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ABSTRACT 

A few lines of MATLAB M-code suffice to create 3D polar plots of the power patterns of planar 

arrays together with 3D plots of the amplitudes and phases of their excitations.    

1. INTRODUCTION 

Many antenna designers are familiar with MATLAB [1] and use it in their everyday work. However, 

many also shy from attempting to exploit its graphical capabilities to the full. Here we present some 

quite simple M code that straightforwardly performs a task that is often desirable but is often left 

undone or is performed less efficiently by exporting numerical results to an external graphical 

program [2, 3]: production of the 3D polar plot of the power pattern of a planar or linear antenna array 

of identical radiating elements (or of a single element) given only their positions and excitations and 

the corresponding element factor. For good measure, the program also produces 3D plots of the 

amplitudes and phases of the element excitations. The code presented has been neither optimized 

nor worked up as a stand-alone application or function (we keep it always to hand in the MATLAB 

working directory as an M-file named planar_pow3d.m, modifying certain parameters in the code itself 

whenever necessary), and nor does it include exhaustive measures to prevent undesired results 

when given illegitimate data such as negative excitation amplitudes; but anyone familiar with MATLAB 

will easily be able to adapt it to their own requirements. 

2. THE CODE 

In this section we run through the M code for Figs.1-3, which show power and excitation plots for 

a 20 x 20 planar array of isotropic elements located 0.5 apart, the excitations of which are the result 

of multiplying (i.e., by using separable distributions [4]) those of a -20 dB Chebyshev linear array [4] 

with those of a linear array generating a flat-topped pattern with a half-power beamwidth of 43.2º and 

a maximum side lobe level of -20 dB [5]. To facilitate commentary, line numbers have been added to 

the code.  
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Lines 1 and 2 clear memory and read the positions and excitations of the array elements from a 

text file that in this example is named pos_ excit_planar.txt, in which the data for each radiating 

element have previously been introduced in the format 

 

x_coord TAB y_coord TAB amplitude TAB phase \n 

 

(except for the last element, for which \n should be omitted). Here TAB and \n indicate the 

tabulation and newline characters, the x and y coordinates are given in units of one wavelength (the 

array is assumed to lie in the x-y plane with its centre at the origin), and phases are in radians. 

 

1. clear; 

2. [X,Y,AMP,PHA]=textread('pos_excit_planar.txt','%f %f %f %f'); 

 

The number of elements in the array does not have to be specified by the user, but is determined 

by the program itself: 

 

3. nelem=size(AMP,1); 

 

In order to be able to fix the limits of the graphs of excitation amplitudes and phases, we now 

determine the maximum amplitude and the maximum distance of any element from the array centre, 

and we normalize the amplitudes: 

 

4. dist=sqrt(X.*X+Y.*Y); dmax=max(max(dist)); if dmax==0 dmax=1; end; 

max_amp=max(max(AMP)); 

5. AMP=AMP/max_amp; 

 

If dmax is zero (i.e. if there is just a single element at the origin, a set-up that can be used to plot 

an element factor), then dmax is set to unity to prevent a run-time error when plotting the excitation. 

The first graph drawn is that of the excitation amplitudes (Fig.2): 

 

6. fig_amp=figure('Name','Array amplitude distribution','NumberTitle', 'off'); 

7. colordef(fig_amp,'white'); 

8. plot3(X,Y,AMP,'bo','MarkerFaceColor','white','MarkerSize',12); 

9. axis([-dmax dmax -dmax dmax 0 1]); 

10. tick_pos=(0:0.2:1); 

11. set(gca,'ZTick',tick_pos,'ZTickLabel', tick_pos); 

12. xlabel('x/\lambda','FontSize',12,'position',[0 1.4*dmax 0], 

'HorizontalAlignment', 'center'); 
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13. ylabel('y/\lambda','FontSize',12,'position',[1.4*dmax 0 0], 

'HorizontalAlignment', 'center'); 

14. zlabel('Normalized Amplitude','FontSize',12); 

15. grid on; axis square; box on; 

16. camproj('perspective'); view(140,20); 

 

Lines 6-8 open a graphics window for an unnumbered figure called "Array amplitude distribution", 

assign its identifying "handle" to the variable fig_amp, set its background colour to white, and plot the 

element amplitudes, as a function of the element positions, as 12-point blue beads with white faces; 

lines 9-14 set the axis ranges, styles and labels (in line 11, the function gca returns the handle of the 

current axes); and lines 15 and 16 enclose the graph in a cubic box with three ruled faces, and 

specify that this box be viewed in perspective from an elevation of 20º at 140º from the negative y 

axis.  

The excitation phases are plotted similarly (but in red) following their conversion to degrees in line 

17 (Fig.3)1. 

 

17. PHADEG=180*PHA/pi; 

18. fig_pha=figure('Name','Array phase distribution','NumberTitle', 'off'); 

19. colordef(fig_pha,'white'); 

20. plot3(X,Y,PHADEG,'ro','MarkerFaceColor','white','MarkerSize',12); 

21. axis([-dmax dmax -dmax dmax 0 360]); 

22. tick_pos=(0:60:360); 

23. set(gca,'ZTick',tick_pos,'ZTickLabel', tick_pos); 

24. xlabel('x/\lambda','FontSize',12,'position',[0 1.4*dmax 0], 

'HorizontalAlignment', 'center'); 

25. ylabel('y/\lambda','FontSize',12,'position',[1.4*dmax 0 0], 

'HorizontalAlignment', 'center'); 

26. zlabel('Phase (degrees)','FontSize',12); 

27. grid on; axis square; box on; 

28. camproj('perspective'); view(140,20); 

 

Now the main job begins: the 3D polar plot of the power pattern in dB relative to peak (Fig.1). 

Lines 29-33 set the power cut-off level in dB (the absolute value is given, i.e. 40 instead of -40); 

specify the resolution and the initial and final values of the azimuthal and polar angle variables (the 

user is given a choice between plotting the pattern over the whole sphere or only over the northern 

                                                 

1 It is intended that the phases of the elements have been previously constrained to a [0, 2] range. 
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hemisphere); and use these specifications to set up vectors of the values of  and  defining the 

vertices () of the plot. 

 

29. level_db= 40; n_points_theta=151; n_points_phi=151; itheta=0; iphi=0; 

fphi=2*pi; 

30. whole=input(‘Hemisphere (0) or whole space (1)?:\n'); 

31. if whole==0; ftheta=pi/2; else ftheta=pi; end; 

32. THETA=linspace(itheta,ftheta,n_points_theta)'; 

33. PHI=linspace(iphi,fphi,n_points_phi); 

 

Lines 34-43 calculate the field at each of the plot vertices using the standard expression 

 n n n

N
i Φ +ksinθ(x cos +y sin )

e n

n=1

F(θ, )=f (θ, ) A e
 

    (1) 

and store the field amplitudes in the matrix RADIUS. In eq. (1), fe is the scalar element factor, k is 

the wavenumber, and An, n, xn and yn are the amplitude, phase, x coordinate and y coordinate of the 

n-th element of the array. Note that k = 2 identically (because the unit of length is the wavelength ); 

and that the element factor is obtained from a function, felem, that is assumed to have been placed 

previously in the working directory (though if the elements are isotropic line 40 can simply be omitted). 

 

34. for m=1:n_points_theta,  

35.    for n=1:n_points_phi, 

36.  temp_field=0; 

37.  for r=1:nelem, 

38.   temp_field=temp_field+AMP(r)*exp(i*(PHA(r)+2*pi*(sin(THETA(m))* 

   (X(r)*cos(PHI(n))+Y(r)*sin(PHI(n)))))); 

39.       end; 

40.       temp_field=temp_field*felem(THETA(m),PHI(n)); 

41.       RADIUS(m,n)=abs(temp_field); 

42.    end; 

43. end; 

 

The field amplitudes are then normalized relative to peak (line 44) and converted to dB in such a 

way that sub-cutoff values disappear and the peak value (0 dB) will be plotted with the largest radius 

in the polar plot (lines 45-51). 

 

44. RADIUS=RADIUS/max(max(RADIUS)); 
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45. for m=1:n_points_theta, 

46.     for n=1:n_points_phi, 

47.         if(RADIUS(m,n)<10^(-level_db/20)) RADIUS(m,n)=0; 

48.         else RADIUS(m,n)=20*log10(RADIUS(m,n))+level_db; 

49.         end; 

50.     end; 

51. end; 

 

Finally, the (,) coordinates and the corresponding power values (RADIUS) are converted to 

Cartesian coordinates (lines 52-54), and these are plotted (lines 55-64) as an illuminated bluish 

surface setting Facecolor with the values given within the corresponding brackets, in which [Red 

Green Blue] levels are specified with a transparency parameter value of 0.6. 

 

52. XX=sin(THETA)*cos(PHI).*RADIUS; 

53. YY=sin(THETA)*sin(PHI).*RADIUS; 

54. ZZ=cos(THETA)*ones(1,n_points_phi).*RADIUS; 

55. fig_power=figure('Name','3D Polar Power Pattern in dBs','NumberTitle', 

'off'); 

56. ps=surf(XX,YY,ZZ, 'EdgeColor', 'blue', 'EdgeAlpha', 0.60, 'LineWidth', 

1.00); 

57. set(ps,'FaceColor',[0.169 0.502 1.000]); alpha(0.60); title('Normalized 

Power Pattern (dB)'); 

58. tick_pos=(-level_db:10:level_db); ticks=abs(tick_pos)-level_db; 

59. set(gca,'XTick',tick_pos,'XTickLabel',ticks);  

60. set(gca,'YTick',tick_pos,'YTickLabel',ticks); 

61. set(gca,'ZTick',tick_pos,'ZTickLabel',ticks); 

62. set(gca,'XColor', 'blue','YColor', 'blue','ZColor', 'blue'); 

63. axis equal; axis auto; box on; 

64. camlight; lightangle(0,45); lighting gouraud; camproj('perspective'); 

65. clear; 

3. FURTHER EXAMPLES 

 

Fig.4 shows an example of a pattern plotted in the whole of space. It is in fact the flat-topped 

pattern of one of the linear arrays that are multiplied together to form the planar array of Figs.2 and 3; 

its positions and excitations are listed in Table 1. The striations on the face corresponding to the roll-

off from the main beam are oscillations that could be avoided by increasing the number of vertices of 
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the plot. Fig.5 shows the pattern of an array of 20 uniformly excited antennas with element factor fe = 

cos2 that are equispaced on a circle of radius 1.76. 

4. AND NOW THE BAD NEWS 

 

The reader will already have noticed that in spite of Figs. 1, 4 and 5 being polar plots, axes and 

grids are drawn as though for Cartesian plots. The power levels indicated on the edges of the box 

frames enclosing the patterns actually refer to points on axes through the origin (the centre of the 

array) that are parallel to these edges, and the grids are included merely to help guide the eye to 

these undrawn axes. We do not claim that this is the perfect solution to the thorny problem of 

indicating magnitude, i.e. radius, in 3D polar plots; other designers may prefer other solutions, like 

colordependence, for example. 

Another issue in everyday work is, of course, speed. While the screen plot of Fig.4 only took 5 

seconds using 91  values and 91  values, plotting Fig.1 with 151x151 = 22,801 vertices took 2 

minutes 23 seconds (in a PC running at 1.8 GHz). The actual plotting could of course be speeded up 

enormously by translating to c-code (and compiling it, by means of mcc function) instead of using the 

MATLAB interpreter, but for most patterns this gain in speed will not compensate for the time spent 

doing the compiling. 

5. CONCLUDING REMARKS 

3D polar plots of radiation power patterns are an effective means of presenting the results of the 

antenna designer's work, and can also serve as useful diagnostic orientation. They can be created 

within MATLAB by making simple modifications to the code presented here to suit each particular 

case. The code can be downloaded as a file called Visualizing.zip from the following internet address: 

 http://www.ece.osu.edu/~volakis 

For those interested in checking the performance of the code without having to create their own 

data files, the data files for the arrays producing the patterns of Figs. 1, 4 and 5 (pos_ excit_planar.txt, 

pos_excit_linear.txt and pos_ excit_circular.txt, respectively) were included in the named zip file. More 

details about the graphic functions can be obtained from [6]. 
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LEGENDS FOR FIGURES AND TABLES 

Table 1. Element positions and excitations of the linear array producing the flat-topped power pattern 

of Fig.4. It is intended that the program will normalize the amplitudes to the maximum value.  

Figure 1. 3D polar plot of the power pattern of a 20 x 20 planar array of isotropic elements located 

0.5 apart, the excitations of which are the result of multiplying those of a -20 dB Chebyshev linear 

array with those of a linear array generating a flat-topped pattern with a half-power beamwidth of 

43.2 and a maximum side lobe level of  20 dB.  

Figure 2. The excitation amplitudes of the array generating the pattern of Fig.1. 

Figure 3. The excitation phases of the array generating the pattern of Fig.1. 

Figure 4. 3D polar plot of the flat-topped power pattern of a 20 element linear array of isotropic 

elements located 0.5 apart (one of the linear factor arrays of the array of Fig.1). Half-power 

beamwidth, 43.2; maximum side lobe level, -20 dB. 

Figure 5. 3D polar plot of the power pattern of a circular array of 20 uniformly excited antennas with 

element factor fe = cos2 that are equispaced on a circle of radius 1.76.   
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x coordinate 

() 

y coordinate 

() 

Relative 
Amplitude 

Phase 
(radians) 

0.0000 -4.7500 1.0000 0.0000 

0.0000 -4.2500 1.7973 0.0000 

0.0000 -3.7500 2.1522 0.0000 

0.0000 -3.2500 1.5574 0.0000 

0.0000 -2.7500 0.3439 0.0000 

0.0000 -2.2500 0.6243 3.1416 

0.0000 -1.7500 0.7248 3.1416 

0.0000 -1.2500 0.1324 3.1416 

0.0000 -0.7500 0.4209 0.0000 

0.0000 -0.2500 0.4095 0.0000 

0.0000 0.2500 0.0199 3.1416 

0.0000 0.7500 0.3279 3.1416 

0.0000 1.2500 0.2170 3.1416 

0.0000 1.7500 0.1027 0.0000 

0.0000 2.2500 0.2411 0.0000 

0.0000 2.7500 0.0877 0.0000 

0.0000 3.2500 0.1269 3.1416 

0.0000 3.7500 0.1624 3.1416 

0.0000 4.2500 0.0421 3.1416 

0.0000 4.7500 0.3198 0.0000 

TABLE 1 
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FIGURE 1. 

FIGURE 2. 
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FIGURE 3. 

 

FIGURE 4. 
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FIGURE 5. 

 


