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ABSTRACT 

Equispaced linear arrays that have a uniformly excited central elements and monotonically decreasing 

flanking segments have been shown to yield low sidelobe patterns with specified constraints on the effective 

radiated voltage (ERV). An analytical method for generating these distributions using a constrained least squares 

(CLS) method given restrictions on both the peak amplitude of the elements and the ERV has been discussed in an 

earlier work. Simulated annealing (SA) is a versatile global optimization technique that can be effectively used for 

similar purposes, but providing additional control over some other design parameters. In this paper we inspect 

both methods –indicating some of their advantages and drawbacks– through some numerical results.  

1. INTRODUCTION 

Linear arrays uniformly excited are very desirable, since their feedings are easily adjusted and, which is the 

most important characteristic, the arrays fed in that manner have the maximum available efficiency, in terms of 

power radiated to the space. Nevertheless, such a distribution does not allow the convenient control and 

exploitation of the sidelobe topography. In an earlier work [1] it has been demonstrated that a constrained least 

squares (CLS) method applied to the synthesis of linear arrays with some restrictions on the excitation amplitudes 

of the elements provides a useful tool for antenna designers, leading to a distribution that possesses a central 

segment uniformly excited and a monotonic decay toward the edges. This method, whose foundations can be 

found in an earlier work written by Iglehart [2], applies restrictions on both the peak amplitude of the elements 

and the effective voltage ratio (ERV, a coefficient that corresponds to the mean value of the amplitude 

distribution). Furthermore, the CLS method can be specified so as to minimize the average energy measured from 
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the first (or the second, in accordance to the specifications of the antenna designer) null in a symmetric sum 

diagram [1].  

On the other hand, the simulated annealing (SA) is a versatile global optimization technique that has been 

effectively used for a wide variety of antenna array applications [3, 4]. In principle, one should be able to perform 

a SA program for linear arrays and provide a suitable cost function in order to generate the same results as the 

CLS method. Although SA is, in general, a slow algorithm (in terms of computation time), its main advantage 

resides on the number and diversity of parameters that it can control, by simply inserting the corresponding term 

in the cost function that the algorithm manages. As a summary, it can be stated that the analytical CLS approach 

solves only a few specific problems, but very efficiently, whereas SA technique can solve a variety of related 

problems and also obtain complex sidelobe topographies [3, 4]. In this paper we compare the results obtained 

from generating radiation patterns for linear arrays with high amplitude distribution efficiency and low sidelobes 

using the CLS and SA techniques.  

2. DESCRIPTION OF THE METHODS. 

2.1. CONSTRAINED LEAST SQUARES METHOD. 

Consider a discrete array with an even number (2N) of isotropic elements located along the z-axis, with 

a real-valued excitation distribution given by g(zn), n  [1, 2N]. The array factor of this arrangement can be 

calculated through the usual expression: 
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where = 2/ is the wavenumber, zn is the position of the n-th element,  is the wavelength, and  is 

the angle measured from the array axis. 

Consider further that the array and the excitation distribution are symmetric around the array center 

located at z = 0. The CLS method can be applied by minimizing the weighted mean square value (i. e. the energy 

radiated by the array) of eq. (1), as explained in [1], in a specified sidelobe region (from first or second null until 

the end of the pattern radiation zone), subject to the following constraints: 
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When ERV=1, the distribution is uniform, when ERV<1, the distribution obtained with the method will 

be tapered. A proof that this excitation distribution will be optimal is given in an analogous work applied to filter 

theory [5]. 

In this work, the CLS method has been implemented to minimize sidelobe energy beyond the second 

null. Improved results are obtained by the use of an iterative approach which will now be described. It is 

unfeasible to know the exact location of the second null prior to running the CLS simulation. An approximation to 

this value can be made using uniform distribution equations; however, this is not very accurate due to null shifting 

that occurs when the distribution is tapered. This causes discrepancy between the initial approximation and the 

actual location of the second null in the resulting pattern. The iterative CLS approach can resolve this discrepancy. 

This approach begins with the same initial approximation obtained from uniform distribution formulas, however, 

the observed location of the resulting null in the CLS pattern is reentered as the new optimization angle for each 

subsequent iteration. After several iterations, the initial minimization angle and the actual location of the second 

null in the resulting pattern agree, and significantly improved results are so obtained.  

2.2. SIMULATED ANNEALING METHOD. 

In the SA approach, a cost function is minimized to achieve the desired values of the power pattern 

calculated with the expression (1). A general cost function obtained with the proper choice of ci (weights) is given 

by: 

2
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The subscripts o, and d, max and av indicate obtained, desired, maximum and average values, 

respectively. ERV has the same significance as that given in (2), and H is the Heaviside step function defined as: 
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SLL are the sidelobe levels (the maxima given in dBs, whereas the average as its absolute value relative 

to the peak of the main beam), whereas D corresponds to peak directivity.  

First, an array distribution is computed by taking uniformly spaced points of a continuous Taylor 

distribution and then choosing the values of the extremes to coincide with the first and last elements of the array. 

SA is then used to perturb the values of its roots so as to minimize the cost function given by (3). The values 

given to the cost function weights will produce different optimal patterns and distributions. 

3. COMPARISON OF RESULTS 

Consider a linear array of 30 elements a distance 0.5 apart. The CLS method and two different SA cases were 

used to compute far-field patterns with ERV = 0.9, 0.8, and 0.7. In the CLS approach, the energy beyond the 

second sidelobe is minimized for a fixed ERV. In the first SA approach (SA1), the c4 weight, which controls the 

average sidelobe level, was set to 0 and the other weights were set to 10, 1, and 0.5 (c1, c2 and c3, respectively). 

This cost function maximizes directivity for a fixed ERV and a specified peak sidelobe level. The desired peak 

sidelobe level was set to –17dB for ERVd = 0.9, –20dB for ERVd = 0.8, and –25dB for ERVd = 0.7. In the second 

SA approach (SA2), the c1 weight was set to 1, the c4 weight was set to 4.5 and the other weights were set to zero. 

This cost function minimizes the overall average sidelobe level for a fixed ERVd. Table 1 compares the pattern 

statistics for these cases. For brevity, only patterns for ERV = 0.9 are shown in Figures 1 - 3 (CLS, SA1, and SA2 

cases). The excitation amplitudes are represented in figure 4. As can be seen from table 1, the SA1 distribution 

yields the highest directivity and the highest average sidelobe levels. The CLS and SA2 cases distributions show 

comparable values for directivity, peak sidelobe level, and average sidelobe level. For ERV = 0.7 and 0.8 the peak 

sidelobe level is highest for the CLS case. The first sidelobe is excluded in the minimization of sidelobe energy in 

the CLS approach, while the SA2 approach includes the first sidelobe in the minimization of the average sidelobe 

level. The CLS and SA2 distributions are in excellent agreement and have a monotonic taper beyond the uniform 

region. The SA1 distributions have the slight increase at the ends that are characteristic of Taylor distributions 

with high n  values (in all examples performed here, n  = 8 was taken when using any of the SA methods). 

4. CONCLUDING REMARKS 

The results show that with the appropriate terms (and/or weights) in the cost function, the SA approach can 

lead to CLS-like patterns and distributions. These results also provide an interesting numerical validation of the 
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forms of the distribution functions derived in [2] and [5]. The advantage of SA techniques is the ability to provide 

variations to the CLS method for differing sidelobe topographies. The edge brightening appeared in the amplitude 

distributions obtained with the SA approach could be reduced by adding a corresponding term in the cost function 

(3), penalizing that behavior. Nevertheless, in this sense it is of concern the implementation of other kind of 

excitation distributions, analogous to Taylor’s, as, for example, one appeared in a work elaborated by Rhodes [6]. 

In that case, the amplitude distributions behave very similarly to those obtained with the CLS implementation, 

with a central segment and flanking monotonic decaying curves, as was verified by the authors by the inspection 

of some results not shown here for brevity.  As straightforward extensions of the methods, circular continuous 

sources and -symmetrical arrays are under consideration by part of the authors in a current research [7]. 
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LEGENDS FOR FIGURES AND TABLES 

TABLE 1. Comparison table of the results obtained with the CLS and SA methods.   

FIGURE 1. Power pattern obtained with CLS method, establishing ERV = 0.9. 

FIGURE 2. Power pattern obtained with SA1 method, establishing ERVd = 0.9 in the cost function (3). 

FIGURE 3. Power pattern obtained with SA2 method, establishing ERVd = 0.9 in the cost function (3). 

FIGURE 4. Comparison of CLS and SA distributions for ERV = 0.9 that generate the power patterns shown in 

figures 1-3. 
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TABLE 1 

METHOD ERV D 
Peak SLL 

(dB) 

Avg. SLL 

(dB) 

Avg. SLL (dB) 

Excluding 1st 

Sidelobe 

SA1 

0.9 

29.24 -17.00 -24.70 -25.30 

SA2 28.80 -14.24 -27.21 -33.42 

CLS 28.89 -14.47 -27.37 -33.11 

SA1 

0.8 

28.73 -20.09 -28.52 -29.29 

SA2 27.55 -17.47 -30.51 -36.39 

CLS 26.92 -16.43 -29.79 -40.10 

SA1 

0.7 

27.26 -25.00 -30.61 -30.65 

SA2 25.78 -23.64 -35.98 -39.39 

CLS 25.41 -18.86 -32.12 -50.24 

 

 



  

9 

 

90 100 110 120 130 140 150 160 170 180
-60

-50

-40

-30

-20

-10

0
N

o
rm

a
liz

e
d

 P
o
w

e
r 

(d
B

)

 (degrees)
 

Fig. 1 
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Fig. 2 
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Fig. 3 
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