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ABSTRACT 
 

In this paper, time modulation is applied to a small number of elements of a linear array 

that radiates either sum or difference patterns, in order to take control over their 

sidelobe levels. The simulated annealing (SA) technique helps to obtain the optimum 

time pulses applied to such elements in terms of sideband minimization. 

 

 

1. INTRODUCTION 
 

At the end of the 1950s, a noteworthy paper was published [1] in which the possibility 

of the application of time as a “fourth dimension” in antenna theory was presented. 

Concerning a linear array antenna, time modulation consists in using electronic switches 

between the source and the radiating elements. The main drawback of this technique is 

the energy losses produced by unwanted harmonics, due to the fact that the elements are 

periodically open–circuited. The mathematical demonstration of the appearance of such 

harmonics (sideband radiation, SR) was studied by Shanks et al. [1], Kummer et al. [2] 

and Weeks [3]. Kummer et al. were pioneers in using time modulation by synthesising 

low/ultra-low side-lobe sum patterns applied to slot radiators; however, in their work 

the SR was not properly minimised. Such a problem was firstly faced by using 

optimization techniques like the differential evolution algorithm, by S. Yang et al. [4], 

or the Simulated Annealing technique (SA), used more recently by Fondevila et al. [5]. 

In this paper, time modulation is applied to an equispaced linear array in order to obtain 

sum and difference radiation patterns with very acceptable side-lobe levels (SLLs) 

whereas their corresponding SR are kept under control. This is achieved by using either 

uniform or generalised Villeneuve (GV) [6] excitation distributions and then optimizing 

the time pulses applied to some elements with the aid of SA. In this manner, sum 

patterns, especially those obtained from a uniform excitation distribution, can be 

improved by modulating only a few elements located near the edges of the array. 

Conversely, difference patterns are accomplished if the modulated elements are the 

central ones. This leads to a kind of reconfigurability of the array because, with a 

specified amplitude excitation distribution, the designer can obtain, on the one hand, 

two types of patterns and, on the other hand, ameliorated sidelobe levels (compared 

with the non-modulated cases). Uniform distributions are always desirable because they 

constitute the simplest way of feeding an array antenna. In principle, it is easier to 

construct and adapt the time-modulation circuitry to the antenna geometry, in order to 
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obtain a desired power pattern (provided the sideband radiation has been minimized 

previously, during the synthesis procedure), than to construct and adapt the appropriate 

geometry of a conventional feeding when the excitation distribution is not uniform. In 

case the linear array has been previously synthesised with a specified excitation 

distribution, such as a GV (or, for example, a Dolph-Chebyshev) one, the designer can 

insert the corresponding switching circuitry in order to reduce the sidelobe level of the 

non-modulated case. Besides, by properly changing the phase distribution of half of the 

array (see next section) and re-optimizing the time pulses that correspond to a few 

elements, difference patterns with improved sidelobe levels can also be obtained. These 

techniques are explained in next sections. 

 

 

2. MATHEMATICAL PRELIMINARIES 
 

Consider a linear array of 2N isotropic antennas located along the z axis. The 

corresponding expression of the array factor, with the carrier angular frequency  

explicitly indicated, is 
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where n is the normalised time-pulse value and q represents the harmonic mode.  

When q=0, equation 2 refers to the main pattern (or fundamental mode), as follows:  
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This expression agrees with equation (1) when setting nIn (which are called hereafter 

dynamic excitations), instead of In (static excitations) into the summation. This equation 

suggests a kind of reconfigurability, which constitutes an auxiliary degree of freedom in 

the synthesis procedure, because with a given linear array and with specified static 

excitations In it is possible to obtain several radiation patterns at the carrier frequency  

by inserting strategically some on–off switching devices in the array. Furthermore, from 

a specified real amplitude static distribution that radiates a sum pattern, the designer can 

obtain corresponding difference diagrams -as is well known- by setting an 
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antisymmetric phase distribution (with values equal to 0 or 180º), and this is exploited 

here as an additional advantage. 

To simplify expressions, only one half of the summation given in (3) is used so as to 

establish, for sum patterns, n n n nI I ,     whereas for difference patterns, 

n n n nI I .      These conditions about symmetry lead to the following (taking the right 

hand side of the array, and simplifying a multiplicative term that does not alter the 

relative power pattern results):  

 

As specific cases, and following the preliminary concepts given in the introduction, it 

will be considered here uniform and GV real amplitude distributions to synthesise sum 

and difference patterns with minimized SLL and SR, as seen below.  

 

3. THE METHOD 
 

The simple optimization process applied to the linear array –and run with the aid of the 

SA technique [7]– is depicted in Figure 1. Once the real–valued static excitation 

amplitudes In have been specified, the algorithm begins by setting all n (n=1,2,…N) to 

1. Then, the dynamic excitations are perturbed using the SA, by changing slightly M 

values of m with m  s(d), and where s={N-M, N-M+1, ... N} for the sum pattern or 

d={1,2, ... M}for the difference pattern. The selection of M is arbitrary, and we found 

that setting M=2 to 4 is sufficient for the purposes established here (see next Section). 

The random perturbation of m is sequentially repeated in order to change the cost 

function  

( ) ( )   2 2

1 2 Cost Function=  C  H SLL SLL  + C  H Maxh Maxh  (6) 

up to obtaining a minimum value, in terms of the SA parameters [7]. In this equation,  

 ΔSLL=  (SLLo – SLLd), is the difference between the obtained sidelobe level 

(SLLo) and the desired sidelobe level (SLLd) of the main pattern (q=0). 

 For ΔMaxh= (Maxho – Maxhd), if Maxh is defined as the maximum value of the 

SR, (any of the |q|>0 modes), then ΔMaxh is the difference between the obtained and the 

desired maximums of the harmonics. 

 Note that –see equation (2)– the maximum amplitudes of the harmonics decrease 

as q  increases, and therefore q=1 mode is sufficient when calculating Maxh, for the 

purposes of reduction of the algorithm computational time. 

 H(x) represents the Heaviside step function, defined as: 
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C1 and C2 are weighting coefficients that indicate to the SA the importance of each 

term.  
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4. EXAMPLES 
 

We considered an equispaced linear array of 30 isotropic elements centred with respect 

to z=0 and separated 0.7λ apart, and three static excitation distributions: a uniform one 

(case A) and two GV ones, with n =3, SLL ≤ –20 dB and  or =1 (cases B or C, 

respectively) [6]. The parameters 1 andn   represent the number of controlled 

sidelobes (one side of the diagram) and the coefficient that controls the farthest side-

lobe level envelope, respectively. The uniform distribution was used to optimize a sum 

pattern and a corresponding difference pattern. Cases B and C were used to optimize 

difference patterns.  

By setting n 1,  we obtain the SLL values displayed in Table 1, and they correspond to 

the static case (no time modulation applied). 

After the optimization process, we obtained significant improvements. The results are 

shown in Table 2 (compare with those of Table 1). For the sum pattern, it was obtained 

an SLL value 2.79 dB below that of the non–optimised case, whereas for the difference 

pattern, the SLL was 5.98 dB below that of the static distribution. Cases B and C 

achieved 5.19 and 4.79 dBs below the static distributions, with regard to the 

corresponding difference patterns. In all cases the maximum sideband levels were close 

to –30 dB. Figure 2 shows the difference pattern synthesised from the uniform static 

distribution, whereas figure 3 shows the corresponding sum pattern. Figure 4 shows 

how the harmonic (maximum) levels of this last example decrease progressively as q 

increases, as mentioned before (the diagram is symmetric with respect to the q=0 axis).  

Tables 3–4 list the static  nI and dynamic  n nI  excitations of each case. Note that all 

dynamic excitations are real and their changes are small. It should be pointed out that 

the authors performed several additional examples –not shown here for brevity–, being 

all of them generated under further restrictive conditions, concerning the number of 

perturbed elements, the ratio between maximum and minimum amplitudes of the 

dynamic excitations, and so forth. In such cases, additional improvements in SLLs 

(about 2 dB) can be achieved. 

 

 

4. CONCLUSIONS 
 

The novelty of this method consists in improving some characteristics of sum and 

difference patterns by applying time–modulation, with the aid of the SA, to a minimum 

number of elements of a linear array. Besides, the technique represents an advantage for 

reconfigurability purposes, since it can be easily applied to the array system by simply 

adding it the corresponding switching circuitry, once the static excitation distribution 

has been fixed. Although the method was applied to linear arrays, it can also be 

extended to planar and even conformal arrays. It is readily seen that the dynamic 

excitations can be used in a standard array (no time modulation performed) as static 

excitations, due to the straight analogy between equations (1) and (3). 
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LEGENDS FIGURES AND TABLES: 
 

 

FIGURES 
 

Figure 1. Flux diagram used during the optimization process. 

 

Figure 2. Difference pattern obtained with some optimised n  from the uniform static 

distribution. 

 

Figure 3. Sum pattern obtained with some optimised n  from the uniform static 

distribution. 

 

Figure 4. Maximum value of patterns for the first thirty harmonics obtained from the 

example in figure 3.  

 

 

 

 

 

 

 

TABLES 

 

Table 1. Initial values of SLL calculated from the power patterns generated by the static 

excitation distributions (not optimised values).  

 

Table 2. Summary of the results obtained for several distributions after optimisation 

(n=1,2...  counted from the center of the array). 

 

Table 3. Dynamic  n nI  and uniform static  nI excitations of one half of the linear array 

for sum and difference patterns (n=1,2... counted from the center of the array). Bold 

types indicate the time-modulated elements.  

 

Table 4. Dynamic  n nI  and Villeneuve static  nI excitations of one half of the linear 

array for sum patterns (n=1,2... counted from the center of the array). Bold types 

indicate the time-modulated elements.  



 7 

FIGURES 

Initially, set n=1 (n=1,2,...N)

and give an arbitrary value to M (<N)

Is the obtained pattern 

good enough?

Perturb m (some of 

them can be equal to 1), 

with ms,(d)

No

End

Simulated 

Annealing

(*)

(*) See Section 3 for the 

definition of s,(d)

 
 

Figure 1. 
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Figure 2. 
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TABLES 

 

Pattern 

Type 

Static (non optimizad) 

Excitation Distribution Cases 
SLL (dB) 

Sum 
A  

(Uniform) 
–13.05 

Difference 

A  

(Uniform) 
–10.44 

B 

(G.V., 3 0 20dB   n ; ; SLL ) 
–9.73 

C 

(G.V., 3 1 20dB   n ; ; SLL ) 
–10.42 

G.V.: Generalised Villeneuve distribution (see text) 

Table 1. 

 

 

 

 

 

 

 

 

 

 

Pattern 

Type 

Static 

Excitation 

Distribution 

Case 

Number 

of 

changed 

n 

% of 

changed 

n 

SLLo in 

dB (q=0) 

Maxho in 

dB (q=1) 

Sum A 3 20.0 –15.84 –29.93 

Difference 

A 4 26.7 –16.42 –28.14 

B 4 26.7 –14.92 –29.56 

C 2 13.3 –15.21 –30.43 

 

Table 2.  
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Excitations Case A 

In 

 

Inn 

Element Sum pattern Difference pattern 
1 1.0000 1.0000 0.8868 

2 1.0000 1.0000 0.1525 

3 1.0000 1.0000 0.2347 

4 1.0000 1.0000 0.7058 

5 1.0000 1.0000 1.0000 

6 1.0000 1.0000 1.0000 

7 1.0000 1.0000 1.0000 

8 1.0000 1.0000 1.0000 

9 1.0000 1.0000 1.0000 

10 1.0000 1.0000 1.0000 

11 1.0000 0.5633 1.0000 

12 1.0000 1.0000 1.0000 

13 1.0000 0.2114 1.0000 

14 1.0000 1.0000 1.0000 

15 1.0000 0.9777 1.0000 

 

Table 3. 

 

 

 

 

 
Excitations 

Case B  Case C  

Element In Inn  In Inn 
1 1.0000 0.0756 1.0000 0.1883 

2 0.9891 0.0756 0.9865 0.1087 

3 0.9679 0.7854 0.9606 0.9606 

4 0.9373 0.8993 0.9245 0.9245 

5 0.8990 0.8990 0.8809 0.8809 

6 0.8547 0.8547 0.8331 0.8331 

7 0.8066 0.8066 0.7840 0.7840 

8 0.7569 0.7569 0.7361 0.7361 

9 0.7077 0.7077 0.6903 0.6903 

10 0.6613 0.6613 0.6456 0.6456 

11 0.6194 0.6194 0.5986 0.5986 

12 0.5838 0.5838 0.5425 0.5425 

13 0.5559 0.5559 0.4673 0.4673 

14 0.5367 0.5367 0.3600 0.3600 

15 0.5269 0.5269 0.2067 0.2067 

 

Table 4. 


