array, with the configuration obtained in example B, behaves between f and 2f, a succinct 

bandwidth analysis is made. Computations of the maximum sidelobe level of the fundamental pattern and 

maximum value of any of the two first sidebands versus frequency appear in figure 5. As can be seen, the 

obtained configuration has broadband response.  

V. CONCLUSIONS 

It has been shown that the insertion of on-off switching devices in the feeding network of a uniformly excited 

linear array gives to the antenna designer the possibility of taking control over the sidelobe level of the power 

pattern at certain RF frequency, by optimizing their time-pulse values. If the positions of the elements are released 

to be unequally spaced, the array has a broadband response. It is readily seen that the same technique can be 

straightforwardly applied to planar or conformal arrays. 
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LEGENDS FOR FIGURES AND TABLES 

Fig. 1. Power patterns obtained with the perturbation of tn values, in which a SLL< –20 dB (p=0) was 

desired, whereas the two first harmonics levels were minimized under –30 dB. 

Fig. 2. Pulse distribution along the elements that generates the patterns shown in figure 1. 

Fig. 3. Power patterns obtained with the perturbation of tn and zn values, in which a SLL< –17 dB (p=0) was 

desired, whereas the two first harmonics levels were minimized under –30 dB at frequency f. 

Fig. 4. Power patterns obtained with the perturbation of tn and zn values, in which a SLL< –15 dB (p=0) was 

desired, whereas the two first harmonics levels were minimized under –30 dB at frequency 2f. 

Fig. 5. Computed values of different parameters of the power pattern generated by the array obtained in 

example B. 

 

 

Table 1. “Switching-on” time pulses (tn), and positions (zn) of the elements of the array that that generates 

the patterns shown in figures 3 and 4. It is understood that the zn values are calculated at f. 
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FIGURES 
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Fig. 1 



  

-9- 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.00

0.20

0.40

0.60

0.80

1.00
t n

 =
 

n
 /
 T

p

Number of Element
 

Fig.2  
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Fig. 3 



  

-11- 

 

0 30 60 90 120 150 180

-50

-40

-30

-20

-10

0

 p=0

 |p|=1

 |p|=2

N
o

rm
a

liz
e

d
 P

o
w

e
r 

(d
B

)

 (degrees)
 

Fig. 4 
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Fig. 5 
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Table 1 

No. of 
Element 

zn (in f) tn 

0 0.000 0.982 

1 0.700 0.887 

2 1.400 1.000 

3 2.105 0.005 

4 2.820 1.000 

5 3.770 1.000 

6 4.497 1.000 

7 5.201 1.000 

8 5.905 1.000 

9 6.612 1.000 

10 7.316 1.000 

11 8.021 1.000 

12 8.779 1.000 

13 9.566 1.000 

14 10.516 1.000 

15 11.466 1.000 

16 12.166 1.000 

17 12.866 1.000 

18 13.567 1.000 

19 14.517 0.626 

20 15.224 0.916 

21 16.174 1.000 

22 16.883 0.120 

23 17.834 1.000 

24 18.535 0.009 

25 19.483 0.005 

26 20.184 1.000 

27 20.884 0.004 

28 21.584 0.899 

29 22.284 1.000 
 


