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Abstract 

This article implements an Artificial Neural Network to find, through computer simula-

tion, the excitations of a square planar array, composed by 52 uniformly spaced subar-

rays, with a quasi-null in its radiation diagram. This simulation model includes the re-

duction of any signal interference in the shaped radiating zone, after its position has 

been determined. 
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Introduction 

In a previous article [1], the Radiating System Group1 developed a synthesis 

method, which positions a quasi-null in the global beam radiation diagram of an array 

installed in a geostationary satellite, composed by 52 active and 12 inactive subarrays. 

That method has been accomplished through the use of the simulated annealing tech-

nique [2], an easy-implementing and very efficient tool widely utilized in computer-

aided simulations. This method, although it has advantages, is too slow to be imple-

mented in the array itself using real-time calculations.  The algorithm of the cited article 

takes, in a desktop computer with an Athlon XP 1800 processor running at 1.53 GHz, 

about 40 minutes to find a solution. 

Lately, the progress in the application of Artificial Neural Networks (ANN) in a 

variety of fields makes possible their use in signal processing, and synthesis or optimi-

zation for radiating problems. As interesting examples, Zooghby, Christodoulou et al. 

[3-4], implemented and then validated experimentally an ANN direction finder. A later 

publication of the same authors [5] presented a Radial Basis Function Neural Network 

(RBFNN) that can reject interferences through adaptive cancellation in circular arrays.  

In this article a computer-aided simulating method that implements an ANN is 

presented. After its training, the output vector of this ANN specifies the excitation dis-

tribution of the array studied in article [1], taking as input vector a desired radiation 

mapping over a predetermined angular positions in space, with a quasi-null positioned 

in a pre-established direction. The fundamental advantage of this method, compared 

with that described in [5] for circular arrays, is that the radiation diagram of the antenna 

has low degradation before the quasi-null has been positioned, as seen below.  

 

 



The method 

The previous article [1] specifies the configuration and the relevant parameters of 

the antenna used in this work. Table 1 summarizes and lists its parameters. In this table, 

the reception and transmission modes are denoted as Rx and Tx, respectively. When the 

antenna is installed on a geostationary satellite, it can generate eight fundamental radia-

tion patterns. These are described as: Rx mode, a global beam to cover a specified zone 

on the Earth’s surface; one fixed pencil beam, that points to a certain pre-established 

angular direction; and finally two movable beams with the capability of scanning the 

complete hemisphere of the earth. The Tx mode uses the same number of beams and 

specifications as the Rx mode. The coverage zone, that is, the zone of illumination of the 

global beam of the antenna, is the cone enclosed by the variation of (coordinates 

spatial angles, with 0   c and 0 2 ( measured from the zenith of the plane 

of the array). Figure 1 represents antenna dimensions and its active and passive subar-

rays. It can be seen that 12 elements placed on the vertices of the square were inactivat-

ed.  

For our requirements, a power pattern quasi-null is positioned at pre-established 

angles (qnqn) inside the coverage zone of the global beam of the antenna, at the center 

frequency of Rx band. After this, a mapping of 121=11x11 points in the appropriate 

zone is taken, considering uniformly spaced (u,v) positions, where the transformations: 

    sin cos u  

(1) 

sin sin v  

replace the () values. The choice of -0.2  u  0.2 and –0.2  v  0.2, includes the 

() values within the coverage zone.  

 

 



 

By definition, the synthesis problem in array design consists of finding the excita-

tion distribution of the antenna elements, when a power -or field- pattern, with specified 

characteristics established by the designer. On the other hand, in the analysis problem, 

when an excitation distribution is given, the power -or field- pattern is obtained with an 

empirical or analytical formulation. Subsequently, the synthesis problem can be viewed 

as the inverse formulation for a certain (previously unknown) excitation distribution. 

Some authors, as Funahashi [6], have stated that neural networks with non-linear trans-

fer functions can be considered as function universal approximators. Based on these 

justifications and on their own experience [7-9], a Multilayer Perceptron feed-forward 

architecture network (MLP) is proposed in this work by the group: Artificial Neural 

Networks and Adaptive Systems Laboratory2 in order to obtain the excitation distribu-

tion of the array when a quasi-null position has been established in its power pattern.  

 

Application 

For our purpose, a four-layered perceptron gives high-quality results, with the 

mapping of the power pattern (measured in dB) as input vector, and denoted as Pp (with 

1 P  121). The 52-element excitation distribution is separated into real and imaginary 

parts, as output vector Req, Imq (1 q  52), and two hidden layers: hr
1 (1 r  100) 

and hs
2 (1 s  80). The training process of this particular ANN has been performed 

with 200 pairs of input-output vectors. In the validation process, 25 pairs were used. For 

better results, two ANN were constructed separately, with their processes of training-

validation carried out as follows: on the one hand, an ANN with the PP and Req as input 

and output vectors, respectively, and, on the other, with PP and Imq as before. Figure 2 

gives the schematic of each ANN, with the generic output vector denoted as Eq repre-



senting the Req or Imq vector, as corresponds. Table 2 summarizes the fundamental 

characteristics of each ANN, and the errors obtained in their training and validation pro-

cesses. Figure 3 represents an example of the desired power pattern, with a quasi-null 

positioned at (uqn = 0.08, vqn = 0.08) and at –10.84 dB below the maximum power. The 

ripple in the coverage zone is  0.91 dB. Figure 4 represents the ANN response for the 

same case, after the training process has been completed, with a ripple slightly degraded 

to  1.15 dB, and the depth of the quasi-null raised at –10.17 dB.  

 

Conclusions 

The architecture of the multilayer perceptron presented here allows rejection of 

some interference in the coverage zone of a planar array radiation pattern, when its posi-

tion has been established. Although the quasi-null positioning was moved within the -

0.1  u  0.1 and –0.1  v  0.1 interval, before the training and validation processes, 

and in order to obtain the 225 pairs of input-output vectors, this must not be seen as a 

data base itself. The u and v of the equispaced angular points are large enough to 

admit quasi-null locations between them that change the excitation distribution of the 

array in a manner that can not be neglected.  

 The training of each network takes about 4 minutes, in a computer with an Athlon 

XP 1800 processor, running at 1.53 GHz. In the simulation process, after the neural 

network has been trained, the positioning of the quasi-null in a desired location can be 

done quickly (less than one second in the same PC), and with high-performance re-

sponse of the radiation diagram. It can be seen that, as an immediate application, this 

scope could be expanded through the hardware implementation of the ANN in the array 

itself. As the ANN presented here represents, in a discretized way, the inverse equation 

of a radiation pattern of a planar antenna. This technique could be used, in a further in-



vestigation, to diagnosis array faults by using measured values of its own far-field am-

plitude [10], its input impedance [11] and / or its mutual coupling [12]. It would be very 

useful method for antennas permanently or semi-permanently deployed in space, and for 

any case that requires the use of costly near-field measurement facilities. 
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TABLES AND FIGURES 

Table 1. Antenna relevant parameters 

Active subarrays 52 

Passive subarrays 12 

Number of elements of each subarray 8 

Antenna dimensions 600 x 600 mm2 

Distance between subarrays 75 mm 

Rx Band 7.90-8.15 (GHz) 

Tx Band 7.25-7.50 (GHz) 

Coverage zone c = 8.7º (deg) 

 

Table 2. Parameters of the two performed MLP and errors obtained in training and val-

idation processes. 

PARAMETER VALUE 

Network architecture Multilayer Perceptron 

Network training function Resilient Backpropagation Algorithm 

Number of input neurons 121 

Number of neurons in  first hidden layer 100 

Number of neurons in  second hidden layer 80 

Number of neurons in output layer 52 (each MLP) 

Transfer functions Hyperbolic Tangent Sigmoid 

Training error (real output vectors) 1.13% 

Training error (imaginary output vectors) 1.37% 

Validation error (real output vectors) 3.43% 

Validation error (imaginary output vectors) 4.12% 

 

 

 

 



Figure 1. Antenna spatial configuration. Filled squares represent active subarrays. 

 



Figure 2. Architecture of the MLP feed-forward  network used in this work. 

 



Figure 3. Desired power pattern taken with the quasi-null position at (uqn= 0.08,vqn= 0.08) and depressed –10.84 dB below the maximum of the cover-

age zone. Ripple obtained:   0.91 dB. 



Figure 4. Power pattern obtained after the neural network has been trained, corresponding this example to that given in figure 3. Quasi-null depressed 

–10.17 dB below the maximum. Ripple obtained:  1.15 dB. 

 


