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Abstract

The number of fires in forest areas of Galicia (north-west of Spain) during the summer period
is quite high. Local authorities are interested in analyzing the factors that explain this phe-
nomenon. Poisson regression models are good tools for describing and predicting the number
of fires per forest areas. This work employs area-level Poisson mixed models for treating real
data about fires in forest areas. A parametric bootstrap method is applied for estimating
the mean squared errors of fires predictors. The developed methodology and software are
applied to a real data set of fires in forest areas of Galicia.

Research highlights: • The methodology predicts the probability fire counts. • Bootstrap
estimators are created for mean squared errors of fire predictions. • Bootstrap confidence
intervals are used to calculate two-scenario fire variation. • The new tools study the effect
of auxiliary variables in fire count reduction.
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1 Introduction

The number of human-caused bushfires has increased worlwide in the last years (Plucinski et al.,
2013; Le Page et al., 2014; Krawchuk and Moritz, 2014). Policy makers and technicians request
scientific models to explain the causality of fire and to establishing future scenarios of fire
risk conditions, especially in one of the worst hit regions of the world, Mediterranean Europe
(Rodrigues and de la Riva, 2014). This need has brought about the development of several
prediction models (Mart́ınez et al., 2009; Thompson and Calkin, 2011; Ager et al., 2014) which
have focus on explaining spatio-temporal patterns that relate different variables (physiographic,
infrastructural, socio-economic and weather) with ignition arson wildfires. The “number of fires”
is a count variable, which is not continuous and the use of linear models is not appropriate. For
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this type of data, McCullagh and Nelder (1989) proposed an extension of linear models called
generalized linear models (GLMs). GLMs assume that the distribution of the target variable
belongs to the exponential distribution and therefore they can be used for Bernoulli, binomial
and Poisson distributions, among others.

Poisson regressions and binomial-logit models are GLMs that are generally used for counts
of rare events. This is the case of counting number of fires in a given territory and time
period. Some papers introducing statistical models for counts of forest fires can be found in
the literature. Garćıa et al. (1995) introduced a logit model to predict the number of fire-days
in the Whitecourt Forest of Alberta. Mandallaz and Ye (1997) presented a general statistical
methodology for the prediction of forest fires occurrences in the context of Poisson models. They
applied their methodology to data from France, Italy, Portugal, and Switzerland. Wotton et al.
(2003) developed Poisson regression predictive models for the daily number of fires in ecoregions
of Ontario. Mart́ınez et al. (2009); Chuvieco et al. (2010) and De Vicente and Crespo (2012)
gave models for probability of occurrence of a fire.

The occurrence of the studied events might have some variability between areas that the
GLMs cannot explain with the auxiliary variables. Generalized linear mixed models (GLMMs)
allows to model the extra variability between areas by introducing a random effect. The esti-
mation of GLMMs are computationally intensive and requires advanced numerical procedures.
Some monographs about GLMMs are Demidenko (2004); McCulloch et al. (2008) and Jiang
(2007). Finney et al. (2009) analyzed the containment of large wild fires by using GLMMs.
Dı́az-Avalos et al. (2001) used GLMMs to study the effect of vegetation cover, elevation, slope,
and precipitation on the probability of ignition in the Blue Mountains, Oregon, and to estimate
the probability of ignition occurrence at different locations in space and in time.

This paper introduces an area-level Poisson mixed models for modelling the number of fires
occurred in the forest areas of Galicia during the summer of 2007. The fitted GLMM is also
used for predicting the number of fires under different scenario and therefore it gives a tool
for decision making. The mean squared error (MSE) of the fire predictions was estimated by
applying the parametric bootstrap method described in González-Manteiga et al. (2007, 2008).
The proposed methodology for predicting fire counts and estimating prediction uncertainties is
a new and useful contribution for forest engineers and policy makers.

The remainder of the paper is organized as follows. Section 2 introduces the area-level Poisson
mixed model in a general context and the model-based predictors of number of fires in a general
context. It also gives the bootstrap procedure for estimating the MSEs. Section 3 describes
the situation and the data under study. The main idea is to look for the factors that explains
the number of large fires in rural areas of Galicia. This section presents the statistical analysis
and shows how the fitted model can be used for predicting number of fires under scenarios
that are close to the one observed in Galicia during the summer of 2007. Section 4 gives some
conclusions. The appendix gives some mathematical details about the Laplace approximation
fitting algorithm.

2 The model

This section introduces the Poisson mixed model employed in the data analysis of the case study.
First we introduce some notation and assumptions. Let us assume that the region under study
can be partitioned into D forest areas (domains). Let {vd : d = 1, . . . , D} be a set of random
effects that are i.i.d. N(0, 1). The distribution of the target variable yd (number of fires in the
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forest area d), conditioned to the random effect vd, is

yd|vd ∼ Poiss(µd), d = 1, . . . , D, (1)

where µd > 0 is the mean of the Poisson distribution. For the natural parameter, we assume

ηd = logµd = xdβ + φvd, d = 1, . . . , D, (2)

where φ > 0 is a variance component parameter, β = col
1≤k≤p

(βk) is a vector of fixed regression

coefficients and xd = col′
1≤k≤p

(xdk) is the vector of auxiliary variables. Further, we assume that

the yd’s are independent conditioned to v. Therefore

P (yd|v) = P (yd|vd) =
1

yd!
exp{−µd}µydd ,

where µd = exp {xdβ + φvd}. Let θ = (β, φ) be the vector of all unknown parameters. To fit
the model we employ the Laplace approximation algorithm described in the Appendix. This
algorithm calculates the maximum likelihood (ML) estimators, θ̂ = (β̂, φ̂), of the model param-
eters and the predictors, v̂d, of the random effects. Based on the parameter estimates and on the
random effect predictions, we obtain the predictor µ̂d = µ̂d(θ̂, v̂d) = exp{xdβ̂ + φ̂v̂d}. Finally,
we estimate MSE(µ̂d) by applying the following parametric bootstrap algorithm

1. Fit the model to the sample and calculate the estimator θ̂ = (β̂, φ̂).

2. Repeat B times (b = 1, . . . , B)

(a) Do v
∗(b)
d ∼ N(0, 1), µ

∗(b)
d = exp{xdβ̂ + φ̂v

∗(b)
d }, y∗(b)d ∼ Poiss(µ

∗(b)
d ), d = 1, . . . , D.

(b) Calculate θ̂
∗(b)

, v̂
∗(b)
d , µ̂

∗(b)
d = µ̂∗d(θ̂

∗(b)
, v̂
∗(b)
d ), d = 1, . . . , D.

3. Output:

mse∗(µ̂d) =
1

B

B∑
b=1

(
µ̂
∗(b)
d − µ∗(b)d

)2
. (3)

3 Case study

The region of Galicia is in the northwest of the Spain (see Figure 1). Galicia has a population
of 2,795,422 (5.9% of the Spanish population) and a surface area of 29,574 km2 (5.8% of Spain).
Galicia has the sixth greatest absolute forest areas among Autonomous Communities, with more
than 1,424,094 ha of forest wooded representing 51% of Galician land cover and 7.7% of forest
cover in Spain. Ratio of the forest surface is notably higher than the national average (55.2%)
(MAGRAMA, 2014). Regarding the property regime of the land, most Galician forest is private
(97.2%), and this percentage is much higher than the national average at 67.7% (Rodŕıguez-
Vicente and Marey-Pérez, 2009a). Following the study of Marey-Pérez and Gómez-Vázquez
(2010), private forest ownership is subdivided into either particular ownership or communal
ownership in collective woodlands (Montes Vecinales en Mano Común, MVMC), an ownership
typology almost exclusive to Galicia.

Wildfires in Galicia are a recurrent problem and show increasing levels of severity. There
were 251,106 wildfires in Galicia since 1961, the year in which forest fire statistics started, until
December 2013 (MAGRAMA, 2014). These fires burned an area of 1,829,330 ha, equivalent to
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Figure 1: Geographic location map of Galicia in Spain.

65.4% of the geographical area of Galicia and almost 128.5% of total wooded forest area. Wild-
fires mainly affect rural municipalities in the south of the region with low population densities
and regressive demographic dynamics due to low birth rates and an ageing population (Balsa-
Barreiro and Hermosilla, 2013; Fuentes-Santos et al., 2013). These municipalities have also been
unaffected by recent foreign immigration patterns, which, combined with last century’s rural
flight has led to strong declines in population. Additionally, economic structures are based on
primary sectors (González et al., 2007). In this paper, we use the described methodology for
modelling the number of fires by forest areas (D = 63) in Galicia during the summer 2007. This
summer may be taken as representing the wildfire problems of recent years. We also extend the
statistical methodology to the prediction of fire counts and the estimation of the corresponding
uncertainties under new related scenarios.

Figure 2 (left) plots the annual totals of forest fires occurrences in Spain, Galicia and rest of
Spain during the period 1980-2007. These data are taken from the web of Ministry of Agriculture,
Food and Environment of the Spain Government (MAGRAMA, 2015) and show that there have
been as many fires in Galicia as in the rest of Spain during the cited period. Figure 2 (right)
shows the number of fires per forest areas of Galicia during the summer of 2007. Galicia is divided
into 63 forest areas, which are the basic territorial structure of the fight against wildfires. At the
same time, these areas are grouped into 19 districts. In that summer there were a high amount
of fires, 15 areas had more than 19 fires, 15 areas had between 14 and 19 fires, 16 areas had
between 8 and 13 fires and 17 areas had less than 7 fires. Most fires were concentrated in the
coastal and south-east regions of Galicia.

For each area d, our data set contain the numerical values of the target variable yd (number
of fires) and of the following auxiliary variables:

• dwr: days without rain. Meteorological stations record the average number of summer
days without rain: Without rain / (With rain + Without rain). The variable dwr is
computed by averaging over the stations in the same area.

• pop: population. Population size.

• par: cadastral parcel. It gives the number of parcels. Non-urban territory is divided in
public and private parcels.

• scrub: scrub area. Percentage of land with scrub or bush vegetation.
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Figure 2: Fires in Spain during 1980-2007 (left) and in Galicia during summer 2007 (right).

• wet: wet area. Percentage of wet lands (rivers, lagoons, swamps...)

• woods: wood area. Percentage of wood lands (forests).

• lu: livestock units. Total number of cattle.

We select the model covariates by taking into account an exploratory analysis, the Akaike
information criterion (AIC) defined in (8), a correlations study and some expert judgments.
Table 1 shows the parameter estimates of the selected best Poisson mixed model, in terms of
simplicity and performance. All regression parameters, except wood area, have positive slopes
and therefore an increase in these covariates causes an increase in the number of fires. This is
to say, the number of fires is greater in those forest areas with higher values of the variables
number of summer days without rain, population size, number of cadastral parcels, percentage of
wet areas and total number of cattle units.

The coefficient of wood area has a negative sign and hence this covariate protects against the
increase of the response variable. Most forested areas experience fewer fires due to the greater
economic interest in forestry. It is in scrublands, according to Bajocco and Ricotta (2008);
Dı́az-Delgado et al. (2004); González et al. (2006); González and Pukkala (2007); Koutsias et al.
(2009); Montané et al. (2009); Moreira et al. (2009); Mouillot et al. (2005); Nunes et al. (2005)
and Sebastian-Lopez et al. (2008), where greater intensity and number of fires is. The positive
coefficient of the wet areas is related to the location and the surface of reservoirs, built in the
mid to late 20th century to produce electricity. They are mainly found in the headwaters in the
mountains of the interior of the region, where an extensive livestock causes a significant number
of fires for obtaining pasture, both in early spring and late summer.

Each forest area d (d = 1, . . . , 63) has a random intercept with estimated normal distribution
N(0, φ̂2), where φ̂ = 0.329. The 95% percentile bootstrap confidence interval is (0.162, 0.383).
We approximate the distribution of φ̂ by the sampling distribution of φ̂∗ in the B = 1000
bootstrap samples obtained by applying the algorithm described at the end of Section 2. This
is, P (φ̂ ≤ a) ≈ P ∗(φ̂∗ ≤ a). Therefore, if t∗(α) is the α-quantile of φ̂∗, then IC∗ = (t∗(α/2), t

∗
(1−α/2)).

Shao and Tu (1995) give mathematical details about the construction of the employed bootstrap
confidence intervals. We conclude that φ is different from 0 at the 95%-level of confidence and
we propose a Poisson GLMM with the random effects vd’s instead of the corresponding Poisson
GLM without the random effects.
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Parameter Estimate Std. Error z-value P (> |z|)
Intercept 2.510 0.057 43.941 0.000
dwr 0.322 0.071 4.503 0.000
pop 0.449 0.064 7.004 0.000
par 0.250 0.059 4.247 0.000
scrub 0.274 0.078 3.521 0.000
wet 0.244 0.057 4.305 0.000
woods -0.148 0.063 -2.363 0.018
lu 0.324 0.066 4.896 0.000

Table 1: Parameter estimates and p-values for the Poisson mixed model.

For the set of auxiliary variables appearing in Table 1, Figure 3 plots the Pearson residuals
for the models without (left) and with (right) random effects. We observe that the residuals of
the Poisson mixed model (right) are closer to zero than the ones of the Poisson model with only
fixed effects (left), so that we again prefer the model with random effects. The obtained p-values
for Shapiro-Wilk test are 0.054 (GLM) and 0.860 (GLMM), and thus the normality assumption
is accepted in both cases.
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Figure 3: Pearson residuals for the models without (left) and with (right) random effects.

Figure 4 plots the observed number of fires versus the predicted number of fires under the
models without (left) and with (right) random effects. We observe that Poisson mixed model
has a greater prediction strength. This is why we confirm our selection of the introduced Poisson
GLMM.

Figure 5 plots the histogram (left) and the normal qqplot (right) of the predicted random
effects, v̂d, d = 1, . . . , D. Based on the two plots and on the p-value of the Shapiro-Wilk test
(0.266), we can assume that the normality hypothesis on the model random effects is fulfilled.

It is interesting to note that the auxiliary variable par has a regression parameter with
positive sign. This fact is related to the small size of the rural parcels in Galicia. Formerly these
parcels were cultivated and were the livelihood of families living from agriculture and livestock.
Currently many of these parcels are no longer worked, as young people preferred to migrate to
cities in search of better opportunities. Many parcels are then abandoned and overgrown allow
fast expansion of summer fires. Therefore, the authorities would be interested in promoting the
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Figure 4: Observed versus predicted number of fires for the models without (left) and with
(right) random effects.
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Figure 5: Histogram (left) and normal qqplot (right) of predicted random effects.

creation of cooperatives or land consolidation to get more out of the land and to reduce the
number of fires. Below we illustrate the reduction that would occur in the number of fires if we
reduce by 5% the number of parcels and we let the remaining variables as they were (scenario
0.95× par).

Figure 6 (left) shows the predicted number of fires per forest areas of Galicia under the
scenario 0.95 × par. Reducing by 5% the number of cadastral parcels, the model predicts 15
areas with yd > 19, 14 areas with 13 < yd ≤ 19, 23 areas with 7 < yd ≤ 13 and 11 areas
with yd ≤ 7, where yd is the number of fires in the forest area d. Therefore, if the number of
cadastral parcels were reduced by 5% then an important reduction of the number of fires might
occur. The Poisson mixed model predicts a reduction from 1001 to 970 fires in summers with
similar environmental conditions than the one of 2007. This is because today one of the main
problems of the Galician forest sector is the large number of plots (5 plots by ha) (Marey-Pérez
et al., 2006; Rodŕıguez-Vicente and Marey-Pérez, 2009b) and the large number of forest owners
(average of 4 ha for owner) (Marey-Pérez and Rodŕıguez-Vicente, 2009; Rodŕıguez-Vicente and
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Marey-Pérez, 2009a), that is at the origin of a percentage of fires by unprofitability (Rodŕıguez-
Vicente and Marey-Pérez, 2010; Barreal et al., 2011), conflict of ownership and parcel boundaries
(Gómez-Vázquez et al., 2009; Bruña Garćıa and Marey-Pérez, 2014). Reducing the number of
plots contributes to a increasing the profitability (Rodŕıguez et al., 2013) and decreased much
of those fires specially in the most conflictive areas.

0 50 km

Predicted fires − 0.95 × par

<=7 (11)
>7 <= 13 (23)
>13 <= 19 (14)
>19 (15)

0 50 km

RRMSE − 0.95 × par

<=0.2 (18)
>0.2 <= 0.25 (17)
>0.25 <= 0.3 (14)
>0.3 (14)

Figure 6: Predicted number of fires and relative root-MSEs under the scenario 0.95× par.

Figure 6 (right) plots the estimated relative root-MSEs (RRMSE), which are obtained as
the ratio of the square root of the MSE estimators mse∗(µ̂d) and the model-based predictors
µ̂d. In this framework, we take the MSE estimator based on a parametric bootstrap (3) with
B = 1000. The average RRMSE across all the forest areas is 24.66% and its behaviour is more
satisfactory in the western region.
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Figure 7: Confidence interval for the variation of the number of fires if we reduce by 5% the
number of parcels (left) and its significance (right), with 99% confidence.

Figure 7 presents the basic bootstrap confidence intervals for the estimates of the difference
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between the number of fires in the scenarios 0.95×par (µ̃d) and observed (µd, summer 2007), with
a 99% confidence. Now the construction of the bootstrap confidence intervals is a little different.
It follows the classic idea Davison and Hinkley (2007) but we consider the random effect in the
bootstrap world to estimate µd. So, the (1− α)% confidence limits are L̂ = (̂̃µd − µ̂d)− t(1−α/2)
and Û = (̂̃µd− µ̂d)− t(α/2), being ̂̃µd the predictor in the new scenario. We approximate the t(α)
quantiles by bootstrap following the steps of the previous algorithm in Section 2:

1. Fit the model to the sample and calculate the estimator θ̂ = (β̂, φ̂).

2. Repeat B times (b = 1, . . . , B)

(a) Do v
∗(b)
d ∼ N(0, 1), µ

∗(b)
d = exp{xdβ̂ + φ̂v

∗(b)
d }, y∗(b)d ∼ Poiss(µ

∗(b)
d ), d = 1, . . . , D.

(b) From {xd, y
∗(b)
d }, calculate θ̂

∗(b)
, v̂
∗(b)
d , µ̂

∗(b)
d = µ̂∗d(xd, θ̂

∗(b)
, v̂
∗(b)
d ), d = 1, . . . , D.

(c) For the new scenario {x̃d, y
∗(b)
d }, calculate µ̃

∗(b)
d = exp{x̃dβ̂ + φ̂v

∗(b)
d } and ̂̃µ∗(b)d =

µ̂∗d(x̃d, θ̂
∗(b)

, v̂
∗(b)
d ), d = 1, . . . , D. Note that, the model is fitted from the bootstrap

initial sample and then we study the effect of changing the values of the auxiliary
variable xd for x̃d, as the real world.

3. Calculate the quantiles t∗(α/2) and t∗(1−α/2) as the (α/2)-quantile and (1− α/2)-quantile of{
(̂̃µ∗(b)d − µ̂∗(b)d )− (µ̃

∗(b)
d − µ∗(b)d )

}B
b=1

, respectively.

4. Finally, the bootstrap confidence interval is(
(̂̃µd − µ̂d)− t∗(1−α/2), (̂̃µd − µ̂d)− t∗(α/2)) .

We have a significant reduction in the number of fires in the forest regions where the confi-
dence interval does not cut the dashed line at the origin. For example, in area 61 (located on
the south-west coast), a significant decrease in the number of fires is obtained. In this case we
can achieve a reduction of up to 3 fires with a confidence level of 99%. It also corresponds to
one of the biggest cities in the community, so a reduction in the number of fires there would
be positive for its socio-economic impact and risk of casualties. Figure 6 (right) shows that the
above difference is not significant in 28 forest areas and significant in 35. The greatest changes
are observed in the interior and southeast zones of Galicia.

Another important auxiliary variable for the occurrence of forest fires is scrub area. If we
reduce this covariate in the same percentage as in the previous case (5%), the Poisson mixed
model predict a reduction of 17 fires. Although this alternative involves a smaller reduction in
the number of fires than in the previous case, its economic impact is also lower.

4 Discussion and Conclusions

In recent years, several authors have studied the situation of wildfires in Galicia from an environ-
mental perspective (Vega et al., 2011; Lombao et al., 2014), their financial consequences (Barreal
et al., 2011) and the causality in conflictive areas (Fuentes-Santos et al., 2013) or in the whole
region (Chas-Amil et al., 2015). There are also different studies on the causes and consequences
of extraordinary situations, such as the case of the first half of August, 2006 (González-Alonso
and Merino-de-Miguel, 2009; Balsa-Barreiro and Hermosilla, 2013). This paper poses three dif-
ferences in relation to previous works. First, we select as an analysis unit what happened in
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the whole region in a representative period of the situation faced by planning and wildfire fight
resources, such as summer, 2007. The second difference is using territorial units as modelization
units in which fight against fire is developed in three stages: planning, detection and fighting.
Third, there is a difference in the modelization method used and its predictive capacity. We use
a Poisson mixed model with area random effects because incorporate forest-area random effects
that explain the additional between area variations in the data that is not explained by the
fixed part of the model. The fitted model can be used for investigating the target variable under
modified scenarios. In our case, the number of fires is greater in those forest areas with higher
values of the variables number of summer days without rain, population size, number cadastral
parcels, percentage of wet areas and total number of cattle units.

This paper employs Poisson mixed models for quantitative risk-prediction in Mediterranean
areas. The paper presents two major contributions. The first one is the methodology for
predicting fire counts and for estimating the corresponding efficiency measures approximated by
bootstrap. The second one is the construction of bootstrap confidence intervals for the variation
of number of fires between observed data and data coming from new scenarios. This tool allows
us to study whether the small changes in some auxiliary variables may produce significative
reduction of fires in some domains of interest. The introduced statistical methodology gives an
useful decision-making tool for policy makers. It can be also extended to target variables with
distributions from the exponential family and, therefore, it can be used under Binomial and
Poisson distributions, among others. The use of these Poisson mixed models is the first stage
towards the integration of a higher number of variables and data about a longer wildfire period.
These improvements can increase the predictive capacity which explains the presence of arson
wildfires in a conflictive area, answering thus the demands of policy makers and technicians.

5 Appendix

To fit the area-level Poisson mixed model given by (1) and (2), we maximize the Laplace ap-
proximation of the joint marginal log-likelihood of the target vector y = (y1, . . . , yD). For this
sake, let h : R 7→ R be a continuously twice differentiable function with a global maximum at
x0. This is to say, let us assume that ḣ(x0) = 0 and ḧ(x0) < 0. A Taylor series expansion of
h(x) around x0 yields to

h(x) = h(x0) + ḣ(x0)(x− x0) +
1

2
ḧ(x0)(x− x0)2 + o

(
|x− x0|2

)
≈ h(x0) +

1

2
ḧ(x0)(x− x0)2.

The univariate Laplace approximation is

∫ ∞
−∞

eh(x) dx ≈
∫ ∞
−∞

eh(x0) exp
{
− 1

2

(
− ḧ(x0)

)
(x− x0)2

}
dx = (2π)1/2

(
− ḧ(x0)

)−1/2
eh(x0).

Let us now approximate the loglikelihood of the considered Poisson mixed model. We recall
that v1, . . . , vD are i.i.d N(0,1) and that

yd|vd ∼
ind

Poiss(µd), µd = exp {xdβ + φvd} , d = 1, . . . , D.
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It holds that y1, . . . , yD are unconditionally independent with marginal probability distribution
function

P (yd) =

∫ ∞
−∞

P (yd|vd)f(vd) dvd =

∫ ∞
−∞

1

yd!
exp{−µd}µydd (2π)−1/2 exp{−1

2
v2d} dvd

=
1

(2π)1/2yd!

∫ ∞
−∞

exp
{
− exp{xdβ + φvd}+ yd(xdβ + φvd)−

1

2
v2d
}
dvd

=
1

(2π)1/2yd!
exp{ydxdβ}

∫ ∞
−∞

exp
{
h(vd)

}
dvd,

where

h(vd) = − exp{xdβ + φvd}+ φydvd −
1

2
v2d, (4)

ḣ(vd) = −φ exp{xdβ + φvd}+ φyd − vd, ḣ(v0d) = 0,

ḧ(vd) = −(1 + φ2 exp{xdβ + φvd}), ḧ(v0d) < 0.

By applying (4) in vd = v0d, we get

P (yd) ≈
1

yd!
exp{ydxdβ}(1+φ2 exp{xdβ+φv0d})−1/2 exp

{
−exp{xdβ+φv0d}+φydv0d−

1

2
v20d}.

The loglikelihood is

` =
D∑
d=1

logP (yd) ≈
D∑
d=1

{
− log yd! + ydxdβ −

1

2
log(1 + φ2 exp{xdβ + φv0d})

− exp{xdβ + φv0d}+ φydv0d −
1

2
v20d

}
+ `L(β, φ, v01, . . . , v0D) = `L. (5)

The components of the score vector and the Hessian matrix are

U0r =
∂`L
∂βr

, U0p+1 =
∂`L
∂φ

,

H0rs = H0sr
∂2`L
∂βs∂βr

, Hrp+1 = Hp+1r =
∂2`L
∂φ∂βr

, H0p+1p+1 =
∂2`L
∂φ2

.

U0 = U0(θ) = col
1≤r≤p+1

(U0rs), H0 = H0(θ) = (H0rs)r,s=1,...,p+1.

The Newton-Raphson algorithm maximizes `L(θ), with vd = v0d fixed, d = 1, . . . , D.

θ(k+1) = θ(k) −H−10 (θ(k))U0(θ
(k)). (6)

For d = 1, . . . , D, the Newton-Raphson algorithm also maximizes h(vd) = h(vd,θ), defined in
(4), with θ = (β′, φ) = θ0 fixed. The updating equation is

v
(k+1)
d = v

(k)
d −

ḣ(v
(k)
d ,θ0)

ḧ(v
(k)
d ,θ0)

. (7)

The Laplace-ML algorithm combines the updating equations (6) and (7), i.e.

1. Set the initial values k = 0, θ(0), θ(−1) = θ(0) + 1, v
(0)
d = 0, v

(−1)
d = 1, d = 1, . . . , D.
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2. Until ‖θ(k) − θ(k−1)‖2 < ε1, |v(k)d − v
(k−1)
d | < ε2, d = 1, . . . , D, do

(a) Apply algorithm (7) with seeds v
(k)
d , d = 1, . . . , D, convergence tolerance ε2 and

θ = θ(k) fixed. Output: v
(k+1)
d , d = 1, . . . , D.

(b) Apply algorithm (6) with seed θ(k), convergence tolerance ε1 and v0d = v
(k+1)
d fixed,

d = 1, . . . , D. Output: θ(k+1).

(c) k ← k + 1.

3. Output: θ̂ = θ(k), v̂d = v
(k)
d , d = 1, . . . , D.

A seed for the Newton-Raphson algorithm is β(0) = β̃, where β̃ is the maximum likelihood
estimator under the model without random effects. Concerning the variance parameter, we use

φ(0) =

(
1

D

D∑
d=1

(η̃d − η̂dird )2

)1/2

,

where η̃d = xdβ̃, η̂dird = log µ̂dird and µ̂dird = yd+1
2 . The ML-Laplace AIC is

AIC = 2(p+ 1)− 2`L(θ̂, v̂1, . . . , v̂D), (8)

where θ̂ = (β̂, φ̂) and v̂d, d = 1, . . . , D, are taken from the output of the Laplace-ML algorithm.
The asymptotic variance of the Laplace-ML estimators can be obtained from the diagonal of the
matrix H−10 (θ̂).
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González, J., Palah́ı, M., Tasobares, A., and Pukkala, T. (2006). A fire probability model for
forest stands in Catalonia (north-east Spain). Annals of Forest Science, 63:169–176.
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